The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile N-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study
Abstract
1. Introduction
2. Results and Discussion
Electronic Interactions
3. Computational Details
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zawadzińska-Wrochniak, K.; Zavecz, I.; Hirka, S. The recent progress in the field of the applications of isoxazoles and their hydrogenated analogs: Mini review. Sci. Rad. 2024, 3, 228–247. [Google Scholar] [CrossRef]
- Potkin, V.I.; Kolesnik, I.A.; Akishina, E.A.; Zubkov, F.I.; Fedoseeva, M.A.; Pronina, A.A.; Grigoriev, M.S.; Zhou, H.; Kurman, P.V.; Terpinskaya, T.I.; et al. Polysubstituted pyrans, chromenes, and chromenopyridines with isoxazole or isothiazole moiety: Synthesis, structure, and antitumor activity. Chem. Heterocycl. Comp. 2024, 60, 390–402. [Google Scholar] [CrossRef]
- Xiao, M.M.; Hua, M.Q.; Mou, F.Y.; Xiong, H.Y. Visible-light-induced Ir-catalyzed site-selective C−H trifluoromethylation of 3-substituted 1,2-benzoxazoles. Chem. Heterocycl. Comp. 2024, 60, 299–303. [Google Scholar] [CrossRef]
- Liu, L.; Liu, W.; Feng, H. Ring expansion strategy to access functionalized 2-oxazolines (microreview). Chem. Heterocycl. Comp. 2024, 60, 236–238. [Google Scholar] [CrossRef]
- Dresler, E. The Participation of Oleic Acid and its Esters in (3+2) Cycloaddition Reactions: A Mini-Review. Sci. Rad. 2024, 3, 53–61. [Google Scholar] [CrossRef]
- Ryachi, K.; Barhoumi, A.; Atif, M.; Zeroual, A.; El Idrissi, M.; Tounsi, A. Advanced quantum and docking studies on the (3+2) cycloaddition of nitrile oxide with 1-Methyl-4-(Prop-1-en-2-yl)Cyclohex-1-ene: Exploring mechanisms and ADME properties. Curr. Chem. Lett. 2025, 14, 11–20. [Google Scholar] [CrossRef]
- Pinho e Melo, T.M.V.D. Recent Advances on the Synthesis and Reactivity of Isoxazoles. Curr. Org. Chem. 2025, 9, 925–958. [Google Scholar] [CrossRef]
- Hu, F.; Szostak, M. Recent Developments in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and Beyond. Adv. Synth. Catal. 2015, 357, 2583–2614. [Google Scholar] [CrossRef]
- Baraldi, P.G.; Barco, A.; Benetti, S.; Pollini, G.P.; Simoni, D. Synthesis of Natural Products via Isoxazoles. Synthesis 1987, 1987, 857–869. [Google Scholar] [CrossRef]
- Bracken, C.; Baumann, M. Development of a Continuous Flow Photoisomerization Reaction Converting Isoxazoles into Diverse Oxazole Products. J. Org. Chem. 2020, 85, 2607–2617. [Google Scholar] [CrossRef]
- Madhavan, S.; Keshri, S.K.; Kapur, M. Transition Metal-Mediated Functionalization of Isoxazoles: A Review. Asian J. Org. Chem. 2021, 10, 3127–3165. [Google Scholar] [CrossRef]
- Barber, G.N.; Olofson, R.A. A Useful, Regiospecific Synthesis of Isoxazoles. J. Org. Chem. 1978, 43, 3015. [Google Scholar] [CrossRef]
- Morita, T.; Yugandar, S.; Fuse, S.; Nakamura, H. Recent progresses in the synthesis of functionalized isoxazoles. Tetrahedron Lett. 2018, 59, 1159–1171. [Google Scholar] [CrossRef]
- Bondarenko, O.B.; Zyk, N.V. The main directions and recent trends in the synthesis and use of isoxazoles. Chem. Heterocycl. Comp. 2020, 56, 694–707. [Google Scholar] [CrossRef]
- Jasiński, R. Recent progress in the synthesis of nitroisoxazoles and their hydrogenated analogs via (3+2) cycloaddition reactions (microreview). Chem. Heterocycl. Comp. 2023, 59, 730–732. [Google Scholar] [CrossRef]
- Łapczuk-Krygier, A.; Kącka-Zych, A.; Kula, K. Recent progress in the field of cycloaddition reactions involving conjugated nitroalkenes. Curr. Chem. Lett. 2019, 8, 13–38. [Google Scholar] [CrossRef]
- Heaney, F. Nitrile Oxide/Alkyne Cycloadditions—A Credible Platform for Synthesis of Bioinspired Molecules by Metal-Free Molecular Clicking. Eur. J. Org. Chem. 2012, 2012, 3043–3058. [Google Scholar] [CrossRef]
- Haberhauer, G.; Gleiter, R.; Woitschetzki, S. anti-Diradical Formation in 1,3-Dipolar Cycloadditions of Nitrile Oxides to Acetylenes. J. Org. Chem. 2015, 80, 12321–12332. [Google Scholar] [CrossRef]
- Dresler, E.; Woliński, P.; Wróblewska, A.; Jasiński, R. On the Question of Zwitterionic Intermediates in the (3+2) Cycloaddition Reactions between Aryl Azides and Ethyl Propiolate. Molecules 2023, 28, 8152. [Google Scholar] [CrossRef] [PubMed]
- Łapczuk-Krygier, A.; Jaśkowska, J.; Jasiński, R. The influence of Lewis acid catalyst on the kinetic and molecular mechanism of nitrous acid elimination from 5-nitro-3-phenyl-4,5-dihydroisoxazole: DFT computational study. Chem. Heterocycl. Comp. 2018, 54, 1172–1174. [Google Scholar] [CrossRef]
- Padwa, A.; MacDonald, J.G. 1,3-dipolar cycloaddition of benzonitrile oxide with vinylsilanes. Tetrahedron Lett. 1982, 23, 3219–3222. [Google Scholar] [CrossRef]
- Padwa, A.; MacDonald, J.G. Utilization of vinylsilanes in [4+2]-cycloaddition reactions. J. Org. Chem. 1983, 48, 3189–3195. [Google Scholar] [CrossRef]
- Zawadzińska, K.; Ríos-Gutiérrez, M.; Kula, K.; Woliński, P.; Mirosław, B.; Krawczyk, T.; Jasiński, R. The Participation of 3,3,3-Trichloro-1-nitroprop-1-ene in the (3+2) Cycloaddition Reaction with Selected Nitrile N-Oxides in the Light of the Experimental and MEDT Quantum Chemical Study. Molecules 2021, 26, 6774. [Google Scholar] [CrossRef]
- Sadowski, M.; Dresler, E.; Zawadzińska, K.; Wróblewska, A.; Jasiński, R. Syn-Propanethial S-Oxide as an Available Natural Building Block for the Preparation of Nitro-Functionalized, Sulfur-Containing Five-Membered Heterocycles: An MEDT Study. Molecules 2024, 29, 4892. [Google Scholar] [CrossRef]
- Zawadzińska, K.; Gadocha, Z.; Pabian, K.; Wróblewska, A.; Wielgus, E.; Jasiński, R. The First Examples of (3+2) Cycloadditions with the Participation of (E)-3,3,3-Tribromo-1-Nitroprop-1-Ene. Materials 2022, 15, 7584. [Google Scholar] [CrossRef]
- Kula, K.; Łapczuk, A.; Sadowski, M.; Kras, J.; Zawadzińska, K.; Demchuk, O.M.; Gaurav, G.K.; Wróblewska, A.; Jasiński, R. On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules 2022, 27, 8409. [Google Scholar] [CrossRef] [PubMed]
- Dresler, E.; Wróblewska, A.; Jasiński, R. Understanding the Regioselectivity and the Molecular Mechanism of (3+2) Cycloaddition Reactions between Nitrous Oxide and Conjugated Nitroalkenes: A DFT Computational Study. Molecules 2022, 27, 8441. [Google Scholar] [CrossRef]
- Sadowski, M.; Kula, K. Unexpected Course of Reaction Between (1E,3E)-1,4-Dinitro-1,3-butadiene and N-Methyl Azomethine Ylide—A Comprehensive Experimental and Quantum-Chemical Study. Molecules 2024, 29, 5066. [Google Scholar] [CrossRef] [PubMed]
- Jasiński, R.; Dresler, E. On the Question of Zwitterionic Intermediates in the (3+2) Cycloaddition Reactions: A Critical Review. Organics 2020, 1, 49–69. [Google Scholar] [CrossRef]
- Siadati, S.A. An example of a stepwise mechanism for the catalyst-free 1,3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron Lett. 2015, 56, 4857–4863. [Google Scholar] [CrossRef]
- Siadati, S.A.; Kula, K.; Babanezhad, E. The possibility of a two-step oxidation of the surface of C20fullerene by a single molecule of nitric (V) acid, initiate by a rare [2+3] cycloaddition. Chem. Rev. Lett. 2019, 2, 2–6. [Google Scholar]
- Siadati, S.A. The Effect of Position Replacement of Functional Groups on the Stepwise character of 1,3-Dipolar Reaction of a Nitrile Oxide and an Alkene. Helv. Chim. Acta 2016, 99, 273–280. [Google Scholar] [CrossRef]
- Jasiński, R. Nitroacetylene as dipolarophile in [2 + 3] cycloaddition reactions with allenyl-type three-atom components: DFT computational study. Monatsh. Chem. 2015, 146, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules 2016, 21, 1319. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Ríos Gutiérrez, M.; Castellanos Soriano, J. Understanding the Origin of the Regioselectivity in Non-Polar (3+2) Cycloaddition Reactions through the Molecular Electron Density Theory. Organics 2020, 1, 19–35. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Silvi, B.; Pérez, P. The Mysticism of Pericyclic Reactions: A Contemporary Rationalisation of Organic Reactivity Based on Electron Density Analysis. Eur. J. Org. Chem. 2018, 2018, 1107–1120. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef]
- Domingo, L.R. 1999–2024, a Quarter Century of the Parr’s Electrophilicity ω Index. Sci. Rad. 2024, 3, 157–186. [Google Scholar] [CrossRef]
- Ríos-Gutiérrez, M.; Saz Sousa, A.; Domingo, L.R. Electrophilicity and nucleophilicity scales at different DFT computational levels. J. Phys. Org. Chem. 2023, 36, 4503. [Google Scholar] [CrossRef]
- Kącka-Zych, A. Understanding of the stability of acyclic nitronic acids in the light of molecular electron density theory. J. Mol. Graph. 2024, 129, 108754. [Google Scholar] [CrossRef]
- Rattananakin, P.; Pittman, C.U.; Collier, W.E.; Saebo, S. Ab initio studies of push–pull systems. Struct. Chem. 2007, 18, 399–407. [Google Scholar] [CrossRef]
- Stojiljković, I.N.; Rančić, M.P.; Marinković, A.D.; Cvijetić, I.N.; Milčić, M.K. Assessing the potential of para-donor and para-acceptor substituted 5-benzylidenebarbituric acid derivatives as push-pull electronic systems: Experimental and quantum chemical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 253, 119576. [Google Scholar] [CrossRef] [PubMed]
- Leo, H.C.A.; Taft, R.W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar]
- Kącka-Zych, A. Participation of Phosphorylated Analogues of Nitroethene in Diels–Alder Reactions with Anthracene: A Molecular Electron Density Theory Study and Mechanistic Aspect. Organics 2020, 1, 36–48. [Google Scholar] [CrossRef]
- Gavezzotti, A. On the preferred mutual orientation of aromatic groups in organic condensed media. Chem. Phys. Lett. 1989, 161, 67–72. [Google Scholar] [CrossRef]
- Ohno, A. Non-steric stereochemistry solely controlled by orientation of dipolar function. J. Phys. Org. Chem. 1995, 8, 567–576. [Google Scholar] [CrossRef]
- Wheland, G.W. A Quantum Mechanical Investigation of the Orientation of Substituents in Aromatic Molecules. J. Am. Chem. Soc. 1942, 64, 900–908. [Google Scholar] [CrossRef]
- Koubi, Y.; Moukhliss, Y.; Hajji, H.; Abdessadak, O.; Alaqarbeh, M.; Ajana, M.A.; Maghat, H.; Lakhlifi, T.; Bouachrine, M. Computational structure—biological activity and retrosynthesis investigations of 1,2,3-triazole-quinoline hybrid molecules as potential respiratory virus inhibitors. Chem. Heterocycl. Comp. 2024, 60, 491–504. [Google Scholar] [CrossRef]
- Gillies, J.Z.; Gillies, C.W.; Suenram, R.D.; Lovas, F.J.; Kraka, E.; Cremer, D. Van der Waals complexes in 1, 3-dipolar cycloaddition reactions: Ozone-ethylene. J. Am. Chem. Soc. 1991, 113, 2412–2421. [Google Scholar] [CrossRef]
- Gillies, J.Z.; Gillies, C.W.; Lovas, F.J.; Matsamura, K.; Suenram, R.D.; Kraka, E.; Cremer, D. Van der Waals complexes of chemically reactive gases: Ozone-acetylene. J. Am. Chem. Soc. 1991, 113, 6408–6415. [Google Scholar] [CrossRef]
- Mondal, A.; Acharjee, N. Unveiling the exclusive stereo and site selectivity in (3+2) cycloaddition reactions of a tricyclic strained alkene with nitrile oxides from the molecular electron density theory perspective. Chem. Heterocycl. Comp. 2023, 59, 145–154. [Google Scholar] [CrossRef]
- Dresler, E.; Wróblewska, A.; Jasiński, R. Energetic Aspects and Molecular Mechanism of 3-Nitro-substituted 2-Isoxazolines Formation via Nitrile N-Oxide (3+2) Cycloaddition: An MEDT Computational Study. Molecules 2024, 29, 3042. [Google Scholar] [CrossRef]
- Zawadzińska, K.; Kula, K. Application of β-Phosphorylated Nitroethenes in (3+2) Cycloaddition Reactions Involving Benzonitrile N-Oxide in the Light of a DFT Computational Study. Organics 2021, 2, 26–37. [Google Scholar] [CrossRef]
- Mondal, A.; Mohammad-Salim, H.A.; Acharjee, N. Unveiling substituent effects in (3+2) cycloaddition reactions of benzonitrile N-oxide and benzylideneanilines from the molecular electron density theory perspective. Sci.Rad. 2023, 2, 75–92. [Google Scholar] [CrossRef]
- Łapczuk, A.; Ríos-Gutiérrez, M. Mechanistic Aspects of (3+2) Cycloaddition Reaction of Trifluoroacetonitrile with Diarylnitrilimines in Light of Molecular Electron Density Theory Quantum Chemical Study. Molecules 2025, 30, 85. [Google Scholar] [CrossRef] [PubMed]
- Aitouna, A.O.; Barhoumi, A.; Zeroual, A. A Mechanism Study and an Investigation of the Reason for the Stereoselectivity in the [4+2] Cycloaddition Reaction between Cyclopentadiene and Gem-substituted Ethylene Electrophiles. Sci. Rad. 2023, 2, 217–228. [Google Scholar] [CrossRef]
- Kącka-Zych, A. Understanding the uniqueness of the stepwise [4 + 1] cycloaddition reaction between conjugated nitroalkenes and electrophilic carbene systems with a molecular electron density theory perspective. Int. J. Quantum Chem. 2021, 121, 26440. [Google Scholar] [CrossRef]
- Abboud, J.L.M.; Notari, R. Critical compilation of scales of solvent parameters. Part I. Pure, non-hydrogen bond donor solvents. Pure Appl. Chem. 1999, 71, 645–718. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed]
- Sadowski, M.; Dresler, E.; Wróblewska, A.; Jasiński, R. A New Insight into the Molecular Mechanism of the Reaction between 2-Methoxyfuran and Ethyl (Z)-3-phenyl-2-nitroprop-2-enoate: An Molecular Electron Density Theory (MEDT) Computational Study. Molecules 2024, 29, 4876. [Google Scholar] [CrossRef]
- Dresler, E.; Wróblewska, A.; Jasiński, R. Understanding the Molecular Mechanism of Thermal and LA-Catalysed Diels–Alder Reactions between Cyclopentadiene and Isopropyl 3-Nitroprop-2-Enate. Molecules 2023, 28, 5289. [Google Scholar] [CrossRef] [PubMed]
- Wolinski, P.; Kacka-Zych, A.; Wroblewska, A.; Wielgus, E.; Dolot, R.; Jasinski, R. Fully selective synthesis of spirocyclic-1,2-oxazine N-oxides via non-catalysed Hetero Diels-Alder reactions with the participation of cyanofunctionalysed conjugated nitroalkenes. Molecules 2023, 28, 4586. [Google Scholar] [CrossRef] [PubMed]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
- Domingo, L.R. A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv. 2014, 4, 32415–32428. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Electrophilicity w and Nucleophilicity N Scales for Cationic and Anionic Species. Sci. Radices 2025, 4, 1–17. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Demchuk, O.M.; Justyniak, I.; Mirosław, B.; Jasiński, R. 2-Methoxynaphthylnaphthoquinone and its solvate: Synthesis and structure–properties relationship. J. Phys. Org. Chem. 2014, 27, 66–73. [Google Scholar] [CrossRef]
- Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615–4624. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Pérez, P.; Sáez, J.A. Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv. 2013, 3, 1486–1494. [Google Scholar] [CrossRef]
Compound | μ | η | ω | N |
---|---|---|---|---|
1 | −5.45 | 9.74 | 1.53 | 1.07 |
6 | −5.34 | 9.93 | 1.44 | 1.09 |
2a | −4.10 | 8.78 | 0.96 | 2.91 |
2b | −3.39 | 8.47 | 0.68 | 3.77 |
2c | −5.24 | 7.80 | 1.76 | 2.26 |
Compound | X | ωC5 (P+C5) | ωC4 (P+C4) | NC5 (P−C5) | NC4 (P−C4) | |
1 | Si | 0.58 (0.38) | 0.11 (0.07) | 0.08 (0.08) | 0.03 (0.02) | |
6 | C | 0.59 (0.41) | −0.01 (0.00) | −0.02 (−0.02) | 0.00 (0.00) |
Compound | R | ωC3 (P+C3) | ωO1 (P+O1) | NC3 (P−C3) | NO1 (P−O1) | |
2a | H | −0.05 (−0.05) | 0.08 (0.08) | 0.07 (0.02) | 1.46 (0.50) | |
2b | NH2 | 0.01 (0.02) | −0.01 (−0.02) | −0.38 (−0.10) | 1.24 (0.33) | |
2c | NO2 | −0.12 (−0.07) | 0.10 (0.06) | 0.15 (0.07) | 1.20 (0.53) |
Compound | X | C4-C5 population 1 | lC4-C5 2 | lC4-N7 2 | lC5-X6 2 | lX6-CMe 3 | |
1 | Si | 3.45 | 1.32 | 1.47 | 1.88 | 1.87 | |
6 | C | 3.58 | 1.32 | 1.46 | 1.50 | 1.53 |
Reaction | Solvent | Path | Transition | ΔH | ΔS | ΔG |
---|---|---|---|---|---|---|
1 + 2a | CCl4 | A | 1 + 2a→MCA | −6.0 | −34.1 | 4.2 |
1 + 2a→TSA | 10.4 | −48.4 | 24.8 | |||
1 + 2a→4a | −46.4 | −51.3 | −31.1 | |||
B | 1 + 2a→MCB | −4.6 | −33.1 | 5.3 | ||
1 + 2a→TSB | 10.8 | −45.5 | 24.4 | |||
1 + 2a→5a | −38.7 | −48.4 | −24.3 | |||
Acetone | A | 1 + 2a→MCA | −5.6 | −33.2 | 4.3 | |
1 + 2a→TSA | 11.1 | −48.6 | 25.6 | |||
1 + 2a→4a | −46.2 | −51.0 | −30.9 | |||
B | 1 + 2a→MCB | −5.1 | −41.6 | 7.3 | ||
1 + 2a→TSB | 12.1 | −46.0 | 25.8 | |||
1 + 2a→5a | −37.5 | −49.4 | −22.8 | |||
A | 1 + 2a→MCA | −5.6 | −33.4 | 4.4 | ||
MeNO2 | 1 + 2a→TSA | 11.1 | −48.6 | 25.6 | ||
1 + 2a→4a | −46.2 | −50.9 | −31.0 | |||
B | 1 + 2a→MCB | −5.1 | −41.6 | 7.3 | ||
1 + 2a→TSB | 12.2 | −45.8 | 25.8 | |||
1 + 2a→5a | −37.4 | −49.5 | −22.7 | |||
1 + 2b | CCl4 | A | 1 + 2b→MCA | −6.6 | −35.2 | 3.9 |
1 + 2b→TSA | 9.7 | −48.0 | 24.0 | |||
1 + 2b→4b | −46.2 | −49.3 | −31.5 | |||
B | 1 + 2b→MCB | −4.9 | −34.0 | 5.2 | ||
1 + 2b→TSB | 9.5 | −45.5 | 23.1 | |||
1 + 2b→5b | −38.4 | −49.0 | −23.8 | |||
1 + 2c | CCl4 | A | 1 + 2c→MCA | −5.6 | −38.8 | 6.0 |
1 + 2c→TSA | 10.9 | −48.6 | 25.4 | |||
1 + 2c→4c | −47.2 | −51.6 | −31.8 | |||
B | 1 + 2c→MCB | −5.4 | −37.8 | 5.9 | ||
1 + 2c→TSB | 11.7 | −49.2 | 26.3 | |||
1 + 2c→5c | −39.9 | −49.6 | −25.1 | |||
2a + 7 | CCl4 | A | 2a + 7→MCA | −5.9 | −35.0 | 4.6 |
2a + 7→TSA | 10.6 | −42.3 | 23.2 | |||
2a + 7→8 | −44.9 | −48.5 | −30.5 | |||
B | 2a + 7→MCA | −6.5 | −36.1 | 4.3 | ||
2a + 7→TSA | 10.6 | −46.5 | 24.5 | |||
2a + 7→9 | −41.5 | −53.0 | −25.7 |
Solvent | Path | Structure | Interatomic Distances [Å] | GEDT | ||||
---|---|---|---|---|---|---|---|---|
O1-N2 | N2-C3 | C3-C4 | C4-C5 | C5-O1 | [e] | |||
CCl4 | A | 1 | 1.324 | |||||
2a | 1.210 | 1.154 | ||||||
MCA | 1.209 | 1.154 | 3.604 | 1.324 | 3.671 | |||
TSA | 1.218 | 1.203 | 2.126 | 1.366 | 2.269 | 0.25 | ||
4a | 1.415 | 1.278 | 1.501 | 1.521 | 1.379 | |||
B | MCB | 1.213 | 1.153 | 3.429 | 1.325 | 3.057 | ||
TSB | 1.233 | 1.200 | 2.204 | 1.372 | 2.143 | 0.17 | ||
5a | 1.357 | 1.279 | 1.510 | 1.519 | 1.459 | |||
Acetone | A | 1 | 1.325 | |||||
2a | 1.217 | 1.152 | ||||||
MCA | 1.215 | 1.153 | 3.670 | 1.325 | 3.778 | |||
TSA | 1.221 | 1.203 | 2.111 | 1.367 | 2.282 | 0.27 | ||
4a | 1.420 | 1.279 | 1.499 | 1.519 | 1.379 | |||
B | MCB | 1.216 | 1.153 | 4.431 | 1.325 | 4.928 | ||
TSB | 1.237 | 1.199 | 2.211 | 1.372 | 2.136 | 0.16 | ||
5a | 1.360 | 1.280 | 1.511 | 1.518 | 1.460 | |||
MeNO2 | A | 1 | 1.325 | |||||
2a | 1.217 | 1.152 | ||||||
MCA | 1.216 | 1.152 | 3.671 | 1.325 | 3.776 | |||
TSA | 1.221 | 1.203 | 2.110 | 1.367 | 2.284 | 0.27 | ||
4a | 1.420 | 1.279 | 1.498 | 1.519 | 1.379 | |||
B | MCB | 1.216 | 1.153 | 4.430 | 1.325 | 4.927 | ||
TSB | 1.237 | 1.199 | 2.212 | 1.373 | 2.135 | 0.16 | ||
5a | 1.360 | 1.280 | 1.511 | 1.518 | 1.461 | |||
CCl4 | A | 2b | 1.215 | 1.154 | ||||
MCA | 1.214 | 1.155 | 3.604 | 1.324 | 3.706 | |||
TSA | 1.223 | 1.205 | 2.129 | 1.366 | 2.244 | 0.20 | ||
4b | 1.420 | 1.280 | 1.503 | 1.520 | 1.376 | |||
B | MCB | 1.217 | 1.153 | 3.410 | 1.325 | 3.043 | ||
TSB | 1.239 | 1.203 | 2.225 | 1.373 | 2.100 | 0.21 | ||
5b | 1.363 | 1.280 | 1.512 | 1.518 | 1.457 | |||
CCl4 | A | 2c | 1.204 | 1.155 | ||||
MCA | 1.203 | 1.155 | 3.631 | 1.324 | 3.726 | |||
TSA | 1.213 | 1.203 | 2.133 | 1.365 | 2.287 | 0.31 | ||
4c | 1.407 | 1.278 | 1.500 | 1.521 | 1.382 | |||
B | MCB | 1.207 | 1.154 | 3.442 | 1.325 | 3.120 | ||
TSB | 1.227 | 1.199 | 2.196 | 1.370 | 2.174 | 0.15 | ||
5c | 1.348 | 1.462 | 1.518 | 1.510 | 1.280 | |||
CCl4 | A | 7 | 1.338 | |||||
MC | 1.210 | 1.154 | 3.449 | 1.337 | 3.958 | |||
TS | 1.217 | 1.202 | 2.137 | 1.375 | 2.417 | 0.24 | ||
8 | 1.388 | 1.278 | 1.508 | 1.530 | 1.450 | |||
B | MC | 1.214 | 1.153 | 3.594 | 1.338 | 3.462 | ||
TS | 1.232 | 1.202 | 2.293 | 1.385 | 2.110 | 0.05 | ||
9 | 1.380 | 1.278 | 1.519 | 1.547 | 1.437 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadowski, M.; Dresler, E.; Jasiński, R. The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile N-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study. Molecules 2025, 30, 974. https://doi.org/10.3390/molecules30040974
Sadowski M, Dresler E, Jasiński R. The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile N-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study. Molecules. 2025; 30(4):974. https://doi.org/10.3390/molecules30040974
Chicago/Turabian StyleSadowski, Mikołaj, Ewa Dresler, and Radomir Jasiński. 2025. "The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile N-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study" Molecules 30, no. 4: 974. https://doi.org/10.3390/molecules30040974
APA StyleSadowski, M., Dresler, E., & Jasiński, R. (2025). The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile N-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study. Molecules, 30(4), 974. https://doi.org/10.3390/molecules30040974