Metabolomic Insights into Wild and Farmed Gilthead Seabream (Sparus aurata): Lipid Composition, Freshness Indicators, and Environmental Adaptations
Abstract
:1. Introduction
1.1. Benefits and Drawbacks of Marine Aquaculture in the Mediterranean
1.2. Methodologies and Decision-Making Factors in Seabream Aquaculture
1.3. Advantages and Limitations of HR-MAS in Fish Studies
2. Results
2.1. Morphological Characteristics of the Fish
2.2. Analysis of HR-MAS Spectra
2.3. Deterioration Patterns in Samples by Origin
3. Discussion
3.1. Morfological Differences Between Fish
3.2. Advantages of HR-MAS Analysis
3.3. Preliminary Discussion on Lipid Composition of Wild and Farmed Gilthead Seabream
3.4. Metabolic Trade-Offs in Gilthead Seabream
3.5. Metabolite Profiles of Wild and Farmed Gilthead Seabream
3.6. Discussion on Key Metabolites and K-Value Assessment
4. Materials and Methods
4.1. Chemicals
4.2. Specimen Collection and Sample Preparation
4.3. NMR Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture (Sofia); FAO: Rome, Italy, 2022; 266p. [Google Scholar] [CrossRef]
- APROMAR. Aquaculture in Spain 2023; APROMAR: Cádiz, Spain, 2023. [Google Scholar]
- Mhalhel, K.; Levanti, M.; Abbate, F.; Laurà, R.; Guerrera, M.C.; Aragona, M.; Porcino, C.; Briglia, M.; Germanà, A.; Montalbano, G. Review on gilthead seabream (Sparus aurata) aquaculture: Life cycle, growth, aquaculture practices and challenges. J. Mar. Sci. Eng. 2023, 11, 2008. [Google Scholar] [CrossRef]
- Toledo-Guedes, K.; Atalah, J.; Izquierdo-Gomez, D.; Fernandez-Jover, D.; Uglem, I.; Sanchez-Jerez, P.; Arechavala-Lopez, P.; Dempster, T. Domesticating the wild through escapees of two iconic mediterranean farmed fish species. Sci. Rep. 2024, 14, 23772. [Google Scholar] [CrossRef] [PubMed]
- Raposo de Magalhães, C.; Farinha, A.P.; Blackburn, G.; Whitfield, P.D.; Carrilho, R.; Schrama, D.; Cerqueira, M.; Rodrigues, P.M. Gilthead seabream liver integrative proteomics and metabolomics analysis reveals regulation by different prosurvival pathways in the metabolic adaptation to stress. Int. J. Mol. Sci. 2022, 23, 15395. [Google Scholar] [CrossRef] [PubMed]
- Lindon, J.C.; Nicholson, J.K.; Holmes, E. The Handbook of Metabonomics and Metabolomics; Elsevier Science: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Heude, C.; Lemasson, E.; Elbayed, K.; Piotto, M. Rapid assessment of fish freshness and quality by 1h hr-mas nmr spectroscopy. Food Anal. Methods 2015, 8, 907–915. [Google Scholar] [CrossRef]
- Castejón, D.; Villa, P.; Calvo, M.M.; Santa-María, G.; Herraiz, M.; Herrera, A. 1h-hrmas nmr study of smoked atlantic salmon (Salmo salar). Magn. Reson. Chem. 2010, 48, 693–703. [Google Scholar] [CrossRef]
- Villa, P.; Castejon, D.; Herraiz, M.; Herrera, A. H-1-hrmas nmr study of cold smoked atlantic salmon (Salmo salar) treated with e-beam. Magn. Reson. Chem. 2013, 51, 350–357. [Google Scholar] [CrossRef]
- Ntzimani, A.; Angelakopoulos, R.; Stavropoulou, N.; Semenoglou, I.; Dermesonlouoglou, E.; Tsironi, T.; Moutou, K.; Taoukis, P. Seasonal pattern of the effect of slurry ice during catching and transportation on quality and shelf life of gilthead sea bream. J. Mar. Sci. Eng. 2022, 10, 443. [Google Scholar] [CrossRef]
- Bruzzone, C.; Bizkarguenaga, M.; Gil-Redondo, R.; Diercks, T.; Arana, E.; de Vicuna, A.G.; Seco, M.; Bosch, A.; Palazon, A.; San Juan, I.; et al. SARS-CoV-2 infection dysregulates the metabolomic and lipidomic profiles of serum. Iscience 2020, 23, 101645. [Google Scholar] [CrossRef]
- Savorani, F.; Tomasi, G.; Engelsen, S. icoshift: A versatile tool for the rapid alignment of 1d nmr spectra. J. Magn. Reson. 2010, 202, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Verboven, S.; Hubert, M. Libra: A matlab library for robust analysis. Chemom. Intell. Lab. Syst. 2005, 75, 127–136. [Google Scholar] [CrossRef]
- Aursand, M.; Rainuzzo, J.; Grasdalen, H. Quantitative high-resolution c-13 and h-1 nuclear-magnetic-resonance of omega-3-fatty-acids from white muscle of atlantic salmon (salmo-salar). J. Am. Oil Chem. Soc. 1993, 70, 971–981. [Google Scholar] [CrossRef]
- Anedda, R.; Piga, C.; Santercole, V.; Spada, S.; Bonaglini, E.; Cappuccinelli, R.; Mulas, G.; Roggio, T.; Uzzau, S. Multidisciplinary analytical investigation of phospholipids and triglycerides in offshore farmed gilthead sea bream (Sparus aurata) fed commercial diets. Food Chem. 2013, 138, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Aursand, M.; Standal, I.; Axelson, D. High-resolution (13)C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules. J. Agric. Food Chem. 2007, 55, 38–47. [Google Scholar] [CrossRef]
- Falch, E.; Storseth, T.; Aursand, A. Multi-component analysis of marine lipids in fish gonads with emphasis on phospholipids using high resolution NMR spectroscopy. Chem. Phys. Lipids 2006, 144, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, T.; Aursand, M.; Hirata, Y.; Gribbestad, I.; Wada, S.; Nonaka, M. Nondestructive quantitative determination of docosahexaenoic acid and n-3 fatty acids in fish oils by high-resolution H-1 nuclear magnetic resonance spectroscopy. J. Am. Oil Chem. Soc. 2000, 77, 737–748. [Google Scholar] [CrossRef]
- Jepsen, S.; Pedersen, H.; Engelsen, S. Application of chemometrics to low-field (1)H NMR relaxation data of intact fish flesh. J. Sci. Food Agric. 1999, 79, 1793–1802. [Google Scholar] [CrossRef]
- Suarez, E.; Mugford, P.; Rolle, A.; Burton, I.; Walter, J.; Kralovec, J. c-13-nmr regioisomeric analysis of epa and dha in fish oil derived triacylglycerol concentrates. J. Am. Oil Chem. Soc. 2010, 87, 1425–1433. [Google Scholar] [CrossRef]
- Vidal, N.; Goicoechea, E.; Manzanos, M.; Guillen, M. H-1 NMR study of the changes in brine- and dry-salted sea bass lipids under thermo-oxidative conditions: Both salting methods reduce oxidative stability. Eur. J. Lipid Sci. Technol. 2015, 117, 440–449. [Google Scholar] [CrossRef]
- Wagner, L.; Trattner, S.; Pickova, J.; Gomez-Requeni, P.; Moazzami, A. H-1 NMR-based metabolomics studies on the effect of sesamin in Atlantic salmon (Salmo salar). Food Chem. 2014, 147, 98–105. [Google Scholar] [CrossRef]
- Grigorakis, K.; Taylor, K.D.A.; Alexis, M.N. Seasonal patterns of spoilage of ice-stored cultured gilthead sea bream (Sparus aurata). Food Chem. 2003, 81, 263–268. [Google Scholar] [CrossRef]
- Cai, H.H.; Chen, Y.S.; Cui, X.H.; Cai, S.H.; Chen, Z. High-resolution h-1 nmr spectroscopy of fish muscle, eggs and small whole fish via hadamard-encoded intermolecular multiple-quantum coherence. PLoS ONE 2014, 9, e86422. [Google Scholar] [CrossRef]
- Augustijn, D.; de Groot, H.J.M.; Alia, A. HR-MAS NMR Applications in Plant Metabolomics. Molecules 2021, 26, 931. [Google Scholar] [CrossRef]
- Houston, S.J.S.; Karalazos, V.; Tinsley, J.; Betancor, M.B.; Martin, S.A.M.; Tocher, D.R.; Monroig, O. The compositional and metabolic responses of gilthead seabream (Sparus aurata) to a gradient of dietary fish oil and associated n-3 long-chain PUFA content. Br. J. Nutr. 2017, 118, 1010–1022. [Google Scholar] [CrossRef] [PubMed]
- Stubhaug, I.; Tocher, D.R.; Bell, J.G.; Dick, J.R.; Torstensen, B.E. Fatty acid metabolism in Atlantic salmon (Salmo salar L.) hepatocytes and influence of dietary vegetable oil. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2005, 1734, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.S.; Obach, A.; Arantzamendi, L.; Montero, D.; Robaina, L.; Rosenlund, G. Dietary lipid sources for seabream and seabass: Growth performance, tissue composition and flesh quality. Aquac. Nutr. 2003, 9, 397–407. [Google Scholar] [CrossRef]
- Vergara, J.M.; López-Calero, G.; Robaina, L.; Caballero, M.J.; Montero, D.; Izquierdo, M.S.; Aksnes, A. Growth, feed utilization and body lipid content of gilthead seabream (Sparus aurata) fed increasing lipid levels and fish meals of different quality. Aquaculture 1999, 179, 35–44. [Google Scholar] [CrossRef]
- Torricelli, M.; Felici, A.; Branciari, R.; Trabalza-Marinucci, M.; Galarini, R.; Biagetti, M.; Manfrin, A.; Boriani, L.; Radicchi, E.; Sebastiani, C.; et al. Gene Expression Study in Gilthead Seabream (Sparus aurata): Effects of Dietary Supplementation with Olive Oil Polyphenols on Immunity, Metabolic, and Oxidative Stress Pathways. Int. J. Mol. Sci. 2024, 25, 12185. [Google Scholar] [CrossRef]
- Turkmen, S.; Perera, E.; Zamorano, M.J.; Simó-Mirabet, P.; Xu, H.; Pérez-Sánchez, J.; Izquierdo, M. Effects of Dietary Lipid Composition and Fatty Acid Desaturase 2 Expression in Broodstock Gilthead Sea Bream on Lipid Metabolism-Related Genes and Methylation of the fads2 Gene Promoter in Their Offspring. Int. J. Mol. Sci. 2019, 20, 6250. [Google Scholar] [CrossRef]
- Wassef, E.A.; Shalaby, S.H.; Saleh, N.E. Comparative evaluation of sunflower oil and linseed oil as dietary ingredient for gilthead seabream (Sparus aurata) fingerlings. OCL 2015, 22, A201. [Google Scholar] [CrossRef]
- Díaz-López, M.; Pérez, M.J.; Acosta, N.G.; Tocher, D.R.; Jerez, S.; Lorenzo, A.; RodrÍGuez, C. Effect of dietary substitution of fish oil by Echium oil on growth, plasma parameters and body lipid composition in gilthead seabream (Sparus aurata L.). Aquac. Nutr. 2009, 15, 500–512. [Google Scholar] [CrossRef]
- Ruiz, A.; Andree, K.B.; Sanahuja, I.; Holhorea, P.G.; Calduch-Giner, J.À.; Morais, S.; Pastor, J.J.; Pérez-Sánchez, J.; Gisbert, E. Bile salt dietary supplementation promotes growth and reduces body adiposity in gilthead seabream (Sparus aurata). Aquaculture 2023, 566, 739203. [Google Scholar] [CrossRef]
- Perelló-Amorós, M.; Fernández-Borràs, J.; Sánchez-Moya, A.; Vélez, E.J.; García-Pérez, I.; Gutiérrez, J.; Blasco, J. Mitochondrial Adaptation to Diet and Swimming Activity in Gilthead Seabream: Improved Nutritional Efficiency. Front. Physiol. 2021, 12, 678985. [Google Scholar] [CrossRef]
- Benedito-Palos, L.; Ballester-Lozano, G.; Pérez-Sánchez, J. Wide-gene expression analysis of lipid-relevant genes in nutritionally challenged gilthead sea bream (Sparus aurata). Gene 2014, 547, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Feidantsis, K.; Pörtner, H.O.; Vlachonikola, E.; Antonopoulou, E.; Michaelidis, B. Seasonal changes in metabolism and cellular stress phenomena in the gilthead sea bream (Sparus aurata). Physiol. Biochem. Zool. 2018, 91, 878–895. [Google Scholar] [CrossRef] [PubMed]
- Calo, J.; Conde-Sieira, M.; Comesaña, S.; Soengas, J.L.; Blanco, A.M. Fatty acids of different nature differentially modulate feed intake in rainbow trout. Aquaculture 2023, 563, 738961. [Google Scholar] [CrossRef]
- Weber, J.-M.; Choi, K.; Gonzalez, A.; Omlin, T. Metabolic fuel kinetics in fish: Swimming, hypoxia and muscle membranes. J. Exp. Biol. 2016, 219, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Ould Ahmed Louly, A.W.; Gaydou, E.M.; Ould El Kebir, M.V. Muscle lipids and fatty acid profiles of three edible fish from the Mauritanian coast: Epinephelus aeneus, Cephalopholis taeniops and Serranus scriba. Food Chem. 2011, 124, 24–28. [Google Scholar] [CrossRef]
- Glencross, B.D. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev. Aquac. 2009, 1, 71–124. [Google Scholar] [CrossRef]
- Badaoui, W.; Marhuenda-Egea, F.C.; Valero-Rodriguez, J.M.; Sanchez-Jerez, P.; Arechavala-Lopez, P.; Toledo-Guedes, K. Metabolomic and Lipidomic Tools for Tracing Fish Escapes from Aquaculture Facilities. ACS Food Sci. Technol. 2024, 4, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Schrama, D.; Cerqueira, M.; Raposo, C.S.; Rosa da Costa, A.M.; Wulff, T.; Gonçalves, A.; Camacho, C.; Colen, R.; Fonseca, F.; Rodrigues, P.M. Dietary Creatine Supplementation in Gilthead Seabream (Sparus aurata): Comparative Proteomics Analysis on Fish Allergens, Muscle Quality, and Liver. Front. Physiol. 2018, 9, 1844. [Google Scholar] [CrossRef] [PubMed]
- Hoyles, L.; Jiménez-Pranteda, M.L.; Chilloux, J.; Brial, F.; Myridakis, A.; Aranias, T.; Magnan, C.; Gibson, G.R.; Sanderson, J.D.; Nicholson, J.K.; et al. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome 2018, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Annunziata, G.; Muscogiuri, G.; Di Somma, C.; Laudisio, D.; Maisto, M.; de Alteriis, G.; Tenore, G.C.; Colao, A.; Savastano, S. Trimethylamine-N-oxide (TMAO) as Novel Potential Biomarker of Early Predictors of Metabolic Syndrome. Nutrients 2018, 10, 1971. [Google Scholar] [CrossRef]
- Farmer, N.; Gutierrez-Huerta, C.A.; Turner, B.S.; Mitchell, V.M.; Collins, B.S.; Baumer, Y.; Wallen, G.R.; Powell-Wiley, T.M. Neighborhood Environment Associates with Trimethylamine-N-Oxide (TMAO) as a Cardiovascular Risk Marker. Int. J. Environ. Res. Public Health 2021, 18, 4296. [Google Scholar] [CrossRef] [PubMed]
- Teles, A.; Guzmán-Villanueva, L.; Hernández-de Dios, M.A.; Maldonado-García, M.; Tovar-Ramírez, D. Taurine enhances antioxidant enzyme activity and immune response in Seriola rivoliana juveniles after lipopolysaccharide injection. Preprint 2024. [Google Scholar] [CrossRef]
- Sampath, W.W.H.A.; Rathnayake, R.M.D.S.; Yang, M.; Zhang, W.; Mai, K. Roles of dietary taurine in fish nutrition. Mar. Life Sci. Technol. 2020, 2, 360–375. [Google Scholar] [CrossRef]
Peak | Compound | Group | 1H (ppm) | Mult. |
---|---|---|---|---|
1 | Fatty acids (FAs) | CH3 | 0.91 | t |
2 | Fatty acids (ω-3) | CH=CH-CH2-CH3 | 0.98 | t |
3 | Fatty acids (FAs) | (CH2)n | 1.30 | |
4 | Lactic acid (LA) | -CH3 | 1.34 | d |
5 | Alanine (Ala) | -CH3 | 1.48 | d |
6 | Fatty acids (FAs) | CH2-CH2-CH2-COOR | 1.60 | |
7 | Eicosapentaenoic fatty acid (ω-3; EPA C20:5) | CH=CH-CH2-CH2-CH2-COOR | 1.67 | |
8 | Acetic acid (AA) | CH3 | 1.93 | s |
9 | Unsaturated fatty acids (UFAs) | (CH2)n-CH2-CH=CH-CH2-(CH2)n | 2.04 | |
10 | Linoleic acid (ω-6; C18:2; DUFA) | CH2-CH2-CH=CH-CH2-CH=CH-CH2-CH2 | 2.08 | |
11 | Unsaturated fatty acids (ω-3) | CH=CH-CH2-CH3 | 2.09 | |
12 | Eicosapentaenoic fatty acid (ω-3; EPA C20:5) | ROOC-CH2-CH2-CH2-CH=CH | 2.12 | |
13 | Fatty acids (FAs) | CH2-CH2-COOR | 2.27 | |
14 | Docosahexaenoic fatty acid (ω-3; DHA C22:6) | CH=CH-CH2-CH2-COOR | 2.35 | |
15 | Docosahexaenoic fatty acid (ω-3; DHA C22:6) | CH=CH-CH2-CH2-COOR | 2.35 | |
16 | Linoleic acid (ω-6; C18:2; DUFA) | CH2-CH=CH-CH2-CH=CH-CH2 | 2.78 | |
17 | Polyunsaturated fatty acids (PUFAs) | CH=CH-CH2-CH=CH-CH2-CH=CH | 2.82 | |
18 | Trimethylamine (TMA) | N-CH3 | 2.91 | s |
19 | Creatine/phosphocreatine (Cr/PCr) | N-CH3 | 3.04 | s |
20 | Phosphorylcholine (PCho)/Glycerophosphoryl | N-CH3 | 3.24 | |
21 | Taurine (Tau) | S-CH2 | 3.27 | t |
22 | Trimethylamine oxide (TMAO) | N-CH3 | 3.28 | s |
23 | Taurine (Tau) | N-CH2 | 3.42 | t |
24 | Glycine (Gly) | -CH | 3.56 | s |
25 | Creatine/phosphocreatine (Cr/PCr) | -CH2 | 3.94 | s |
26 | Triglycerides (TGs) | CH2-α(Gly) | 4.12 | |
27 | Lactic acid (La) | α-CH | 4.12 | q |
28 | Triglycerides (TGs) | CH2-α’(Gly) | 4.30 | |
29 | Glycerophosphorylcholine (GPCho) | α-CH2 | 4.32 | |
30 | Inosine (Ino) | CH-3 (Rib) | 4.45 | t |
31 | Anserine (Ans) | α-CH (His) | 4.52 | m |
32 | β-Glucose (β-Glc) | CH-1 | 4.65 | d |
33 | Inosine (Ino) | CH-2 (Rib) | 4.80 | t |
34 | Triglycerides (TGs) | CH (Gly) | 5.25 | |
35 | Unsaturated fatty acids (UFAs) | CH=CH | 5.35 | |
36 | Hypoxanthine ribose (HxR) | CH-1 (Rib) | 6.11 | d |
37 | Inosine 5′-phosphate (IMP) | CH-1 (Rib) | 6.16 | d |
38 | Anserine (Ans) | CH-5 (His) | 7.20 | s |
39 | Hypoxanthine (Hx) | CH-8 | 8.19 | s |
40 | Inosine (Ino) | CH-8 (Purin) | 8.23 | s |
41 | Inosine 5′-phosphate (IMP) | CH-8 | 8.24 | s |
42 | Formic acid (FA) | CH | 8.36 | s |
43 | Adenosine tri/di/monophosphate (ATP/ADP) | CH-2 | 8.49 | s |
44 | Anserine (Ans) | CH-2 (His) | 8.57 | s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marhuenda-Egea, F.C.; Sanchez-Jerez, P. Metabolomic Insights into Wild and Farmed Gilthead Seabream (Sparus aurata): Lipid Composition, Freshness Indicators, and Environmental Adaptations. Molecules 2025, 30, 770. https://doi.org/10.3390/molecules30040770
Marhuenda-Egea FC, Sanchez-Jerez P. Metabolomic Insights into Wild and Farmed Gilthead Seabream (Sparus aurata): Lipid Composition, Freshness Indicators, and Environmental Adaptations. Molecules. 2025; 30(4):770. https://doi.org/10.3390/molecules30040770
Chicago/Turabian StyleMarhuenda-Egea, Frutos C., and Pablo Sanchez-Jerez. 2025. "Metabolomic Insights into Wild and Farmed Gilthead Seabream (Sparus aurata): Lipid Composition, Freshness Indicators, and Environmental Adaptations" Molecules 30, no. 4: 770. https://doi.org/10.3390/molecules30040770
APA StyleMarhuenda-Egea, F. C., & Sanchez-Jerez, P. (2025). Metabolomic Insights into Wild and Farmed Gilthead Seabream (Sparus aurata): Lipid Composition, Freshness Indicators, and Environmental Adaptations. Molecules, 30(4), 770. https://doi.org/10.3390/molecules30040770