The Effect of Zeolite Na-X and Clinoptilolite as Functional Fillers on the Mechanical, Thermal and Barrier Properties of Thermoplastic Polyurethane
Abstract
1. Introduction
2. Results
2.1. Chemical Properties
2.2. Morphological Properties
2.3. Thermal Properties
2.4. Mechanical Properties
2.5. Barrier Properties
2.6. Rheological Properties
3. Materials and Methods
3.1. Materials
3.2. TPU-Based Composites Preparation
3.3. TPU-Based Composite Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of Plastic Solid Waste: A State of Art Review and Future Applications. Compos. B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Evode, N.; Qamar, S.A.; Bilal, M.; Barceló, D.; Iqbal, H.M.N. Plastic Waste and Its Management Strategies for Environmental Sustainability. Case Stud. Chem. Environ. Eng. 2021, 4, 100142. [Google Scholar] [CrossRef]
- Recupido, F.; Lama, G.C.; Ammendola, M.; De Luca Bossa, F.; Minigher, A.; Campaner, P.; Morena, A.G.; Tzanov, T.; Ornelas, M.; Barros, A.; et al. Rigid composite bio-based polyurethane foams: From synthesis to LCA analysis. Polymer 2023, 267, 125674. [Google Scholar] [CrossRef]
- Cherif Lahimer, M.; Ayed, N.; Horriche, J.; Belgaied, S. Characterization of Plastic Packaging Additives: Food Contact, Stability and Toxicity. Arab. J. Chem. 2017, 10, S1938–S1954. [Google Scholar] [CrossRef]
- Meng, W.; Sun, H.; Su, G. Plastic Packaging-Associated Chemicals and Their Hazards—An Overview of Reviews. Chemosphere 2023, 331, 138795. [Google Scholar] [CrossRef] [PubMed]
- de Anda-Flores, Y.B.; Cordón-Cardona, B.A.; González-León, A.; Valenzuela-Quintanar, A.I.; Peralta, E.; Soto-Valdez, H. Effect of Assay Conditions on the Migration of Phthalates from Polyvinyl Chloride Cling Films Used for Food Packaging in México. Food Packag. Shelf Life 2021, 29, 100684. [Google Scholar] [CrossRef]
- Verdolotti, L.; Di Caprio, M.R.; Lavorgna, M.; Buonocore, G.G. Polyurethane nanocomposite foams: Correlation between nanofillers, porous morphology, and structural and functional properties. In Polyurethane Polymers: Composites and Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 277–310. [Google Scholar]
- Yao, Y.; Xiao, M.; Liu, W. A Short Review on Self-Healing Thermoplastic Polyurethanes. Macromol. Chem. Phys. 2021, 222, 2100002. [Google Scholar] [CrossRef]
- El-Nawasany, L.I.; Sundookh, A.; Kadoum, L.A.; Yasin, M.A.; AlSalem, H.S.; Binkadem, M.S.; Al-Goul, S.T.; Zidan, N.S.; Shoueir, K.R. Ameliorating Characteristics of Magnetically Sensitive TPU Nanofibers-Based Food Packaging Film for Long-Life Cheese Preservation. Food Biosci. 2023, 53, 102633. [Google Scholar] [CrossRef]
- Moustafa, H.; Darwish, N.A.; Youssef, A.M. Rational Formulations of Sustainable Polyurethane/Chitin/Rosin Composites Reinforced with ZnO-Doped-SiO2 Nanoparticles for Green Packaging Applications. Food Chem. 2022, 371, 131193. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Z.; Song, X.; Peng, W.; Zhao, X.; Zhao, H.; Liang, D.; Huang, C.; Duan, Q. A Silver Nanoparticles-Polylactic Acid Microspheres/Polylactic Acid-Thermoplastic Polyurethane Nanofibers Hierarchical Antibacterial Film. Ind. Crops Prod. 2024, 207, 117773. [Google Scholar] [CrossRef]
- Marlina Ginting, E.; Bukit Affan Siregar, N.M. Preparation and Characterization of Natural Zeolite and Rice Husk Ash as Filler Material HDPE Thermoplastic. Chem. Mater. Res. 2015, 7, 20–27. [Google Scholar]
- Frida, E.; Bukit, N.; Zebua, F. Analysis Mechanics and Thermal Composites Thermoplastic High Density Polyethylene with Zeolite Modification Filler. Chem. Mater. Res. 2014, 3, 126–134. [Google Scholar]
- Verdolotti, L.; Di Maio, E.; Forte, G.; Lavorgna, M.; Iannace, S. Hydration-induced reinforcement of polyurethane-cement foams: Solvent resistance and mechanical properties. J. Mat. Sci. 2010, 45, 3388–3391. [Google Scholar] [CrossRef]
- Sheng, X.; Zhao, Y.; Zhang, L.; Lu, X. Properties of Two-Dimensional Ti3C2 MXene/Thermoplastic Polyurethane Nanocomposites with Effective Reinforcement via Melt Blending. Compos. Sci. Technol. 2019, 181, 107710. [Google Scholar] [CrossRef]
- Mesgari, M.; Aalami, A.H.; Sahebkar, A. Antimicrobial Activities of Chitosan/Titanium Dioxide Composites as a Biological Nanolayer for Food Preservation: A Review. Int. J. Biol. Macromol. 2021, 176, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Selvarajan, V.; Obuobi, S.; Ee, P.L.R. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 2020, 8, 602. [Google Scholar] [CrossRef]
- Alatoom, A.; Al-Othman, A.; Al-Nashash, H.; Al-Sayah, M. Development and Characterization of Novel Composite and Flexible Electrode Based on Titanium Dioxide. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 1079–1087. [Google Scholar] [CrossRef]
- Pitiphattharabun, S.; Auewattanapun, K.; Htet, T.L.; Thu, M.M.; Panomsuwan, G.; Techapiesancharoenkij, R.; Ohta, J.; Jongprateep, O. Reduced Graphene Oxide/Zinc Oxide Composite as an Electrochemical Sensor for Acetylcholine Detection. Sci. Rep. 2024, 14, 14224. [Google Scholar] [CrossRef]
- Yu, B.; Tawiah, B.; Wang, L.-Q.; Yin Yuen, A.C.; Zhang, Z.-C.; Shen, L.-L.; Lin, B.; Fei, B.; Yang, W.; Li, A.; et al. Interface Decoration of Exfoliated MXene Ultra-Thin Nanosheets for Fire and Smoke Suppressions of Thermoplastic Polyurethane Elastomer. J. Hazard. Mater. 2019, 374, 110–119. [Google Scholar] [CrossRef]
- Mamytbekov, G.K.; Zheltov, D.A.; Milts, O.S.; Nurtazin, Y.R. Polymer–Zeolite Composites: Synthesis, Characterization and Application. Colloids Interfaces 2024, 8, 8. [Google Scholar] [CrossRef]
- Babalar, M.; Siddiqua, S.; Sakr, M.A. A Novel Polymer Coated Magnetic Activated Biochar-Zeolite Composite for Adsorption of Polystyrene Microplastics: Synthesis, Characterization, Adsorption and Regeneration Performance. Sep. Purif. Technol. 2024, 331, 125582. [Google Scholar] [CrossRef]
- Şenol, Z.M.; Elma, E.; El Messaoudi, N.; Mehmeti, V. Performance of Cross-Linked Chitosan-Zeolite Composite Adsorbent for Removal of Pb2+ Ions from Aqueous Solutions: Experimental and Monte Carlo Simulations Studies. J. Mol. Liq. 2023, 391, 123310. [Google Scholar] [CrossRef]
- Elboughdiri, N. The Use of Natural Zeolite to Remove Heavy Metals Cu (II), Pb (II) and Cd (II), from Industrial Wastewater. Cogent Eng. 2020, 7, 1782623. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, J.; Wang, X.; Ma, K.; Zhai, W.; Wu, Z.; Zhang, J. Synthesis of Zeolite Molecular Sieve 13X from Coal-Fired Slag for Efficient Room Temperature CO2 Adsorption. Chem. Eng. Sci. 2024, 288, 119838. [Google Scholar] [CrossRef]
- Feng, C.; Jiaqiang, E.; Han, W.; Deng, Y.; Zhang, B.; Zhao, X.; Han, D. Key Technology and Application Analysis of Zeolite Adsorption for Energy Storage and Heat-Mass Transfer Process: A Review. Renew. Sustain. Energ. Rev. 2021, 144, 110954. [Google Scholar] [CrossRef]
- Khanal, S.; Lu, Y.; Ahmed, S.; Ali, M.; Xu, S. Synergistic Effect of Zeolite 4A on Thermal, Mechanical and Flame Retardant Properties of Intumescent Flame Retardant HDPE Composites. Polym. Test. 2020, 81, 106177. [Google Scholar] [CrossRef]
- Soudmand, B.H.; Mohsenzadeh, R. Mechanical, Morphological, and Numerical Evaluation of Biocompatible Ultra-High Molecular Weight Polyethylene/Nano-Zeolite Nanocomposites. Polym. Compos. 2024, 45, 3666–3682. [Google Scholar] [CrossRef]
- Sasaki, M.; Liu, Y.; Ebara, M. Zeolite Composite Nanofiber Mesh for Indoxyl Sulfate Adsorption toward Wearable Blood Purification Devices. Fibers 2021, 9, 37. [Google Scholar] [CrossRef]
- Tang, W.; Han, J.; Zhang, S.; Sun, J.; Li, H.; Gu, X. Synthesis of 4A Zeolite Containing La from Kaolinite and Its Effect on the Flammability of Polypropylene. Polym. Compos. 2018, 39, 3461–3471. [Google Scholar] [CrossRef]
- Kajtár, D.A.; Kenyó, C.; Renner, K.; Móczó, J.; Fekete, E.; Kröhnke, C.; Pukánszky, B. Interfacial Interactions and Reinforcement in Thermoplastics/Zeolite Composites. Compos. B Eng. 2017, 114, 386–394. [Google Scholar] [CrossRef]
- Huang, Z.; Guo, Y.H.; Zhang, T.M.; Zhang, X.H.; Guo, L.Y. Fabrication and Characterizations of Zeolite β-Filled Polyethylene Composite Films. Packag. Technol. Sci. 2013, 26, 1–10. [Google Scholar] [CrossRef]
- Boschetto, D.L.; Lerin, L.; Cansian, R.; Pergher, S.B.C.; Di Luccio, M. Preparation and Antimicrobial Activity of Polyethylene Composite Films with Silver Exchanged Zeolite-Y. Chem. Eng. J. 2012, 204, 210–216. [Google Scholar] [CrossRef]
- Souza, A.F.; Behrenchsen, L.; Souza, S.J.; Yamashita, F.; Leimann, F.V. Production and characterization of starch composite films with silver loaded zeolite. Int. Food Res. J. 2018, 25, 1309–1314. [Google Scholar]
- do Nascimiento Sousa, S.D.; Santiago, R.G.; Soares Maia, D.A.; de Oliveira Silva, E.; Vieira, R.S.; Bastos-Neto, M. Ethylene adsorption on chitosan/zeolite composite films for packaging applications. Food Packag. Shelf Life 2020, 26, 100584. [Google Scholar] [CrossRef]
- Ghobadi, E.; Hemmati, M.; Khanbabaei, G.; Shojaei, M.; Asghari, M. Effect of Nanozeolite 13X on Thermal and Mechanical Properties of Polyurethane Nanocomposite Thin Films. Int. J. Nano Dimens. 2015, 6, 177. [Google Scholar]
- Lei, J.; Yao, G.; Sun, Z.; Wang, B.; Yu, C.; Zheng, S. Fabrication of a Novel Antibacterial TPU Nanofiber Membrane Containing Cu-Loaded Zeolite and Its Antibacterial Activity toward Escherichia Coli. J. Mater. Sci. 2019, 54, 11682–11693. [Google Scholar] [CrossRef]
- Yıldırım, M.A.; Sanli, A.; Türkoğlu, N.; Denktaş, C. Fabrication of Electrospun Nanofibrous Clinoptilolite Doped Thermoplastic Polyurethane Scaffolds for Skeletal Muscle Tissue Engineering. J. Appl. Polym. Sci. 2023, 140, e54233. [Google Scholar] [CrossRef]
- Doula, M.K. Synthesis of a Clinoptilolite-Fe System with High Cu Sorption Capacity. Chemosphere 2007, 67, 731–740. [Google Scholar] [CrossRef]
- Favvas, E.P.; Tsanaktsidis, C.G.; Sapalidis, A.A.; Tzilantonis, G.T.; Papageorgiou, S.K.; Mitropoulos, A.C. Clinoptilolite, a Natural Zeolite Material: Structural Characterization and Performance Evaluation on Its Dehydration Properties of Hydrocarbon-Based Fuels. Microporous Mesoporous Mater. 2016, 225, 385–391. [Google Scholar] [CrossRef]
- Fajdek-Bieda, A.; Wróblewska, A.; Miądlicki, P.; Tołpa, J.; Michalkiewicz, B. Clinoptilolite as a Natural, Active Zeolite Catalyst for the Chemical Transformations of Geraniol. React. Kinet. Mech. Catal. 2021, 133, 997–1011. [Google Scholar] [CrossRef]
- Tsitsishvili, V.; Nanuli, D.; Tsu, I.J.; Melikishvili, P.; Mirdzveli, N. Transformation of Natural Analcime and Phillipsite During their Hydrothermal Recrystallization into Zeolites A and X. Int. J. Adv. Res. 2019, 7, 219–230. [Google Scholar] [CrossRef]
- Mansouri, N.; Rikhtegar, N.; Ahmad Panahi, H.; Atabi, F.; Shahraki, B.K. Porosity, Characterization and Structural Properties of Natural Zeolite—Clinoptilolite—As a Sorbent. Environ. Prot. Eng. 2013, 39, 139–152. [Google Scholar]
- Verdolotti, L.; Di Maio, E.; Lavorgna, M.; Iannace, S.; Nicolais, L. Polyurethane-cement-based foams: Characterization and potential uses. J. Appl. Poly Sci. 2008, 107, 1–8. [Google Scholar] [CrossRef]
- Pascarella, A.; Recupido, F.; Lama, G.C.; Sorrentino, L.; Campanile, A.; Liguori, B.; Berthet, M.; Rollo, G.; Lavorgna, M.; Verdolotti, L. Design and Development of Sustainable Polyurethane Foam: A Proof-of-Concept as Customizable Packaging for Cultural Heritage Applications. Adv. Eng. Mater. 2024, 26, 2301888. [Google Scholar] [CrossRef]
- Haryńska, A.; Gubańska, I.; Kucińska-Lipka, J.; Janik, H. Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology. Polymers 2018, 10, 1304. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Chao, C.Y. Effect of Containing Polyhydric Alcohol Liquefied Wood on the Properties of Thermoplastic Polyurethane Resins. Eur. J. Wood Wood Prod. 2018, 76, 1745–1752. [Google Scholar] [CrossRef]
- Yahiaoui, M.; Denape, J.; Paris, J.Y.; Ural, A.G.; Alcalá, N.; Martínez, F.J. Wear Dynamics of a TPU/Steel Contact under Reciprocal Sliding. Wear 2014, 315, 103–114. [Google Scholar] [CrossRef]
- Dumludag, F.; Yener, M.Y.; Basturk, E.; Madakbas, S.; Kahraman, V.; Umer, M.A.; Yahsi, U.; Tav, C. Effects of Boron Nitrite in Thermoplastic Polyurethane on Thermal, Electrical and Free Volume Properties. Polym. Bull. 2019, 76, 4087–4101. [Google Scholar] [CrossRef]
- Sen, F.; Madakbas, S.; Bastürk, E.; Kahraman, M.V. Morphology and Mechanical Properties of Thermoplastic Polyurethane/Colemanite Composites. Polymer 2017, 41, 1019–1026. [Google Scholar]
- Cruz, S.M.; Viana, J.C. Melt Blending and Characterization of Carbon Nanoparticles-Filled Thermoplastic Polyurethane Elastomers. J. Elastomers Plast. 2015, 47, 647–665. [Google Scholar] [CrossRef]
- Strankowski, M.; Korzeniewski, P.; Strankowska, J.; Anu, A.S.; Thomas, S. Morphology, Mechanical and Thermal Properties of Thermoplastic Polyurethane Containing Reduced Graphene Oxide and Graphene Nanoplatelets. Materials 2018, 11, 82. [Google Scholar] [CrossRef]
- Villani, M.; Consonni, R.; Canetti, M.; Bertoglio, F.; Iervese, S.; Bruni, G.; Visai, L.; Iannace, S.; Bertini, F. Polyurethane-Based Composites: Effects of Antibacterial Fillers on the Physical-Mechanical Behavior of Thermoplastic Polyurethanes. Polymers 2020, 12, 362. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, M.; Yang, W.; Yan, H.; Zhang, C.; An, Y.; Zhang, F. Experimental Investigation of Flame Retardancy and Mechanical Properties of APP/EG/TPU Multilayer Composites Prepared by Microlayer Coextrusion Technology. J. Appl. Polym. Sci. 2021, 138, 50219. [Google Scholar] [CrossRef]
- Liu, W.; He, T. Effect of ZnO Nanoparticles on Mechanical Properties of Polyacrylate Composites. Acad. J. Mater. Chem. 2024, 5, 62–71. [Google Scholar]
- Chang, B.P.; Akil, H.M.; Nasir, R.M. Mechanical and Tribological Properties of Zeolite-Reinforced UHMWPE Composite for Implant Application. Procedia Eng. 2013, 68, 88–94. [Google Scholar] [CrossRef]
- Guo, C.; Wang, S.; Zhang, S.; Wang, X.; Guo, H. The Structure and Packaging Properties of Films Made by Poly(Lactic Acid)/Lactide Grafted Zeolite. J. Memb. Sci. 2024, 690, 122227. [Google Scholar] [CrossRef]
- Roy Goswami, S.; Sudhakaran Nair, S.; Zhang, X.; Tanguy, N.; Yan, N. Starch Maleate/Epoxidized Soybean Oil/Polylactic Acid Films with Improved Ductility and Biodegradation Potential for Packaging Fatty Foods. ACS Sustain. Chem. Eng. 2022, 10, 14185–14194. [Google Scholar] [CrossRef]
- Lagonski, H.-C. Permeation of Gases and Condensable Substances through Monolayer and Multilayer Structures. In Plastic Packaging; Wiley: Hoboken, NJ, USA, 2008; pp. 297–347. [Google Scholar]
- Turan, D. Water Vapor Transport Properties of Polyurethane Films for Packaging of Respiring Foods. Food Eng. Rev. 2021, 13, 54–65. [Google Scholar] [CrossRef]
- Wang, Y.; Gupta, M.; Schiraldi, D.A. Oxygen Permeability in Thermoplastic Polyurethanes. J. Polym. Sci. B Polym. Phys. 2012, 50, 681–693. [Google Scholar] [CrossRef]
Sample | Tg1 [°C] | Tg2 [°C] | Tm [°C] | ΔHm [J/g] |
---|---|---|---|---|
TPU | −33 | 104 | 214 | 2.38 |
TPU + 5% Na-X | −37 | 108 | 212 | 5.87 |
TPU + 7.5% Na-X | −38 | 116 | 214 | 4.41 |
TPU + 10% Na-X | −39 | 137 | 216 | 3.85 |
TPU + 5% CLN | −35 | 136 | 212 | 6.33 |
TPU + 7.5% CLN | −40 | 128 | 211 | 5.89 |
TPU + 10% CLN | −41 | 132 | 213 | 4.95 |
Sample | T1 [°C] | T2 [°C] | Residue at 1000 °C/% |
---|---|---|---|
TPU | 343 | 384 | 0.06 |
TPU + 5% Na-X | 328 | 375 | 4.12 |
TPU + 7.5% Na-X | 324 | 383 | 6.41 |
TPU + 10% Na-X | 323 | 347 | 9.70 |
TPU + 5% CLN | 324 | 375 | 3.97 |
TPU + 7.5% CLN | 327 | 373 | 6.26 |
TPU + 10% CLN | 326 | 343 | 8.67 |
Sample | D [10−6 cm2/s] | S cm3(STP)/cm3⋅atm | J [103 cm3/m2 s] | P [10−6 cm3⋅m/m2⋅s⋅atm] |
---|---|---|---|---|
TPU | 2.53 | 45.8 | 7.70 | 1.16 |
TPU + 5% Na-X | 1.97 | 44.7 | 5.94 | 0.88 |
TPU + 7.5% Na-X | 2.31 | 45.4 | 8.40 | 1.05 |
TPU + 10% Na-X | 2.19 | 42.9 | 6.84 | 0.94 |
Sample | TPU (%) | Zeolite Na-X (%) | Clinoptilolite (%) |
---|---|---|---|
TPU | 100 | - | - |
TPU + 5% Na-X | 95 | 5 | - |
TPU + 7.5% Na-X | 92.5 | 7.5 | - |
TPU + 10% Na-X | 90 | 10 | - |
TPU + 5% CLN | 95 | - | 5 |
TPU + 7.5% CLN | 92.5 | - | 7.5 |
TPU + 10% CLN | 90 | - | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, N.; Verdolotti, L.; Lama, G.C.; Recupido, F.; Liguori, B.; Oliviero, M. The Effect of Zeolite Na-X and Clinoptilolite as Functional Fillers on the Mechanical, Thermal and Barrier Properties of Thermoplastic Polyurethane. Molecules 2025, 30, 420. https://doi.org/10.3390/molecules30020420
Russo N, Verdolotti L, Lama GC, Recupido F, Liguori B, Oliviero M. The Effect of Zeolite Na-X and Clinoptilolite as Functional Fillers on the Mechanical, Thermal and Barrier Properties of Thermoplastic Polyurethane. Molecules. 2025; 30(2):420. https://doi.org/10.3390/molecules30020420
Chicago/Turabian StyleRusso, Nello, Letizia Verdolotti, Giuseppe Cesare Lama, Federica Recupido, Barbara Liguori, and Maria Oliviero. 2025. "The Effect of Zeolite Na-X and Clinoptilolite as Functional Fillers on the Mechanical, Thermal and Barrier Properties of Thermoplastic Polyurethane" Molecules 30, no. 2: 420. https://doi.org/10.3390/molecules30020420
APA StyleRusso, N., Verdolotti, L., Lama, G. C., Recupido, F., Liguori, B., & Oliviero, M. (2025). The Effect of Zeolite Na-X and Clinoptilolite as Functional Fillers on the Mechanical, Thermal and Barrier Properties of Thermoplastic Polyurethane. Molecules, 30(2), 420. https://doi.org/10.3390/molecules30020420