Investigating the Mars–van Krevelen Mechanism for CO Capture on the Surface of Carbides
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
3.1. Adsorption and MvK Mechanism
3.2. Electrochemical Performance
3.3. Vacancy Stability and Carbon Migration
3.4. Electronic Structure Analysis
3.5. Experimental Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, T.; Zhang, D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Möller, T.; Ju, W.; Bagger, A.; Wang, X.; Luo, F.; Thanh, T.N.; Varela, A.S.; Rossmeisl, J.; Strasser, P. Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci. 2019, 12, 640–647. [Google Scholar] [CrossRef]
- Prats, H.; Stamatakis, M. Atomistic and electronic structure of metal clusters supported on transition metal carbides: Implications for catalysis. J. Mater. Chem. A 2022, 10, 1522–1534. [Google Scholar] [CrossRef]
- Awais, M.; Ashraf, N.; Abghoui, Y. Mechanistic roadmap for CO2 to methane conversion on tailored carbonitride surfaces. Appl. Surf. Sci. 2025, 710, 163815. [Google Scholar] [CrossRef]
- Reddy, K.P.; Dama, S.; Mhamane, N.B.; Ghosalya, M.K.; Raja, T.; Satyanarayana, C.V.; Gopinath, C.S. Molybdenum carbide catalyst for the reduction of CO2 to CO: Surface science aspects by NAPPES and catalysis studies. Dalton Trans. 2019, 48, 12199–12209. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, J.; Islam, M.U.; Ali, S.M.; Khalid, S.; Ashraf, N. Computational exploring the potential of pure and Ag-decorated WTe2 for detecting volatile organic compounds (VOCs). Mater. Sci. Semicond. Process. 2024, 182, 108710. [Google Scholar] [CrossRef]
- Deng, Y.; Ge, Y.; Xu, M.; Yu, Q.; Xiao, D.; Yao, S.; Ma, D. Molybdenum carbide: Controlling the geometric and electronic structure of noble metals for the activation of O–H and C–H bonds. Acc. Chem. Res. 2019, 52, 3372–3383. [Google Scholar] [CrossRef] [PubMed]
- Porosoff, M.D.; Yang, X.; Boscoboinik, J.A.; Chen, J.G. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew. Chem. Int. Ed. 2014, 53, 6705–6709. [Google Scholar] [CrossRef]
- Ashraf, N.; Iqbal, A.; Abghoui, Y. Exploring reaction mechanisms for CO2 reduction on Carbides. J. Mater. Chem. A 2024, 12, 30340–30350. [Google Scholar] [CrossRef]
- Awais, M.; Ashraf, N.; Abghoui, Y. Engineering innovative catalysts for efficient CO2 reduction toward carbon neutrality. J. Environ. Chem. Eng. 2025, 13, 116621. [Google Scholar] [CrossRef]
- Ashraf, N.; Abghoui, Y. Innovative catalysis for CO reduction: Paving the way towards Greener future. Int. J. Hydrogen Energy 2025, 136, 383–391. [Google Scholar] [CrossRef]
- Mubaraka, F.; Rafique, H.; Najeeb, J.; Akram, S.; Munir, H.; Naeem, S.; Kausar, N.; Ashraf, N. Synthesis of amino acids-functionalized iron oxide nanoparticles for response surface methodology-based statistical optimization of photocatalytic degradation of methylene blue. Int. J. Environ. Sci. Technol. 2024, 21, 2489–2504. [Google Scholar] [CrossRef]
- Viñes, F.; Sousa, C.; Liu, P.; Rodriguez, J.; Illas, F. A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides. J. Chem. Phys. 2005, 122, 174709. [Google Scholar] [CrossRef]
- Posada-Pérez, S.; Vines, F.; Ramirez, P.J.; Vidal, A.B.; Rodriguez, J.A.; Illas, F. The bending machine: CO2 activation and hydrogenation on δ-MoC (001) and β-Mo2C (001) surfaces. Phys. Chem. Chem. Phys. 2014, 16, 14912–14921. [Google Scholar] [CrossRef]
- Ferri, T.; Gozzi, D.; Latini, A. Hydrogen evolution reaction (HER) at thin film and bulk TiC electrodes. Int. J. Hydrogen Energy 2007, 32, 4692–4701. [Google Scholar] [CrossRef]
- Kunkel, C.; Vines, F.; Illas, F. Biogas upgrading by transition metal carbides. ACS Appl. Energy Mater. 2017, 1, 43–47. [Google Scholar] [CrossRef]
- Lee, J.S.; Yeom, M.H.; Lee, D.-S. Catalysis by Molybdenum Carbide in Activation of CC, CO and CH bonds. J. Mol. Catal. 1990, 62, L45–L51. [Google Scholar] [CrossRef]
- Rodriguez, J.; Liu, P.; Dvorak, J.; Jirsak, T.; Gomes, J.; Takahashi, Y.; Nakamura, K. Adsorption and decomposition of SO2 on TiC (001): An experimental and theoretical study. Surf. Sci. 2003, 543, L675–L682. [Google Scholar] [CrossRef]
- Brungs, A.J.; York, A.P.; Green, M.L. Comparison of the group V and VI transition metal carbides for methane dry reforming and thermodynamic prediction of their relative stabilities. Catal. Lett. 1999, 57, 65–69. [Google Scholar] [CrossRef]
- Claridge, J.B.; York, A.P.; Brungs, A.J.; Marquez-Alvarez, C.; Sloan, J.; Tsang, S.C.; Green, M.L. New catalysts for the conversion of methane to synthesis gas: Molybdenum and tungsten carbide. J. Catal. 1998, 180, 85–100. [Google Scholar] [CrossRef]
- Viñes, F.; Rodriguez, J.A.; Liu, P.; Illas, F. Catalyst size matters: Tuning the molecular mechanism of the water–gas shift reaction on titanium carbide based compounds. J. Catal. 2008, 260, 103–112. [Google Scholar] [CrossRef]
- Ono, L.K.; Roldan-Cuenya, B. Effect of interparticle interaction on the low temperature oxidation of CO over size-selected Au nanocatalysts supported on ultrathin TiC films. Catal. Lett. 2007, 113, 86–94. [Google Scholar] [CrossRef]
- Sullivan, M.M.; Chen, C.-J.; Bhan, A. Catalytic deoxygenation on transition metal carbide catalysts. Catal. Sci. Technol. 2016, 6, 602–616. [Google Scholar] [CrossRef]
- Ashraf, N.; Abghoui, Y. Dynamics of C1 and C2 Products Formation on (110) Facets of Carbides. Surf. Interfaces 2025, 70, 106793. [Google Scholar] [CrossRef]
- Hiragond, C.B.; Kim, H.; Lee, J.; Sorcar, S.; Erkey, C.; In, S.-I. Electrochemical CO2 reduction to CO catalyzed by 2D nanostructures. Catalysts 2020, 10, 98. [Google Scholar] [CrossRef]
- Powar, N.S.; Hiragond, C.B.; Bae, D.; In, S.-I. Two-dimensional metal carbides for electro-and photocatalytic CO2 reduction. J. CO2 Util. 2022, 55, 101814. [Google Scholar] [CrossRef]
- Xiao, T.-c.; Hanif, A.; York, A.P.; Nishizaka, Y.; Green, M.L. Study on the mechanism of partial oxidation of methane to synthesis gas over molybdenum carbide catalyst. Phys. Chem. Chem. Phys. 2002, 4, 4549–4554. [Google Scholar] [CrossRef]
- Koerts, T.; Deelen, M.J.; Van Santen, R.A. Hydrocarbon formation from methane by a low-temperature two-step reaction sequence. J. Catal. 1992, 138, 101–114. [Google Scholar] [CrossRef]
- Mine, S.; Toyao, T.; Hinuma, Y.; Shimizu, K.-I. Understanding and controlling the formation of surface anion vacancies for catalytic applications. Catal. Sci. Technol. 2022, 12, 2398–2410. [Google Scholar] [CrossRef]
- Ahmed, I.; Jhung, S.H. Catalytic oxidation reactions for environmental remediation with transition metal nitride nanoparticles. J. Environ. Chem. Eng. 2024, 12, 112907. [Google Scholar] [CrossRef]
- Daisley, A.; Hargreaves, J. Metal nitrides, the Mars-van Krevelen mechanism and heterogeneously catalysed ammonia synthesis. Catal. Today 2023, 423, 113874. [Google Scholar] [CrossRef]
- Ellingsson, V.; Iqbal, A.; Skúlason, E.; Abghoui, Y. Nitrogen reduction reaction to ammonia on transition metal carbide catalysts. ChemSusChem 2023, 16, e202300947. [Google Scholar] [CrossRef]
- Iqbal, A.; Skúlason, E.; Abghoui, Y. Catalytic Nitrogen Reduction on the Transition Metal Carbonitride (110) Facet: DFT Predictions and Mechanistic Insights. J. Phys. Chem. C 2024, 128, 10300–10307. [Google Scholar] [CrossRef]
- Sinev, M.Y. Oxygen Activation and Pathways in High-Temperature Reactions of Light Alkane Oxidation: A Seeming Simplicity of Kinetic Description. Kinet. Catal. 2019, 60, 420–431. [Google Scholar] [CrossRef]
- Zeinalipour-Yazdi, C.D.; Hargreaves, J.S.; Catlow, C.R.A. Low-T mechanisms of ammonia synthesis on Co3Mo3N. J. Phys. Chem. C 2018, 122, 6078–6082. [Google Scholar] [CrossRef]
- Hanifpour, F.; Canales, C.P.; Fridriksson, E.G.; Sveinbjörnsson, A.; Tryggvason, T.K.; Yang, J.; Arthur, C.; Jónsdóttir, S.; Garden, A.L.; Ólafsson, S. Operando quantification of ammonia produced from computationally-derived transition metal nitride electro-catalysts. J. Catal. 2022, 413, 956–967. [Google Scholar] [CrossRef]
- Zeinalipour-Yazdi, C.D.; Hargreaves, J.S.; Laassiri, S.; Catlow, C.R.A. The integration of experiment and computational modelling in heterogeneously catalysed ammonia synthesis over metal nitrides. Phys. Chem. Chem. Phys. 2018, 20, 21803–21808. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, N.; Abghoui, Y. Electrochemical synthesis of methane on (110) facets of carbides via MvK mechanism. Electrochim. Acta 2025, 525, 146069. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Software VASP, vienna (1999). Phys. Rev. B 1996, 54, 169. [Google Scholar]
- Hussain, J.; Jónsson, H.; Skúlason, E. Calculations of product selectivity in electrochemical CO2 reduction. ACS Catal. 2018, 8, 5240–5249. [Google Scholar] [CrossRef]
- Jovanov, Z.P.; Hansen, H.A.; Varela, A.S.; Malacrida, P.; Peterson, A.A.; Nørskov, J.K.; Stephens, I.E.; Chorkendorff, I. Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: A theoretical and experimental study of Au–Cd alloys. J. Catal. 2016, 343, 215–231. [Google Scholar] [CrossRef]
- Ashraf, N.; Betolaza, D.B.; Gunnarsson, H.I.; Khatibi, M.I.; Iqbal, A.; Abghoui, Y. How can phosphides catalyze CO2 reduction reaction? Electrochim. Acta 2025, 517, 145755. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jonsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Han, J.; Wang, H.; Zhu, X.; Ge, Q. Role of dissociation of phenol in its selective hydrogenation on Pt (111) and Pd (111). ACS Catal. 2015, 5, 2009–2016. [Google Scholar] [CrossRef]
- Atkins, P.W.; De Paula, J.; Keeler, J. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Kröger, F.; Vink, H. Relations between the concentrations of imperfections in crystalline solids. In Solid State Physics; Elsevier: Amsterdam, The Netherlands, 1956; Volume 3, pp. 307–435. [Google Scholar]
- Jónsson, H.; Mills, G.; Jacobsen, K.W. Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions. In Classical and Quantum Dynamics in Condensed Phase Simulations; World Scientific: Singapore, 1998; pp. 385–404. [Google Scholar]
- Iqbal, A.; Skulason, E.; Abghoui, Y. Electrochemical Nitrogen Reduction to Ammonia at Ambient Condition on the (111) Facets of Transition Metal Carbonitrides. ChemPhysChem 2024, 25, e202300991. [Google Scholar] [CrossRef]
- Fan, K.; Ying, Y.; Li, X.; Luo, X.; Huang, H. Theoretical investigation of V3C2 MXene as prospective high-capacity anode material for metal-ion (Li, Na, K, and Ca) batteries. J. Phys. Chem. C 2019, 123, 18207–18214. [Google Scholar] [CrossRef]
- Attanayake, N.H.; Banjade, H.R.; Thenuwara, A.C.; Anasori, B.; Yan, Q.; Strongin, D.R. Electrocatalytic CO2 reduction on earth abundant 2D Mo2C and Ti3C2 MXenes. Chem. Commun. 2021, 57, 1675–1678. [Google Scholar] [CrossRef]
- Handoko, A.D.; Chen, H.; Lum, Y.; Zhang, Q.; Anasori, B.; Seh, Z.W. Two-dimensional titanium and molybdenum carbide MXenes as electrocatalysts for CO2 reduction. iScience 2020, 23, 101181. [Google Scholar] [CrossRef]
Catalyst | CrC | HfC | MoC | NbC | TiC | VC | WC | ZrC |
---|---|---|---|---|---|---|---|---|
Ea | 2.77 | 3.41 | 2.21 | 2.46 | 2.94 | 1.46 | 1.92 | 3.28 |
ΔE | 1.37 | 2.62 | 0.1 | 1.35 | 2.43 | 1.37 | −0.68 | 2.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, N.; Abghoui, Y. Investigating the Mars–van Krevelen Mechanism for CO Capture on the Surface of Carbides. Molecules 2025, 30, 3637. https://doi.org/10.3390/molecules30173637
Ashraf N, Abghoui Y. Investigating the Mars–van Krevelen Mechanism for CO Capture on the Surface of Carbides. Molecules. 2025; 30(17):3637. https://doi.org/10.3390/molecules30173637
Chicago/Turabian StyleAshraf, Naveed, and Younes Abghoui. 2025. "Investigating the Mars–van Krevelen Mechanism for CO Capture on the Surface of Carbides" Molecules 30, no. 17: 3637. https://doi.org/10.3390/molecules30173637
APA StyleAshraf, N., & Abghoui, Y. (2025). Investigating the Mars–van Krevelen Mechanism for CO Capture on the Surface of Carbides. Molecules, 30(17), 3637. https://doi.org/10.3390/molecules30173637