Advances in the Application of Aerobic Granular Sludge for the Removal of Emerging Contaminants in Municipal and Industrial Wastewater
Abstract
1. Introduction
2. Aerobic Granular Sludge Technology
3. Emerging Contaminants Targeted
3.1. Pharmaceuticals and Personal Care Products (PPCPs)
3.2. Endocrine-Disrupting Compounds (EDCs)
3.3. Microplastics
3.4. Per- and Polyfluoroalkyl Substances (PFASs)
4. Reactor Configuration to Cultivate Aerobic Granules
4.1. Sequencing Batch Reactor (SBR)
4.2. Continuous Flow System
5. Emerging Contaminant Removal Mechanism
6. Performance Evaluation
6.1. Removal Efficiency
6.2. Granule Morphology and Stability
7. Challenges and Future Direction
7.1. Scalability and Operational Challenges
7.2. Integration with Other Technologies
7.3. Current Legislation on Emerging Contaminants
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bashir, M.J.K.; Mojiri, A. Recent developments in emerging contaminants determination and treatment technologies. Separations 2022, 9, 434. [Google Scholar] [CrossRef]
- Pinto, I.; Simões, M.; Gomes, I. An Overview of the Impact of Pharmaceuticals on Aquatic Microbial Communities. Antibiotics 2022, 11, 1700. [Google Scholar] [CrossRef]
- Das, R.; Raj, D. Sources, distribution, and impacts of emerging contaminants—A critical review on contamination of landfill leachate. J. Hazard. Mater. Adv. 2025, 17, 100602. [Google Scholar] [CrossRef]
- Koumaki, E.; Noutsopoulos, C.; Mamais, D.; Fragkiskatos, G.; Andreadakis, A. Fate of Emerging Contaminants in High-Rate Activated Sludge Systems. Int. J. Environ. Res. Public Health 2021, 18, 400. [Google Scholar] [CrossRef]
- Cheng, L.; Wei, M.; Hu, Q.; Li, B.; Li, B.; Wang, W.; Abudi, Z.N.; Hu, Z. Aerobic granular sludge formation and stability in enhanced biological phosphorus removal system under antibiotics pressure: Performance, granulation mechanism, and microbial successions. J. Hazard. Mater. 2023, 454, 131472. [Google Scholar] [CrossRef]
- Benatti, J.C.B.; Andrade, A.E.F.d.; Nour, E.A.A.; Mattos de Oliveira Cruz, L. Aeration-driven microbial aggregation in aerobic granular sludge systems for low-strength wastewater treatment. Desalination Water Treat. 2025, 322, 101050. [Google Scholar] [CrossRef]
- Nancharaiah, Y.V.; Sarvajith, M. Aerobic granular sludge process: A fast growing biological treatment for sustainable wastewater treatment. Curr. Opin. Environ. Sci. Health 2019, 12, 57–65. [Google Scholar] [CrossRef]
- Zeng, P.; Liu, Y.-Q.; Li, J.; Liao, M. The Aerobic Granules Process for Wastewater Treatment: From Theory to Engineering. Processes 2024, 12, 707. [Google Scholar] [CrossRef]
- Shameem, K.S.; Sabumon, P.C. A Review on the Stability, Sustainability, Storage and Rejuvenation of Aerobic Granular Sludge for Wastewater Treatment. Water 2023, 15, 950. [Google Scholar] [CrossRef]
- Hussain, S.; Ferrentino, R.; Khan, K.; Ali, Z.; Yousuf, M.; Andreottola, G. Rapid startup of aerobic granular sludge: Recent advances and future challenges. Results Eng. 2024, 22, 102035. [Google Scholar] [CrossRef]
- Vydehi, P.; Ravindran, G.; Shyamala, G.; Bala, G.S.; Nagaraju, T.V.; Mekala, M.; Karri, R.R. Aerobic granular sludge-based sustainable wastewater treatment: Process, bottlenecks, and knowledge gap through scientometric perspective. J. Hazard. Mater. Adv. 2024, 16, 100462. [Google Scholar] [CrossRef]
- Hamza, R.; Rabii, A.; Ezzahraoui, F.-z.; Morgan, G.; Iorhemen, O.T. A review of the state of development of aerobic granular sludge technology over the last 20 years: Full-scale applications and resource recovery. Case Stud. Chem. Environ. Eng. 2022, 5, 100173. [Google Scholar] [CrossRef]
- Sun, Y.; Angelotti, B.; Brooks, M.; Wang, Z.-W. Feast/famine ratio determined continuous flow aerobic granulation. Sci. Total Environ. 2020, 750, 141467. [Google Scholar] [CrossRef]
- Cramer, M.; Tränckner, J. Development of Decay in Biofilms under Starvation Conditions—Rethinking of the Biomass Model. Water 2020, 12, 1249. [Google Scholar] [CrossRef]
- Lin, L.; Li, Z.; Zhang, B.; Zhang, Q.; Qiu, D.; Herzberg, M.; Wu, Z.; Xiao, E. Degradation and utilization of EPS from excessive activated sludge by interaction of electrogenesis and light stimulation. J. Environ. Chem. Eng. 2022, 10, 107557. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Piché-Choquette, S. The combination of external conditioning and Ca2+ addition prior to the reintroduction of effluent sludge into SBR sharply accelerates the formation of aerobic granules. J. Water Process Eng. 2020, 36, 101269. [Google Scholar] [CrossRef]
- Simona, C.; Laura, L.; Francesco, V.; Marianna, V.; Cristina, M.G.; Barbara, T.; Mauro, M.; Simona, R. Effect of the organic loading rate on the PHA-storing microbiome in sequencing batch reactors operated with uncoupled carbon and nitrogen feeding. Sci. Total Environ. 2022, 825, 153995. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.-j.; Chen, F.-m.; Zuo, J.-e. Development of a dynamic feeding strategy for continuous-flow aerobic granulation and nitrogen removal in a modified airlift loop reactor for municipal wastewater treatment. Sci. Total Environ. 2020, 714, 136764. [Google Scholar] [CrossRef]
- Traina, F.; Capodici, M.; Torregrossa, M.; Viviani, G.; Corsino, S.F. PHA and EPS production from industrial wastewater by conventional activated sludge, membrane bioreactor and aerobic granular sludge technologies: A comprehensive comparison. Chemosphere 2024, 355, 141768. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.-Q.; Mao, S.; Steinberg, C.E.W.; Duan, W.; Chen, F. Reproducibility of Aerobic Granules in Treating Low-Strength and Low-C/N-Ratio Wastewater and Associated Microbial Community Structure. Processes 2022, 10, 444. [Google Scholar] [CrossRef]
- Cydzik-Kwiatkowska, A.; de Jonge, N.; Poulsen, J.S.; Nielsen, J.L. Unravelling gradient layers of microbial communities, proteins, and chemical structure in aerobic granules. Sci. Total Environ. 2022, 829, 154253. [Google Scholar] [CrossRef]
- Qin, L.; Liu, Y.; Tay, J.-H. Effect of settling time on aerobic granulation in sequencing batch reactor. Biochem. Eng. J. 2004, 21, 47–52. [Google Scholar] [CrossRef]
- Gonzalez-Gil, G.; Holliger, C. Aerobic granules: Microbial landscape and architecture, stages, and practical implications. Appl. Environ. Microbiol. 2014, 80, 3433–3441. [Google Scholar] [CrossRef]
- de Graaff, D.R.; van Dijk, E.J.H.; van Loosdrecht, M.C.M.; Pronk, M. Strength characterization of full-scale aerobic granular sludge. Environ. Technol. 2020, 41, 1637–1647. [Google Scholar] [CrossRef]
- Geng, M.; You, S.; Guo, H.; Ma, F.; Xiao, X.; Zhang, J.; Ma, X. Response of aerobic granular sludge to loading shock: Performance and proteomic study. Chem. Eng. J. 2022, 444, 136458. [Google Scholar] [CrossRef]
- Saxena, V.; Padhi, S.K.; Pattanaik, L.; Bhatt, R. Simultaneous removal of carbon, nitrogen, and phosphorus from landfill leachate using an aerobic granular reactor. Environ. Technol. Innov. 2022, 28, 102657. [Google Scholar] [CrossRef]
- Indonesia’s Pharmaceutical Exports to Rise at 7.7% CAGR by 2028. Available online: https://healthcareasiamagazine.com/healthcare/news/indonesias-pharmaceutical-exports-rise-77-cagr-2028 (accessed on 9 July 2025).
- Pharmaceutical Goods Market Size Value in Vietnam. Available online: https://www.reportlinker.com/dataset/749f9c972486fa11587e9175202caa034fedaae7 (accessed on 8 July 2025).
- Pharmaceuticals in Dosage Market Size Value in Malaysia. Available online: https://www.reportlinker.com/dataset/4fb09a308d395f0e69dda81a313cd188ab601439 (accessed on 9 July 2025).
- Biopharmaceutical Industry. Available online: https://www.boi.go.th/upload/content/Biopharmaceutical.pdf (accessed on 9 July 2025).
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.M.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef] [PubMed]
- Matt, C.; David, M. Thailand’s Ageing Society: The Opportunities for Businesses in Thailand; KPMG: Bangkok, Thailand, 2024. [Google Scholar]
- Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Spataro, F.; Rauseo, J.; Øverjordet, I.B.; Casoli, E.; Pescatore, T.; Franco, F.; Patrolecco, L. Man-made emerging contaminants in the High-Arctic fjord Kongsfjorden (Svalbard Archipelago, Norway): Occurrence, sources and risk assessment. Sci. Total Environ. 2025, 969, 178936. [Google Scholar] [CrossRef]
- Zhuo, R.; Bao, R.; Fan, Y.; Lin, Q.; Yang, Y. Development of a method for rapid determination of 98 PPCPs in drinking water by SPE-UPLC-MS/MS. Anal. Methods 2025, 17, 4387–4402. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lu, X.; Peng, J.; Su, G.; Meng, J.; Li, Q.; Hua, Y.; Hu, M.; Shi, B. Regional disparities in PPCPs contamination of urban wastewater treatment plants: Unveiling influential factors and ecological effects. Environ. Pollut. 2025, 367, 125687. [Google Scholar] [CrossRef] [PubMed]
- Padhye, L.; Huang, C.-H. Occurrence and Removal of PPCPs in Urban Wastewater. Proc. Water Environ. Fed. 2012, 2012. [Google Scholar] [CrossRef]
- Osuoha, J.O.; Anyanwu, B.O.; Ejileugha, C. Pharmaceuticals and personal care products as emerging contaminants: Need for combined treatment strategy. J. Hazard. Mater. Adv. 2023, 9, 100206. [Google Scholar] [CrossRef]
- Okoye, C.O.; Nyaruaba, R.; Ita, R.E.; Okon, S.U.; Addey, C.I.; Ebido, C.C.; Opabunmi, A.O.; Okeke, E.S.; Chukwudozie, K.I. Antibiotic resistance in the aquatic environment: Analytical techniques and interactive impact of emerging contaminants. Environ. Toxicol. Pharmacol. 2022, 96, 103995. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Li, Y.; Liu, H.; Ki Lin, C.S.; Sun, J.; Wang, Q. Unveiling the occurrence and ecological risks of triclosan in surface water through meta-analysis. Environ. Pollut. 2024, 361, 124901. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ok, Y.S.; Kim, K.-H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017, 596–597, 303–320. [Google Scholar] [CrossRef]
- Chopra, S.; Kumar, D. Pharmaceuticals and Personal Care Products (PPCPs) as Emerging Environmental Pollutants: Toxicity and Risk Assessment. In Advances in Animal Biotechnology and its Applications; Springer Publishing: Singapore, 2018; pp. 337–353. [Google Scholar]
- Mair, T.; Freestone, J.F.; Hillyer, M.H.; Love, S.; Watson, E.D. Chapter 11—The endocrine system. In The Equine Manual, 2nd ed.; Higgins, A.J., Snyder, J.R., Eds.; W.B. Saunders: Edinburgh, UK, 2006; pp. 627–658. [Google Scholar]
- Rizzo, R.; Bortolotti, D.; Rizzo, S.; Schiuma, G. Cellular Mechanisms of Endocrine Disruption. In Environment Impact on Reproductive Health: A Translational Approach; Marci, R., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 15–48. [Google Scholar]
- Yuniarto, A.; Hadibarata, T. Sources, fate, distribution, impact, and treatment of endocrine disrupting compounds (EDCs) in drinking water. Environ. Qual. Manag. 2024, 34, e22244. [Google Scholar] [CrossRef]
- Velázquez, K.; Guzmán-Mar, J.; Saldarriaga, H.; Murillo Tovar, M.A.; Reyes, L.; Villanueva, M. Occurrence and seasonal distribution of five selected endocrine-disrupting compounds in wastewater treatment plants of the Metropolitan Area of Monterrey, Mexico: The role of water quality parameters. Environ. Pollut. 2020, 269, 116223. [Google Scholar] [CrossRef]
- Massahi, T.; Omer, A.K.; Kiani, A.; Mansouri, B.; Soleimani, H.; Fattahi, N.; Moradi, M.; Sharafi, K. A simulation study on the temperature-dependent release of endocrine-disrupting chemicals from polypropylene and polystyrene containers. Sci. Rep. 2025, 15, 19318. [Google Scholar] [CrossRef]
- Czarny-Krzymińska, K.; Krawczyk, B.; Szczukocki, D. Bisphenol A and its substitutes in the aquatic environment: Occurrence and toxicity assessment. Chemosphere 2023, 315, 137763. [Google Scholar] [CrossRef]
- Rifa, R.A.; Lavado, R. Unveiling the next generation of bisphenol analogs and their impact on human health using in vitro methods. Emerg. Contam. 2024, 10, 100296. [Google Scholar] [CrossRef]
- Peivasteh-roudsari, L.; Barzegar-bafrouei, R.; Sharifi, K.A.; Azimisalim, S.; Karami, M.; Abedinzadeh, S.; Asadinezhad, S.; Tajdar-oranj, B.; Mahdavi, V.; Alizadeh, A.M.; et al. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023, 9, e18140. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-Y.; Yin, R.-X. Exposure to Endocrine-Disrupting Chemicals and Type 2 Diabetes Mellitus in Later Life. Expo. Health 2023, 15, 199–229. [Google Scholar] [CrossRef]
- Ziembowicz, S.; Kida, M. Limitations and future directions of application of the Fenton-like process in micropollutants degradation in water and wastewater treatment: A critical review. Chemosphere 2022, 296, 134041. [Google Scholar] [CrossRef]
- Nayanathara Thathsarani Pilapitiya, P.G.C.; Ratnayake, A.S. The world of plastic waste: A review. Clean. Mater. 2024, 11, 100220. [Google Scholar] [CrossRef]
- Tan, W.; Cui, D.; Xi, B. Moving policy and regulation forward for single-use plastic alternatives. Front. Environ. Sci. Eng. 2021, 15, 50. [Google Scholar] [CrossRef]
- Hassan, I.; Sethupathi, S.; Bashir, M.J.K.; Ahmad, A.L.; Parthasarathy, P. Tracking microplastics at the source: A comparative study of fluorescent and FTIR microscopy at a drinking water intake in the Perak River, Malaysia. Environ. Monit. Assess. 2025, 197, 702. [Google Scholar] [CrossRef] [PubMed]
- Alazaiza, M.Y.D.; Alzghoul, T.M.; Bashir, M.J.K.; Ramu, M.B.; Abu Amr, S.S.; Abushammala, M.F.M. Emerging trends in tackling microplastics in wastewater systems: Insights from a global research perspective. Case Stud. Chem. Environ. Eng. 2025, 11, 101041. [Google Scholar] [CrossRef]
- Ziani, K.; Ioniță-Mîndrican, C.B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef]
- Azizi, N.; Nasseri, S.; Nodehi, R.N.; Jaafarzadeh, N.; Pirsaheb, M. Evaluation of conventional wastewater treatment plants efficiency to remove microplastics in terms of abundance, size, shape, and type: A systematic review and Meta-analysis. Mar. Pollut. Bull. 2022, 177, 113462. [Google Scholar] [CrossRef]
- Kye, H.; Kim, J.; Ju, S.; Lee, J.; Lim, C.; Yoon, Y. Microplastics in water systems: A review of their impacts on the environment and their potential hazards. Heliyon 2023, 9, e14359. [Google Scholar] [CrossRef]
- Subaramaniyam, U.; Allimuthu, R.S.; Vappu, S.; Ramalingam, D.; Balan, R.; Paital, B.; Panda, N.; Rath, P.K.; Ramalingam, N.; Sahoo, D.K. Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front. Physiol. 2023, 14, 1217666. [Google Scholar] [CrossRef] [PubMed]
- Abbas, G.; Ahmed, U.; Ahmad, M.A. Impact of Microplastics on Human Health: Risks, Diseases, and Affected Body Systems. Microplastics 2025, 4, 23. [Google Scholar] [CrossRef]
- Alom, N.; Roy, T.; Sarkar, T.; Rasel, M.; Hossain, M.S.; Jamal, M. Removal of microplastics from aqueous media using activated jute stick charcoal. Heliyon 2024, 10, e37380. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Jiao, Y.; Deng, X.; Fan, W.; Xing, B. Adsorptive removal of microplastics from aquatic environments using coal gasification slag-based adsorbent in a liquid–solid fluidized bed. Sep. Purif. Technol. 2025, 354, 128935. [Google Scholar] [CrossRef]
- Kerr, S.; Khalil, A.M.E.; Joshi, B.; Tabish, T.A.; Memon, F.A. Exploring treatment efficiency of graphene derivatives as adsorbents for removal of microplastics in water. Desalination Water Treat. 2025, 323, 101294. [Google Scholar] [CrossRef]
- Ladouceur, J.D.; Narbaitz, R.M.; Lan, C.Q. Dissolved air flotation pretreatment for low-pressure membranes in water treatment: A review of fouling mitigation and product water quality. J. Water Process Eng. 2023, 56, 104391. [Google Scholar] [CrossRef]
- Bayo, J.; López-Castellanos, J.; Olmos, S. Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant. Mar. Pollut. Bull. 2020, 156, 111211. [Google Scholar] [CrossRef]
- Tiwari, B.R.; Lecka, J.; Pulicharla, R.; Brar, S.K. Microplastic pollution and associated health hazards: Impact of COVID-19 pandemic. Curr. Opin. Environ. Sci. Health 2023, 34, 100480. [Google Scholar] [CrossRef]
- Torre, A.; Vázquez-Rowe, I.; Kahhat, R. Integrating microplastic management into a broader wastewater decision-making framework. Is activated granular sludge (AGS) a game changer? J. Water Process Eng. 2025, 69, 106624. [Google Scholar] [CrossRef]
- Bengtsson, S.; Blois, M.; Wilén, B.-M.; Gustavsson, D. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies. Environ. Technol. 2018, 40, 1–18. [Google Scholar] [CrossRef]
- Abunada, Z.; Alazaiza, M.Y.D.; Bashir, M.J.K. An Overview of Per- and Polyfluoroalkyl Substances (PFAS) in the Environment: Source, Fate, Risk and Regulations. Water 2020, 12, 3590. [Google Scholar] [CrossRef]
- Pelch, K.E.; Reade, A.; Wolffe, T.A.M.; Kwiatkowski, C.F. PFAS health effects database: Protocol for a systematic evidence map. Environ. Int. 2019, 130, 104851. [Google Scholar] [CrossRef] [PubMed]
- Per- and Polyfluoroalkyl Substances (PFAS)—Final PFAS National Primary Drinking Water Regulation. Available online: https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas (accessed on 4 July 2025).
- Stockholm Convention on Persistent Organic Pollutants (POPs). Available online: https://chm.pops.int/implementation/industrialpops/pfos/overview/tabid/5221/default.aspx#:~:text=In%202019%2C%20the%20Conference%20of,SC%2D9/12 (accessed on 5 July 2025).
- Moneta, B.G.; Feo, M.L.; Torre, M.; Tratzi, P.; Aita, S.E.; Montone, C.M.; Taglioni, E.; Mosca, S.; Balducci, C.; Cerasa, M.; et al. Occurrence of per- and polyfluorinated alkyl substances in wastewater treatment plants in Northern Italy. Sci. Total Environ. 2023, 894, 165089. [Google Scholar] [CrossRef]
- Wang, M.; Cai, Y.; Zhou, B.; Yuan, R.; Chen, Z.; Chen, H. Removal of PFASs from water by carbon-based composite photocatalysis with adsorption and catalytic properties: A review. Sci. Total Environ. 2022, 836, 155652. [Google Scholar] [CrossRef]
- Singh, R.K.; Fernando, S.; Baygi, S.F.; Multari, N.; Thagard, S.M.; Holsen, T.M. Breakdown Products from Perfluorinated Alkyl Substances (PFAS) Degradation in a Plasma-Based Water Treatment Process. Environ. Sci. Technol. 2019, 53, 2731–2738. [Google Scholar] [CrossRef]
- Hussain, H.N.; Jilani, M.I.; Imtiaz, F.; Ahmed, T.; Arshad, M.B.; Mudassar, M.; Sharif, M.N. Advances in the removal of Polyfluoroalkyl Substances (PFAS) from water using destructive and non-destructive methods. Green Anal. Chem. 2025, 12, 100225. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Lawal, D.U.; Yassin, M.A.; Abdulazeez, I.; Mu'azu, N.D.; Birniwa, A.H.; Noor, A.; Lawal, I.M.; Lim, J.W.; Aljundi, I.H. Aerobic granular sludge sequencing batch reactor for high strength domestic wastewater treatment: Assessing kinetic models and microbial community dynamics. Desalination Water Treat. 2024, 319, 100550. [Google Scholar] [CrossRef]
- Gobi, K.; Vadivelu, V.M. Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalkanoate in aerobic granules. Bioresour. Technol. 2014, 161, 441–445. [Google Scholar] [CrossRef]
- Rayaz, M.; Khatoon, F.; Khan, A.A. Anaerobic/Oxic/Anoxic Mode Sequencing Batch Reactor: Treatment Performance and Development of Aerobic Granular Sludge. Orient. J. Chem. 2023, 39, 533–545. [Google Scholar] [CrossRef]
- Gobi, K.; Mashitah, M.D.; Vadivelu, V.M. Development and utilization of aerobic granules for the palm oil mill (POM) wastewater treatment. Chem. Eng. J. 2011, 174, 213–220. [Google Scholar] [CrossRef]
- Zeng, S.; Song, F.; Lu, P.; He, Q.; Zhang, D. Improving PHA production in a SBR of coupling PHA-storing microorganism enrichment and PHA accumulation by feed-on-demand control. AMB Express 2018, 8, 97. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, C.; Moreno-Rodríguez, E.; Ortiz-Cruz, J.A.; Moeller-Chávez, G.E. Development of aerobic granular sludge for real industrial/municipal wastewater treatment. Water Sci. Technol. 2023, 87, 2328–2344. [Google Scholar] [CrossRef]
- Rosa-Masegosa, A.; Muñoz-Palazon, B.; Gonzalez-Lopez, J.; Gonzalez-Martinez, A. Elucidating the role of organic loading rate on the performance and microbial dynamics of a novel continuous-flow aerobic granular sludge reactor. J. Water Process Eng. 2024, 65, 105820. [Google Scholar] [CrossRef]
- Cong, S.; Yu, G.; Xia, S.; Yu, H.; Sun, Y.; Gao, Y.; Liu, Y.; Zou, D. Pilot–scale vertical continuous–flow reactors applied to treat rural domestic wastewater at low temperature via aerobic granular sludge. J. Water Process Eng. 2024, 60, 105220. [Google Scholar] [CrossRef]
- Franchi, O.; Álvarez, M.I.; Pavissich, J.P.; Belmonte, M.; Pedrouso, A.; del Río, Á.V.; Mosquera-Corral, A.; Campos, J.L. Operational variables and microbial community dynamics affect granulation stability in continuous flow aerobic granular sludge reactors. J. Water Process Eng. 2024, 59, 104951. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, Y.; Zhang, Z.; Li, Q.; Wang, X.; Ren, Y.; Li, Y.Y.; Wang, Q. Performance and microbial adaptation of a continuous granular sludge-type nitritation process facing the decreasing temperature condition until 5 °C. Bioresour. Technol. 2025, 434, 132765. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Bin, L.; Chen, W.; Chen, X.; Li, P.; Wen, S.; Huang, S.; Zhang, Z.; Tang, B. Unveiling the secrets of the bistability of aerobic granular sludge in a continuous flow membrane bioreactor for treating real municipal wastewater. Chem. Eng. J. 2025, 510, 161527. [Google Scholar] [CrossRef]
- Juni, F.; Bashir, M.J.K.; Haider Jaffari, Z.; Sethupathi, S.; Wong, J.W.C.; Zhao, J. Recent advancements in the treatment of emerging contaminants using activated persulfate oxidation process. Separations 2023, 10, 154. [Google Scholar] [CrossRef]
- Ahn, K.H.; Hong, S.W. Characteristics of the adsorbed heavy metals onto aerobic granules: Isotherms and distributions. Desalination Water Treat. 2015, 53, 2388–2402. [Google Scholar] [CrossRef]
- Cydzik-Kwiatkowska, A.; Gusiatin, M.Z.; Zielińska, M.; Wojnowska-Baryła, I.; Kulikowska, D.; Bernat, K. Alginate-like polymers from full-scale aerobic granular sludge: Content, recovery, characterization, and application for cadmium adsorption. Sci. Rep. 2022, 12, 22260. [Google Scholar] [CrossRef]
- Liu, C.; Shen, Y.; Li, Y.; Huang, F.; Wang, S.; Li, J. Aerobic granular sludge for complex heavy metal-containing wastewater treatment: Characterization, performance, and mechanisms analysis. Front. Microbiol. 2024, 15, 1356386. [Google Scholar] [CrossRef]
- Li, N.; Wei, D.; Wang, S.; Hu, L.; Xu, W.; Du, B.; Wei, Q. Comparative study of the role of extracellular polymeric substances in biosorption of Ni(II) onto aerobic/anaerobic granular sludge. J. Colloid Interface Sci. 2017, 490, 754–761. [Google Scholar] [CrossRef]
- Zhang, B.; Lens, P.N.L.; Shi, W.; Zhang, R.; Zhang, Z.; Guo, Y.; Bao, X.; Cui, F. Enhancement of aerobic granulation and nutrient removal by an algal–bacterial consortium in a lab-scale photobioreactor. Chem. Eng. J. 2018, 334, 2373–2382. [Google Scholar] [CrossRef]
- Bodle, K.B.; Kirkland, C.M. Environmentally-grown aerobic granular sludge performs more complete pharmaceutical biodegradation and wastewater treatment than lab-grown granules. Int. Biodeterior. Biodegrad. 2025, 202, 106081. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Hu, M.; Zhu, L. Removal behaviors of aerobic granular sludge on estrogens: Adsorption kinetics and removal mechanism. J. Water Process Eng. 2021, 44, 102410. [Google Scholar] [CrossRef]
- Burzio, C.; Mohammadi, A.S.; Smith, S.; Abadikhah, M.; Svahn, O.; Modin, O.; Persson, F.; Wilén, B.M. Sorption of pharmaceuticals to foam and aerobic granular sludge with different morphologies. Resour. Environ. Sustain. 2024, 15, 100149. [Google Scholar] [CrossRef]
- Fujii, K.; Kikuchi, S.; Satomi, M.; Ushio-Sata, N.; Morita, N. Degradation of 17beta-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Appl. Environ. Microbiol. 2002, 68, 2057–2060. [Google Scholar] [CrossRef]
- Lonappan, L.; Brar, S.K.; Das, R.K.; Verma, M.; Surampalli, R.Y. Diclofenac and its transformation products: Environmental occurrence and toxicity—A review. Environ. Int. 2016, 96, 127–138. [Google Scholar] [CrossRef]
- Alexy, R.; Kümpel, T.; Kümmerer, K. Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere 2004, 57, 505–512. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, W.; Li, X.; Wang, R.; Zhai, J. Carbamazepine toxicity and its co-metabolic removal by the cyanobacteria Spirulina platensis. Sci. Total Environ. 2020, 706, 135686. [Google Scholar] [CrossRef]
- Ilieva, Z.; Salehi, R.; Aqeel, H.; Li, Y.; Suehring, R.; Liss, S.N.; Hamza, R. Strength under pressure: Aerobic granular sludge (AGS) dynamics in sequencing batch reactors exposed to per- and polyfluoroalkyl substances (PFAS). J. Hazard. Mater. 2025, 491, 137903. [Google Scholar] [CrossRef]
- Miranda, C.; Maia, A.S.; Tiritan, M.E.; Castro, P.M.L.; Amorim, C.L. Microbiome adaptation of aerobic granular sludge allows process resilience during the treatment of seawater-based wastewater with pharmaceuticals. J. Water Process Eng. 2025, 72, 107592. [Google Scholar] [CrossRef]
- Rosa-Masegosa, A.; Vilchez-Vargas, R.; Gorrasi, S.; Monteoliva-García, A.; Gonzalez-Martinez, A.; Gonzalez-Lopez, J.; Muñoz-Palazon, B. Unraveling the composition and succession of the microbial community in aerobic granular sludge treating urban wastewater with high load from hospital effluent. Chemosphere 2025, 381, 144483. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ma, X.; Wang, Y.; Du, G.; Tay, J.-H.; Li, J. Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport. Bioresour. Technol. 2019, 273, 350–357. [Google Scholar] [CrossRef]
- Ren, C.-y.; Xu, Q.-J.; Zhao, H.-P. The unique features of aerobic granule sludge contribute to simultaneous antibiotic removal and mitigation of antibiotic resistance genes enrichment. J. Water Process Eng. 2023, 52, 103577. [Google Scholar] [CrossRef]
- Burzio, C.; Ekholm, J.; Modin, O.; Falås, P.; Svahn, O.; Persson, F.; van Erp, T.; Gustavsson, D.J.I.; Wilén, B.-M. Removal of organic micropollutants from municipal wastewater by aerobic granular sludge and conventional activated sludge. J. Hazard. Mater. 2022, 438, 129528. [Google Scholar] [CrossRef]
- Balest, L.; Lopez, A.; Mascolo, G.; Di Iaconi, C. Removal of endocrine disrupter compounds from municipal wastewater using an aerobic granular biomass reactor. Biochem. Eng. J. 2008, 41, 288–294. [Google Scholar] [CrossRef]
- Odunola, O.R. Comparison of Conventional Activated Sludge and Aerobic Granular Sludge Reactors for Microplastics Removal During Municipal Wastewater Treatment. Master’s Thesis, University of Kansas, Lawrence, KS, USA, 2020. [Google Scholar]
- Wang, K.; Huang, Y.; Zhang, M.; Xiao, H.; Zhang, G.; Zhang, T.; Wang, X. Pressure of different level PFOS on aerobic granule sludge: Insights on performance, AGS structure, community succession, and microbial interaction responses. Sci. Total Environ. 2024, 906, 167682. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, B.; Fan, J.W.; Shi, W.X. Unravelling the mechanism of ibuprofen's effect on aerobic granular sludge and its removal mechanism. Zhongguo Huanjing Kexue/China Environ. Sci. 2024, 44, 6077–6087. [Google Scholar]
- Gan, Y.; Gong, B.; Huang, X.; Fang, F.; Peng, T.; Liu, Z. Response of aerobic granular sludge under acute inhibition by polystyrene microplastics: Activity, aggregation performance, and microbial analysis. Environ. Pollut. 2024, 349, 123923. [Google Scholar] [CrossRef]
- Muñoz-Palazon, B.; Rosa-Masegosa, A.; Hurtado-Martinez, M.; Rodriguez-Sanchez, A.; Link, A.; Vilchez-Vargas, R.; Gonzalez-Martinez, A.; Lopez, J.G. Total and metabolically active microbial community of aerobic granular sludge systems operated in sequential batch reactors: Effect of pharmaceutical compounds. Toxics 2021, 9, 93. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Q.; Wei, Z.; Zhao, Y.; Pan, X. Cultivation of a versatile manganese-oxidizing aerobic granular sludge for removal of organic micropollutants from wastewater. Sci. Total Environ. 2019, 690, 417–425. [Google Scholar] [CrossRef]
- Kent, J.; Tay, J.H. Treatment of 17α-ethinylestradiol, 4-nonylphenol, and carbamazepine in wastewater using an aerobic granular sludge sequencing batch reactor. Sci. Total Environ. 2019, 652, 1270–1278. [Google Scholar] [CrossRef]
- Peng, T.; Wang, Y.; Wang, J.; Fang, F.; Yan, P.; Liu, Z. Effect of different forms and components of EPS on sludge aggregation during granulation process of aerobic granular sludge. Chemosphere 2022, 303, 135116. [Google Scholar] [CrossRef]
- Zhao, W.; You, J.; Yin, S.; Yang, H.; He, S.; Feng, L.; Li, J.; Zhao, Q.; Wei, L. Extracellular polymeric substances-antibiotics interaction in activated sludge: A review. Environ. Sci. Ecotechnology 2023, 13, 100212. [Google Scholar] [CrossRef]
- Guo, T.; Pan, K.; Chen, Y.; Tian, Y.; Deng, J.; Li, J. When aerobic granular sludge faces emerging contaminants: A review. Sci. Total Environ. 2024, 907, 167792. [Google Scholar] [CrossRef]
- Zhu, L.; Lv, M.-l.; Dai, X.; Zhou, J.-h.; Xu, X.-y. The stability of aerobic granular sludge under 4-chloroaniline shock in a sequential air-lift bioreactor (SABR). Bioresour. Technol. 2013, 140, 126–130. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, N.; Yang, G.; Xu, Q.; Wang, D.; Tang, L.; Xia, J.; Li, P.; Li, X. Environmentally relevant level of perfluorooctanoic acid affect the formation of aerobic granular sludge. J. Environ. Manag. 2023, 336, 117659. [Google Scholar] [CrossRef]
- Pronk, M.; de Kreuk, M.K.; de Bruin, B.; Kamminga, P.; Kleerebezem, R.; van Loosdrecht, M.C.M. Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res. 2015, 84, 207–217. [Google Scholar] [CrossRef]
- Kaur, N.; Dey, P. Bacterial exopolysaccharides as emerging bioactive macromolecules: From fundamentals to applications. Res. Microbiol. 2023, 174, 104024. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, M.; Ukaigwe, S.; Manga, M.; Iorhemen, O.T. Valorization of waste aerobic granular sludge: Exploring the recovery of tyrosine, phenylalanine, and other high-value products. Clean. Chem. Eng. 2025, 11, 100144. [Google Scholar] [CrossRef]
- Basel Convention Plastic Waste Amendments; Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal: Basel, Switzerland, 2019.
- European Commission, E.C. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, 327, 1–72. [Google Scholar]
- European Commission, E.C. Directive (EU) 2015/495 establishing a watch list of substances for Union-wide monitoring in the field of water policy. Off. J. L78 2015, 40–42. [Google Scholar]
- Ministry of the Environment. Guidelines for PFOS, PFOA and Related Substances Under the Water Pollution Control Act. Available online: https://www.oecd.org/content/dam/oecd/en/topics/policy-sub-issues/risk-management-risk-reduction-and-sustainable-chemistry2/pfas-country-information/Japan.pdf (accessed on 23 August 2025).
- Ministry of Ecology and Environment The People’s Republic of China. Environmental Quality Standards for Surface Water (GB 3838-2002). Available online: https://english.mee.gov.cn/Resources/standards/water_environment/quality_standard/200710/t20071024_111792.shtml (accessed on 23 August 2025).
Characteristics | Activated Sludge | Aerobic Granules | References |
---|---|---|---|
Compactness | Low compact | Highly compact | [20] |
Structure | Single layer | Multilayer | [21] |
Settling ability | Low settling ability | High settling ability | [22] |
Robustness | Less robust | Highly robust | [6] |
Footprint | Large footprint | Small footprint | [23] |
Sludge volume index (SVI) | High SVI | Low SVI | [24] |
Resistance to shock loading | Low resistance | High resistance | [25] |
Energy efficiency | High energy needed | Low energy | [11] |
Treatment efficiency | Requires multiple stages | Simultaneous removal of COD, nitrogen, and phosphorus | [26] |
Biomass retention | Low retention of biomass | High retention of biomass due to good settling | [8] |
Contaminant | Removal Efficiency | References |
---|---|---|
Gemfibrozil Diclofenac Erythromycin | 10–100% | [96] |
PFASs | 17–100% | [102] |
Venlafaxine (VNF) Tramadol | 89% | [103] |
Carbamazepine | 60–85% | [104] |
Ketoprofen | 50–60% | |
Cyclophosphamide | 70% | |
Trimethoprim | 70% | |
Kanamycin tetracycline Ciprofloxacin ampicillin Erythromycin | 88.4% | [105] |
Sulfamethoxazole | 99% | [106] |
Tetracyclin | 79.17% | [5] |
Sulfamethoxazole | 70.86% | |
Ofloxacin | 25.73% | |
Roxithromycin | 88.93% | |
Paracetamol | 98.1% | [107] |
Ibuprofen | 98.3% | |
Bisphenol A | 95.6% | |
Ciprofloxacin | 65.8% | |
17β-estradiol | 93.5% | [97] |
17α-ethinylestradiol | 84.8% | |
Estrone 17β-estradiol 17α-ethynylestradiol Bisphenol A 4-tert-octylphenol | 60% 69% 93% 81% | [108] |
Microplastics | 74–95% | [109] |
PFOS | >85% | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanadasan, G.; Ng, C.A.; Vadivelu, V.M.; Bashir, M.J.K. Advances in the Application of Aerobic Granular Sludge for the Removal of Emerging Contaminants in Municipal and Industrial Wastewater. Molecules 2025, 30, 3522. https://doi.org/10.3390/molecules30173522
Kanadasan G, Ng CA, Vadivelu VM, Bashir MJK. Advances in the Application of Aerobic Granular Sludge for the Removal of Emerging Contaminants in Municipal and Industrial Wastewater. Molecules. 2025; 30(17):3522. https://doi.org/10.3390/molecules30173522
Chicago/Turabian StyleKanadasan, Gobi, Choon Aun Ng, Vel Murugan Vadivelu, and Mohammad J. K. Bashir. 2025. "Advances in the Application of Aerobic Granular Sludge for the Removal of Emerging Contaminants in Municipal and Industrial Wastewater" Molecules 30, no. 17: 3522. https://doi.org/10.3390/molecules30173522
APA StyleKanadasan, G., Ng, C. A., Vadivelu, V. M., & Bashir, M. J. K. (2025). Advances in the Application of Aerobic Granular Sludge for the Removal of Emerging Contaminants in Municipal and Industrial Wastewater. Molecules, 30(17), 3522. https://doi.org/10.3390/molecules30173522