Synergistic Phenolic Compounds in Medicinal Plant Extracts: Enhanced Furin Protease Inhibition via Solvent-Specific Extraction from Lamiaceae and Asteraceae Families
Abstract
1. Introduction
2. Results
Findings Related to Phytochemical Studies
3. Discussion
- SARS-CoV-2: Cleavage of the “RRAR” motif in the spike protein by furin enhances viral binding to the ACE2 receptor and cell entry.
- HIV: Processing of the Env protein by furin is essential for viral infectivity.
- Highly Pathogenic Influenza Viruses: Furin-mediated cleavage of hemagglutinin (HA) facilitates systemic infections.
- Enhanced Receptor Affinity: Cleaved spike protein exhibits higher binding affinity to ACE2, facilitating viral entry.
- Membrane Fusion Facilitation: Exposure of the S2 fusion peptide accelerates viral and host membrane fusion.
3.1. Furin Inhibitors: Challenges and Natural Alternatives
- Yang et al. demonstrated that fucoidans (sulfated polysaccharides from brown seaweed) inhibit SARS-CoV-2 entry by targeting both the spike protein and furin [25].
- Olive leaf extract suppressed furin expression in HT-29 colon adenocarcinoma cells [26].
- Omotuyi et al. identified apigenin and quercetin from Aframomum melegueta as furin inhibitors [17].
- Zothanluanga et al. found that isovitexin from Acacia pennata exhibits high binding affinity to furin [18].
- Bandyopadhyay et al. screened 521 phytochemicals and highlighted ochnaflavone (Lonicera japonica) and licoflavone B (Glycyrrhiza glabra) as potent furin inhibitors [19].
3.2. Study Findings: Phenolic Compounds and Furin Inhibition
- Epicatechin showed a statistically significant positive effect on furin inhibition (β = +12.3, p < 0.01).
- Naringenin exhibited a negative effect (β = –8.7, p < 0.05), possibly due to allosteric interference with furin’s catalytic [20].
- Quercetin did not show a significant correlation (p > 0.05).
- Synergistic Effects: Combinations of rutin and epicatechin significantly enhanced inhibition (β = +9.1, p < 0.05). Multi-component formulations showed a strong positive correlation with inhibition rates (r = +0.89, p < 0.01), with triple combinations yielding 33% higher inhibition than single compounds (p < 0.001).
3.3. Solvent Effects on Extraction and Bioactivity
- Chloroform: Extracted a diverse range of phenolics (e.g., rutin, epicatechin, sinapic acid), yielding the highest inhibition (e.g., Origanum vulgare chloroform extract: 97.44% inhibition).
- Ethyl Acetate: Selectively extracted apigenin-7-O-glucoside and p-coumaric acid but also naringenin, which reduced efficacy (Mentha spicata: 56.41% inhibition despite high naringenin content).
- Hexane: Limited to lipophilic compounds (e.g., quercetin), resulting in lower inhibition.
3.4. Limitations of Study
4. Materials and Methods
4.1. Plant Material
4.2. Extraction Procedure
4.2.1. HPLC Analysis and Method Validation
4.2.2. Furin Inhibition Assay
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE2 | Angiotensin-Converting Enzyme 2 |
ANOVA | Analysis of Variance |
BAP | Scientific Research Project |
CMK | Chloromethyl Ketone |
COVID-19 | Coronavirus Disease 2019 |
DMSO | Dimethyl Sulfoxide |
HA | Hemagglutinin (in influenza virus) |
HPLC | High-Performance Liquid Chromatography |
IC50 | Half-Maximal Inhibitory Concentration |
IGF | Insulin-like Growth Factor |
LOD | Limit of Detection |
LOQ | Limit of Quantification |
MMPs | Matrix Metalloproteinases |
PDGF | Platelet-Derived Growth Factor |
RAAS | Renin–Angiotensin–Aldosterone System |
r | Pearson Correlation Coefficient |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
TGF-β | Transforming Growth Factor Beta |
VEGF | Vascular Endothelial Growth Factor |
References
- Fernandez, C.; Rysä, J.; Almgren, P.; Nilsson, J.; Engström, G.; Orho-Melander, M. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J. Intern. Med. 2018, 284, 377–387. [Google Scholar] [CrossRef]
- Ji, H.L.; Zhao, R.; Matalon, S.; Matthay, M.A. Elevated plasmin(ogen) as a common risk factor for COVID-19 susceptibility. Physiol. Rev. 2020, 100, 1065–1075. [Google Scholar] [CrossRef]
- Rashad, A.A.; Mahalingam, S.; Keller, P.A. Chikungunya Virus: Emerging Targets and New Opportunities for Medicinal Chemistry. J. Med. Chem. 2014, 57, 1147–1166. [Google Scholar] [CrossRef]
- Lee, J.E.; Saphire, E.O. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol. 2009, 4, 621–635. [Google Scholar] [CrossRef]
- Zimmer, G.; Budz, L.; Herrler, G. Proteolytic Activation of Respiratory Syncytial Virus Fusion Protein. J. Biol. Chem. 2001, 276, 31642–31650. [Google Scholar] [CrossRef] [PubMed]
- Stieneke-Gröber, A.; Vey, M.; Angliker, H.; Shaw, E.; Thomas, G.; Roberts, C. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 1992, 11, 2407–2414. [Google Scholar] [CrossRef]
- White, J.M.; Delos, S.E.; Brecher, M.; Schornberg, K. Structures and Mechanisms of Viral Membrane Fusion Proteins: Multiple Variations on a Common Theme. Crit. Rev. Biochem. Mol. Biol. 2008, 43, 189–219. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.W.; Liu, C.T.; Do Rosario, V.E.; De Sousa, B.; Rampao, H.S.; Shaio, M.F. Potential threat of malaria epidemics in a low transmission area, as exemplified by São Tomé and Príncipe. Malar. J. 2010, 9, 264. [Google Scholar] [CrossRef] [PubMed]
- Skehel, J.J.; Wiley, D.C. Receptor Binding and Membrane Fusion in Virus Entry: The Influenza Hemagglutinin. Annu. Rev. Biochem. 2000, 69, 531–569. [Google Scholar] [CrossRef]
- Más, V.; Melero, J.A. Entry of Enveloped Viruses into Host Cells: Membrane Fusion. Subcell Biochem. 2013, 68, 467–487. [Google Scholar]
- Ivanova, T.P. Beiträge zur Inhibierung der Proproteinkonvertase Furin. Ph.D. Thesis, Universität Bielefeld, Bielefeld, Germany, 2017. [Google Scholar]
- Mazurkiewicz-Pisarek, A.; Płucienniczak, G.; Ciach, T.; Płucienniczak, A. The factor VIII protein and its function. Acta Biochim. Pol. 2016, 63, 11–16. [Google Scholar] [CrossRef]
- Braun, E.; Sauter, D. Furin-mediated protein processing in infectious diseases and cancer. Clin. Transl. Immunol. 2019, 8, e1073. [Google Scholar] [CrossRef]
- Essalmani, R.; Jain, J.; Susan-Resiga, D.; Andréo, U.; Evagelidis, A.; Derbali, R.M. Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity. J. Virol. 2022, 96, e00128-22. [Google Scholar] [CrossRef] [PubMed]
- Amin, R.; Yasmin, F.; Hosen, M.A.; Dey, S.; Mahmud, S.; Saleh, A. Predictions of Some Methyl β-D-Galactopyranoside Analogs. Biointerface Res. Appl. Chem. 2021, 11, 12565–12577. [Google Scholar]
- Jaaks, P.A.I.M. The Proprotein Convertase Furin is a Key Regulator of Paediatric Sarcoma Malignancy. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2016. [Google Scholar]
- Omotuyi, I.O.; Nash, O.; Ajiboye, B.O.; Olumekun, V.O.; Oyinloye, B.E.; Osuntokun, O.T. Aframomum melegueta secondary metabolites exhibit polypharmacology against SARS-CoV-2 drug targets: In vitro validation of furin inhibition. Phytother. Res. 2021, 35, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Zothantluanga, J.H.; Gogoi, N.; Shakya, A.; Chetia, D.; Lalthanzara, H. Computational guided identification of potential leads from Acacia pennata (L.) Willd. as inhibitors for cellular entry and viral replication of SARS-CoV-2. Futur. J. Pharm. Sci. 2021, 7, 204. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Abiodun, O.A.; Ogboo, B.C.; Kola-Mustapha, A.T.; Attah, E.I.; Edemhanria, L. Polypharmacology of some medicinal plant metabolites against SARS-CoV-2 and host targets: Molecular dynamics evaluation of NSP9 RNA binding protein. J. Biomol. Struct. Dyn. 2022, 40, 11467–11483. [Google Scholar] [CrossRef]
- Lakhani, K.G.; Hamid, R.; Gupta, S.; Prajapati, P.; Prabha, R.; Patel, S. Exploring the therapeutic mechanisms of millet in obesity through molecular docking, pharmacokinetics, and dynamic simulation. Front. Nutr. 2024, 11, 1323859. [Google Scholar] [CrossRef]
- Goc, A.; Niedzwiecki, A.; Ivanov, V.; Ivanova, S.; Rath, M. Inhibitory effects of specific combination of natural compounds against SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants. Eur. J. Microbiol. Immunol. 2022, 11, 87–94. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, M.; Bithel, N.; Sharma, M. Ethnobotany, Phytochemistry, Pharmacology and Nutritional Potential of Medicinal Plants from Asteraceae Family. J. Mt. Res. 2022, 17, 67–83. [Google Scholar] [CrossRef]
- Rolnik, A.; Olas, B. The plants of the asteraceae family as agents in the protection of human health. Int. J. Mol. Sci. 2021, 22, 3009. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, M.; Yang, Y.; Gu, X.; Yang, K.; Li, M. Furin: A Potential Therapeutic Target for COVID-19. iScience 2020, 23, 101642. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.W.; Hsu, H.Y.; Lee, Y.Z.; Jan, J.T.; Chang, S.Y.; Lin, Y.L. Natural fucoidans inhibit coronaviruses by targeting viral spike protein and host cell furin. Biochem. Pharmacol. 2023, 215, 115688. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, A.; Kanımdan, E.; Yenigun, V.B.; Ozman, Z.; Balıbey, F.B.; Durmuş, E. Olive Leaf Extract Downregulates the Protein Expression of Key SARS-CoV-2 Entry Enzyme ACE-2, TMPRSS2, and Furin. Chem. Biodivers. 2024, 21, e202301712. [Google Scholar] [CrossRef]
- Ni, J.; Wen, X.; Wang, S.; Zhou, X.; Wang, H.X. Investigation of the inhibitory combined effect and mechanism of (-)-epigallocatechin gallate and chlorogenic acid on amylase: Evidence of synergistic interaction. Food Biosci. 2023, 56, 103316. [Google Scholar] [CrossRef]
- Đorđević, S.; Cakić, M.; Amr, S. The extraction of apigenin and luteolin from the sage Salvia officinalis L. from Jordan. Work. Living Environ. Prot. 2000, 1, 87–93. [Google Scholar]
- Anagnostou, M.; Tomou, E.M.; Krigas, N.; Skaltsa, H. Phenolic constituents of Greek native Salvia species: A comprehensive review. Phytochem. Rev. 2025. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.H.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Freeman, B.L.; Eggett, D.L.; Parker, T.L. Synergistic and antagonistic interactions of phenolic compounds found in navel oranges. J. Food Sci. 2010, 75, 570–576. [Google Scholar] [CrossRef]
- Iacopini, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J. Food Compos. Anal. 2008, 21, 589–598. [Google Scholar] [CrossRef]
Plant | Solvent | Quercetin (mg/g Extract) | Rutin (mg/g Extract) | Epicatechin (mg/g Extract) | Cinnamic Acid (mg/g Extract) | Naringenin (mg/g Extract) | Apigenin-7-O-glucoside (mg/g Extract) | Coumaric Acid (mg/g Extract) | % Inhibition | Assumed SD | Mean ± SD |
---|---|---|---|---|---|---|---|---|---|---|---|
O. vulgare | Hexane | 0.568 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 79.49 | 5.56 | 79.487 ± 5.564 |
O. vulgare | Chloroform | <LOD | 0.051 | 2.28 | 0.02 | <LOD | <LOD | <LOD | 97.44 | 6.82 | 97.436 ± 6.821 |
M. piperita | Hexane | 0.34 | <LOD | <LOD | 0.09 | <LOD | <LOD | <LOD | 84.62 | 5.92 | 84.615 ± 5.923 |
M. piperita | Chloroform | <LOD | 0.413 | <LOD | 0.07 | 8.58 | <LOD | <LOD | 66.66 | 4.67 | 66.66 ± 4.666 |
M. spicata | Hexane | 0.233 | <LOD | <LOD | 0.07 | <LOD | <LOD | <LOD | 92.30 | 6.46 | 92.3 ± 6.461 |
M. spicata | Chloroform | 0.061 | <LOD | <LOD | <LOD | 16.29 | <LOD | <LOD | 56.41 | 3.95 | 56.41 ± 3.949 |
M. spicata | E. Acetate | 0.07 | 1.56 | <LOD | 2.51 | 5.32 | <LOD | <LOD | 97.44 | 6.82 | 97.435 ± 6.82 |
S. officinalis | Hexane | 0.084 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 61.54 | 4.31 | 61.538 ± 4.308 |
S. officinalis | Chloroform | <LOD | 0.23 | <LOD | 0.02 | <LOD | <LOD | <LOD | 97.43 | 6.82 | 97.434 ± 6.82 |
S. officinalis | E. Acetate | <LOD | <LOD | <LOD | <LOD | <LOD | 0.46 | 0.06 | 92.31 | 6.46 | 92.307 ± 6.461 |
T. vulgaris | Chloroform | <LOD | <LOD | <LOD | 0.52 | <LOD | <LOD | <LOD | 89.74 | 6.28 | 89.743 ± 6.282 |
T. vulgaris | E. Acetate | 0.289 | <LOD | <LOD | 0.56 | <LOD | 0.05 | <LOD | 56.41 | 3.95 | 56.41 ± 3.949 |
S. marianum | Hexane | 0.165 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 74.36 | 5.21 | 74.362 ± 5.205 |
Compound | Correlation (r) | p-Value |
---|---|---|
Epicatechin | +0.65 | <0.01 |
Cinnamic Acid | +0.48 | <0.05 |
Naringenin | −0.72 | <0.001 |
Quercetin | +0.12 | >0.05 |
Combination Type | Plant Extract | Components | Number of Samples | Average Furin (%) Inhibition |
---|---|---|---|---|
Origanum vulgare (Hexane) | Quercetin | |||
Single | Mentha spicata (Hexane) | Quercetin | 5 | 73.2 ± 3.1 |
Salvia officinalis (Hexane) | Quercetin | |||
Silybum marianum (Hexane) | Quercetin | |||
Double | Salvia officinalis (Chloroform) | Rutin + Cinnamic Acid | 3 | 85.1 ± 2.8 |
Mentha piperita (Chloroform) | Rutin + Naringenin | |||
Triple | Origanum vulgare (Chloroform) | Rutin + Epichatechin + Cinnamic Acid | 2 | 97.4 ± 0.1 |
Thymus vulgaris (Chloroform) | Quercetin + Cinnamic Acid + Epichatechin | |||
Quadruple | Mentha spicata (Ethyl Acetate) | Quercetin + Rutin + Cinnamic Acid + Naringenin | 1 | 97.4 ± 0.1 |
Solvent | Extracted Phenolic Compounds | Plant Species |
---|---|---|
Chloroform | Rutin, Epicatechin, Cinnamic Acid | Origanum vulgare, Salvia officinalis |
Ethyl Acetate | Apigenin-7-O-glucoside, p-Coumaric Acid, Naringenin | Mentha spicata, Salvia officinalis |
Hexane | Quercetin, Cinnamic Acid (limited) | Origanum vulgare, Mentha spicata |
Parameter | Condition/Value |
---|---|
Instrument | Shimadzu Nexera-i LC-2040C 3D Plus |
Detector | Photodiode Array (PDA) |
Column | GL Sciences InterSustain C6 (Phenyl-Hexyl), 3 µm, 4.6 × 150 mm |
Column Temperature | 30 °C |
Mobile Phase A | Water with 0.1% formic acid |
Mobile Phase B | Acetonitrile |
Elution Mode | Gradient |
Flow Rate | 1.0 mL/min |
Injection Volume | 20 µL |
Detection Wavelengths (λmax) | Compound-specific (254–360 nm) |
Run Time | ~35 min (depending on gradient program) |
LOD/LOQ | LOD: 0.015–0.045 µg/mL; LOQ: 0.050–0.130 µg/mL |
Quantification Method | External calibration with 5 concentration levels |
Software | Shimadzu LabSolutions LC v5.97 (DB) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Üzer, F.B.; Helvacı, N.; Elmastaş, M. Synergistic Phenolic Compounds in Medicinal Plant Extracts: Enhanced Furin Protease Inhibition via Solvent-Specific Extraction from Lamiaceae and Asteraceae Families. Molecules 2025, 30, 3450. https://doi.org/10.3390/molecules30173450
Üzer FB, Helvacı N, Elmastaş M. Synergistic Phenolic Compounds in Medicinal Plant Extracts: Enhanced Furin Protease Inhibition via Solvent-Specific Extraction from Lamiaceae and Asteraceae Families. Molecules. 2025; 30(17):3450. https://doi.org/10.3390/molecules30173450
Chicago/Turabian StyleÜzer, Fatime Betül, Nazlı Helvacı, and Mahfuz Elmastaş. 2025. "Synergistic Phenolic Compounds in Medicinal Plant Extracts: Enhanced Furin Protease Inhibition via Solvent-Specific Extraction from Lamiaceae and Asteraceae Families" Molecules 30, no. 17: 3450. https://doi.org/10.3390/molecules30173450
APA StyleÜzer, F. B., Helvacı, N., & Elmastaş, M. (2025). Synergistic Phenolic Compounds in Medicinal Plant Extracts: Enhanced Furin Protease Inhibition via Solvent-Specific Extraction from Lamiaceae and Asteraceae Families. Molecules, 30(17), 3450. https://doi.org/10.3390/molecules30173450