Structure-Forming Properties of Pleurotus ostreatus: A Promising Resource for Edible 3D Printing Applications
Abstract
1. Introduction
2. Structural and Textural Properties of Oyster Mushrooms
2.1. Cell Wall Composition
2.2. Mechanical Behavior
2.2.1. Texture-Forming Properties
2.2.2. Structure–Function Relationships
3. Valorization of Low-Grade Oyster Mushroom—Structural, Functional, and Economic Perspectives
4. Functional Advantages of Pleurotus Ostreatus in 3D Printing
5. Edible Applications of Pleurotus Ostreatus Mycelium
6. Dietary Flexibility and Allergen-Free Attributes
6.1. Suitability for Various Dietary Patterns
6.2. Flavor Neutrality and Versatility
7. Technical Problems and Standardization Strategies
7.1. Variability in Raw Material Consistency
7.2. Microbial Contamination Risk
7.3. Educating Consumers on Safety and Benefits of Upcycled Ingredients
7.4. Compliance with Food Safety Standards
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
P. ostreatus | Pleurotus ostreatus |
3DFP | 3D food printing |
µCT | Micro-computed tomography |
LDL | Low-density lipoprotein |
EFSA | European Food Safety Authority |
FDA | Food and Drug Administration |
HACCP | Hazard Analysis and Critical Control Points |
References
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, M.; Fang, Z. Valorization of Mushroom By-products: A Review. J. Sci. Food Agric. 2022, 102, 5593–5605. [Google Scholar] [CrossRef]
- Okuda, Y. Sustainability Perspectives for Future Continuity of Mushroom Production: The Bright and Dark Sides. Front. Sustain. Food Syst. 2022, 6, 1026508. [Google Scholar] [CrossRef]
- Wan Mahari, W.A.; Peng, W.; Nam, W.L.; Yang, H.; Lee, X.Y.; Lee, Y.K.; Liew, R.K.; Ma, N.L.; Mohammad, A.; Sonne, C.; et al. A Review on Valorization of Oyster Mushroom and Waste Generated in the Mushroom Cultivation Industry. J. Hazard. Mater. 2020, 400, 123156. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Bhandari, B.; Wang, Y. 3D Printing: Printing Precision and Application in Food Sector. Trends Food Sci. Technol. 2017, 69, 83–94. [Google Scholar] [CrossRef]
- Le-Bail, A.; Maniglia, B.C.; Le-Bail, P. 3D Printing of Foods: Recent Developments, Future Perspectives and Challenges; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Tesfay, T.; Godifey, T.; Mesfin, R.; Kalayu, G. Evaluation of Waste Paper for Cultivation of Oyster Mushroom (Pleurotus ostreatus) with Some Added Supplementary Materials. AMB Express 2020, 10, 15. [Google Scholar] [CrossRef]
- Roy, D.N.; Azad, A.K.; Sultana, F.; Anisuzzaman, A.S.M.; Khondkar, P. Nutritional Profile and Mineral Composition of Two Edible Mushroom Varieties Consumed and Cultivated in Bangladesh. J. Phytopharm. 2015, 4, 217–220. [Google Scholar] [CrossRef]
- Lin, N.; Taghizadehmakoei, A.; Polovina, L.; McLean, I.; Santana-Martínez, J.C.; Naese, C.; Moraes, C.; Hallam, S.J.; Dahmen, J. 3D Bioprinting of Food Grade Hydrogel Infused with Living Pleurotus ostreatus Mycelium in Non-Sterile Conditions. ACS Appl. Bio Mater. 2024, 7, 2982–2992. [Google Scholar] [CrossRef]
- Keerthana, K.; Anukiruthika, T.; Moses, J.A.; Anandharamakrishnan, C. Development of Fiber-Enriched 3D Printed Snacks from Alternative Foods: A Study on Button Mushroom. J. Food Eng. 2020, 287, 110116. [Google Scholar] [CrossRef]
- Godoi, F.C.; Prakash, S.; Bhandari, B.R. 3d Printing Technologies Applied for Food Design: Status and Prospects. J. Food Eng. 2016, 179, 44–54. [Google Scholar] [CrossRef]
- Baeva, E.; Bleha, R.; Lavrova, E.; Sushytskyi, L.; Čopíková, J.; Jablonsky, I.; Klouček, P.; Synytsya, A. Polysaccharides from Basidiocarps of Cultivating Mushroom Pleurotus ostreatus: Isolation and Structural Characterization. Molecules 2019, 24, 2740. [Google Scholar] [CrossRef]
- Boureghda, Y.; Satha, H.; Bendebane, F. Chitin–Glucan Complex from Pleurotus ostreatus Mushroom: Physicochemical Characterization and Comparison of Extraction Methods. Waste Biomass Valorization 2021, 12, 6139–6153. [Google Scholar] [CrossRef]
- Qiu, Z.; Wu, X.; Gao, W.; Zhang, J.; Huang, C. High Temperature Induced Disruption of the Cell Wall Integrity and Structure in Pleurotus ostreatus Mycelia. Appl. Microbiol. Biotechnol. 2018, 102, 6627–6636. [Google Scholar] [CrossRef]
- Kumi, M.; Wang, T.; Ejeromedoghene, O.; Wang, J.; Li, P.; Huang, W. Exploring the Potentials of Chitin and Chitosan-Based Bioinks for 3D-Printing of Flexible Electronics: The Future of Sustainable Bioelectronics. Small Methods 2024, 8, 2301341. [Google Scholar] [CrossRef]
- Curto, M.Á.; Butassi, E.; Ribas, J.C.; Svetaz, L.A.; Cortés, J.C.G. Natural Products Targeting the Synthesis of β(1,3)-D-Glucan and Chitin of the Fungal Cell Wall. Existing Drugs and Recent Findings. Phytomedicine 2021, 88, 153556. [Google Scholar] [CrossRef]
- Vetter, J. The Mushroom Glucans: Molecules of High Biological and Medicinal Importance. Foods 2023, 12, 1009. [Google Scholar] [CrossRef] [PubMed]
- Golian, M.; Chlebová, Z.; Žiarovská, J.; Benzová, L.; Urbanová, L.; Hovaňáková, L.; Chlebo, P.; Urminská, D. Analysis of Biochemical and Genetic Variability of Pleurotus ostreatus Based on the β-Glucans and CDDP Markers. J. Fungi 2022, 8, 563. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Wang, C.-Y.; Li, Y.-Q.; Liang, Y.; Guo, Z.-W.; Wang, Z.-Y.; Ren, X. Three-dimensional printing of dysphagia-friendly foods using Pleurotus ostreatus mycelium, xanthan gum, and egg white protein: Influence of mycelium concentration. J. Sci. Food Agric. 2025. [Google Scholar] [CrossRef]
- Aiduang, W.; Chanthaluck, A.; Kumla, J.; Jatuwong, K.; Srinuanpan, S.; Waroonkun, T.; Oranratmanee, R.; Lumyong, S.; Suwannarach, N. Amazing Fungi for Eco-Friendly Composite Materials: A Comprehensive Review. J. Fungi 2022, 8, 842. [Google Scholar] [CrossRef]
- Abdallah, Y.K.; Estévez, A.T. Biowelding 3D-Printed Biodigital Brick of Seashell-Based Biocomposite by Pleurotus ostreatus Mycelium. Biomimetics 2023, 8, 504. [Google Scholar] [CrossRef]
- Houette, T.; Maurer, C.; Niewiarowski, R.; Gruber, P. Growth and Mechanical Characterization of Mycelium-Based Composites towards Future Bioremediation and Food Production in the Material Manufacturing Cycle. Biomimetics 2022, 7, 103. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Bhuiyan, M.H.R.; Ngadi, M.O. Challenges and Prospects of Plant-Protein-Based 3D Printing. Foods 2023, 12, 4490. [Google Scholar] [CrossRef]
- Liu, R.; Hu, Q.; Ma, G.; Pei, F.; Zhao, L.; Ma, N.; Yang, F.; Liu, X.; Su, A. Pleurotus ostreatus Is a Promising Candidate of an Edible 3D Printing Ink: Investigation of Printability and Characterization. Curr. Res. Food Sci. 2024, 8, 100688. [Google Scholar] [CrossRef] [PubMed]
- Alemu, D.; Tafesse, M.; Gudetta Deressa, Y. Production of Mycoblock from the Mycelium of the Fungus Pleurotus ostreatus for Use as Sustainable Construction Materials. Adv. Mater. Sci. Eng. 2022, 2022, 2876643. [Google Scholar] [CrossRef]
- Meng, Q.; Niu, Y.; Wang, R.; Niu, W.; Zhang, L. Structural Characterization and Immunobiological Activity of Polysaccharides from Astragalus Oyster Mushroom. Molecules 2023, 28, 5280. [Google Scholar] [CrossRef]
- Synytsya, A.; Míčková, K.; Synytsya, A.; Jablonský, I.; Spěváček, J.; Erban, V.; Kováříková, E.; Čopíková, J. Glucans from Fruit Bodies of Cultivated Mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and Potential Prebiotic Activity. Carbohydr. Polym. 2009, 76, 548–556. [Google Scholar] [CrossRef]
- Liu, X.; Wang, R.; Bi, J.; Kang, L.; Zhou, J.; Duan, B.; Liu, Z.; Yuan, S. A Novel Endo-β-1,6-Glucanase from the Mushroom Coprinopsis Cinerea and Its Application in Studying of Cross-Linking of β-1,6-Glucan and the Wall Extensibility in Stipe Cell Walls. Int. J. Biol. Macromol. 2020, 160, 612–622. [Google Scholar] [CrossRef]
- Yulianto, W.; Malta, L.; Bulkaini, B.; Kisworo, D.; Haryanto, H.; Dewi Wulandani, B.R.; Fahrullah, F. Physical and Microbiology Characterization of Chicken Sausage That Added by Oyster Mushroom. J. Biol. Trop. 2024, 24, 59–65. [Google Scholar] [CrossRef]
- Kurt, A.; Gençcelep, H. Enrichment of Meat Emulsion with Mushroom (Agaricus bisporus) Powder: Impact on Rheological and Structural Characteristics. J. Food Eng. 2018, 237, 128–136. [Google Scholar] [CrossRef]
- Tu, J.; Brennan, M.; Brennan, C. An Insight into the Mechanism of Interactions between Mushroom Polysaccharides and Starch. Curr. Opin. Food Sci. 2021, 37, 17–25. [Google Scholar] [CrossRef]
- Jung, D.Y.; Lee, H.J.; Shin, D.-J.; Kim, C.H.; Jo, C. Mechanism of Improving Emulsion Stability of Emulsion-Type Sausage with Oyster Mushroom (Pleurotus ostreatus) Powder as a Phosphate Replacement. Meat Sci. 2022, 194, 108993. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.H.; Robert, S.D.; Wan Ahmad, W.A.N.; Wan Ishak, W.R. Incorporation of Dietary Fibre-Rich Oyster Mushroom (Pleurotus sajor-caju) Powder Improves Postprandial Glycaemic Response by Interfering with Starch Granule Structure and Starch Digestibility of Biscuit. Food Chem. 2017, 227, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, M.d.; Sujintonniti, N.; Chaum, P.; Ketnawa, S.; Rawdkuen, S. Developments of Plant-Based Emulsion-Type Sausage by Using Grey Oyster Mushrooms and Chickpeas. Foods 2023, 12, 1564. [Google Scholar] [CrossRef] [PubMed]
- Santhapur, R.; Jayakumar, D.; McClements, D. Development and Characterization of Hybrid Meat Analogs from Whey Protein-Mushroom Composite Hydrogels. Gels 2024, 10, 446. [Google Scholar] [CrossRef]
- Zhang, M.; Xue, J.; Zhang, R.; Zhang, W.; Peng, Y.; Wang, M.; Cao, J. Mycelium Composite with Hierarchical Porous Structure for Thermal Management. Small 2023, 19, 2302827. [Google Scholar] [CrossRef]
- Mohamad Mazlan, M.; Talib, R.A.; Chin, N.L.; Shukri, R.; Taip, F.S.; Mohd Nor, M.Z.; Abdullah, N. Physical and Microstructure Properties of Oyster Mushroom-Soy Protein Meat Analog via Single-Screw Extrusion. Foods 2020, 9, 1023. [Google Scholar] [CrossRef]
- Ogawa, Y.; Miyazawa, A.; Yamamoto, N.; Suzuki, A. Compression Properties of the Fruit Body of King Oyster Mushroom Pleurotus eryngii. Int. J. Food Sci. Technol. 2012, 47, 2487–2492. [Google Scholar] [CrossRef]
- Núñez-Ramírez, D.M.; Medina-Torres, L.; Valencia-López, J.J.; Calderas, F.; López Miranda, J.; Medrano-Roldán, H.; Solís-Soto, A. Study of the Rheological Properties of a Fermentation Broth of the Fungus Beauveria Bassiana in a Bioreactor under Different Hydrodynamic Conditions. J. Microbiol. Biotechnol. 2012, 22, 1494–1500. [Google Scholar] [CrossRef]
- Afzal, S.; Maswal, M.; Dar, A.A. Rheological Behavior of PH Responsive Composite Hydrogels of Chitosan and Alginate: Characterization and Its Use in Encapsulation of Citral. Colloids Surf. B Biointerfaces 2018, 169, 99–106. [Google Scholar] [CrossRef]
- Appels, F.V.W.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.M.B.; Dijksterhuis, J.; Krijgsheld, P.; Wösten, H.A.B. Fabrication Factors Influencing Mechanical, Moisture- and Water-Related Properties of Mycelium-Based Composites. Mater. Des. 2019, 161, 64–71. [Google Scholar] [CrossRef]
- Jongchansitto, P.; Preechawuttipong, I.; Balandraud, X.; Grédiac, M. Numerical Investigation of the Influence of Particle Size and Particle Number Ratios on Texture and Force Transmission in Binary Granular Composites. Powder Technol. 2017, 308, 324–333. [Google Scholar] [CrossRef]
- Tokarczyk, G.; Felisiak, K.; Adamska, I.; Przybylska, S.; Hrebień-Filisińska, A.; Biernacka, P.; Bienkiewicz, G.; Tabaszewska, M. Effect of Oyster Mushroom Addition on Improving the Sensory Properties, Nutritional Value and Increasing the Antioxidant Potential of Carp Meat Burgers. Molecules 2023, 28, 6975. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R.C. Mechanical Behavior of Mycelium-Based Particulate Composites. J. Mater. Sci. 2018, 53, 16371–16382. [Google Scholar] [CrossRef]
- Devi, P.V.; Islam, J.; Narzary, P.; Sharma, D.; Sultana, F. Bioactive Compounds, Nutraceutical Values and Its Application in Food Product Development of Oyster Mushroom. J. Future Foods 2024, 4, 335–342. [Google Scholar] [CrossRef]
- Aditya; Neeraj; Jarial, R.S.; Jarial, K.; Bhatia, J.N. Comprehensive Review on Oyster Mushroom Species (Agaricomycetes): Morphology, Nutrition, Cultivation and Future Aspects. Heliyon 2024, 10, e26539. [Google Scholar] [CrossRef] [PubMed]
- Teju, E.; Legesse, A.; Megersa, N. The Non-Edible and Disposable Parts of Oyster Mushroom, as Novel Adsorbent for Quantitative Removal of Atrazine and Its Degradation Products from Synthetic Wastewater. Heliyon 2024, 10, e26278. [Google Scholar] [CrossRef]
- Silva, V.; Silva, A.; Ribeiro, J.; Aires, A.; Carvalho, R.; Amaral, J.S.; Barros, L.; Igrejas, G.; Poeta, P. Screening of Chemical Composition, Antimicrobial and Antioxidant Activities in Pomegranate, Quince, and Persimmon Leaf, Peel, and Seed: Valorization of Autumn Fruits By-Products for a One Health Perspective. Antibiotics 2023, 12, 1086. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, X.; Cui, L.; Ma, C. Extraction and Bioactivities of the Chemical Composition from Pleurotus ostreatus: A Review. J. Future Foods 2024, 4, 111–118. [Google Scholar] [CrossRef]
- Silva, M.; Ramos, A.C.; Lidon, F.J.; Reboredo, F.H.; Gonçalves, E.M. Pre- and Postharvest Strategies for Pleurotus ostreatus Mushroom in a Circular Economy Approach. Foods 2024, 13, 1464. [Google Scholar] [CrossRef]
- Taneja, A.; Sharma, R.; Khetrapal, S.; Sharma, A.; Nagraik, R.; Venkidasamy, B.; Ghate, M.N.; Azizov, S.; Sharma, S.; Kumar, D. Value Addition Employing Waste Bio-Materials in Environmental Remedies and Food Sector. Metabolites 2023, 13, 624. [Google Scholar] [CrossRef]
- Kumar, C.; Singh, M.; Zalpouri, R.; Kaur, P. An In-Depth Analysis of Various Technologies Used for Mushroom Drying. Food Eng. Rev. 2023, 15, 491–524. [Google Scholar] [CrossRef]
- Liu, Z.; Xing, X.; Xu, D.; Chitrakar, B.; Hu, L.; Hati, S.; Mo, H.; Li, H. Correlating Rheology with 3D Printing Performance Based on Thermo-Responsive κ-Carrageenan/Pleurotus ostreatus Protein with Regard to Interaction Mechanism. Food Hydrocoll. 2022, 131, 107813. [Google Scholar] [CrossRef]
- Demircan, E.; Aydar, E.F.; Mertdinc, Z.; Kasapoglu, K.N.; Ozcelik, B. 3D Printable Vegan Plant-Based Meat Analogue: Fortification with Three Different Mushrooms, Investigation of Printability, and Characterization. Food Res. Int. 2023, 173, 113259. [Google Scholar] [CrossRef]
- Kumar, H.; Bhardwaj, K.; Sharma, R.; Nepovimova, E.; Cruz-Martins, N.; Dhanjal, D.S.; Singh, R.; Chopra, C.; Verma, R.; Abd-Elsalam, K.A.; et al. Potential Usage of Edible Mushrooms and Their Residues to Retrieve Valuable Supplies for Industrial Applications. J. Fungi 2021, 7, 427. [Google Scholar] [CrossRef] [PubMed]
- Godschalk-Broers, L.; Sala, G.; Scholten, E. Meat Analogues: Relating Structure to Texture and Sensory Perception. Foods 2022, 11, 2227. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, Y.; Guo, C.; Devahastin, S.; Hu, X.; Yi, J. Effect of Compositions and Physical Properties on 3D Printability of Gels from Selected Commercial Edible Insects: Role of Protein and Chitin. Food Chem. 2024, 433, 137349. [Google Scholar] [CrossRef]
- Bugday, Z.Y.; Venkatachalam, A.; Anderson, P.D.; van der Sman, R.G.M. Rheology of paste-like food inks for 3D printing: Effects of nutrient and water content. Curr. Res. Food Sci. 2024, 9, 100847. [Google Scholar] [CrossRef]
- Reche, C.; Umaña, M.; Dalmau, E.; Carcel, J.A.; Eim, V. Improving 3D Printed Food Characteristics by Using Mushroom By-Products and Olive Oil in the Formulation. LWT 2024, 202, 116238. [Google Scholar] [CrossRef]
- Boylu, M.; Hitka, G.; Kenesei, G. Sausage Quality during Storage under the Partial Substitution of Meat with Fermented Oyster Mushrooms. Foods 2024, 13, 2115. [Google Scholar] [CrossRef]
- Zhong, L.; Ma, N.; Wu, Y.; Zhao, L.; Ma, G.; Pei, F.; Hu, Q. Characterization and Functional Evaluation of Oat Protein Isolate-Pleurotus ostreatus β-Glucan Conjugates Formed via Maillard Reaction. Food Hydrocoll. 2019, 87, 459–469. [Google Scholar] [CrossRef]
- Starowicz, M.; Zieliński, H. How Maillard Reaction Influences Sensorial Properties (Color, Flavor and Texture) of Food Products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Joshi, K.; Meher, M.K.; Poluri, K.M. Fabrication and Characterization of Bioblocks from Agricultural Waste Using Fungal Mycelium for Renewable and Sustainable Applications. ACS Appl. Bio Mater. 2020, 3, 1884–1892. [Google Scholar] [CrossRef] [PubMed]
- Soh, E.; Teoh, J.H.; Leong, B.; Xing, T.; Le Ferrand, H. 3D Printing of Mycelium Engineered Living Materials Using a Waste-Based Ink and Non-Sterile Conditions. Mater. Des. 2023, 236, 112481. [Google Scholar] [CrossRef]
- Effiong, M.E.; Umeokwochi, C.P.; Afolabi, I.S.; Chinedu, S.N. Comparative Antioxidant Activity and Phytochemical Content of Five Extracts of Pleurotus ostreatus (Oyster Mushroom). Sci. Rep. 2024, 14, 3794. [Google Scholar] [CrossRef]
- Asensio-Grau, A.; Calvo-Lerma, J.; Heredia, A.; Andrés, A. Enhancing the Nutritional Profile and Digestibility of Lentil Flour by Solid State Fermentation with Pleurotus ostreatus. Food Funct. 2020, 11, 7905–7912. [Google Scholar] [CrossRef]
- Törős, G.; Prokisch, J.; Peles, F.; Nagy, R.; Nagy, J.; Béni, Á. The Effect of Sous-Vide Cooking on the Antioxidant Properties of Oyster Mushroom (Pleurotus ostreatus L.). Acta Agrar. Debreceniensis 2024, 1, 177–184. [Google Scholar] [CrossRef]
- Tiupova, A.; Olędzki, R.; Harasym, J. Physicochemical, Functional, and Antioxidative Characteristics of Oyster Mushrooms. Appl. Sci. 2025, 15, 1655. [Google Scholar] [CrossRef]
- Arunachalam, K.; Sreeja, P.S.; Yang, X. The Antioxidant Properties of Mushroom Polysaccharides Can Potentially Mitigate Oxidative Stress, Beta-Cell Dysfunction and Insulin Resistance. Front. Pharmacol. 2022, 13, 874474. [Google Scholar] [CrossRef]
- Patninan, K.; Sermwittayawong, D.; Nuinamwong, S.; Khimmaktong, W.; Noipha, K.; Hutadilok-Towatana, N. Purified Polysaccharides Extracted from Grey Oyster Mushroom [Pleurotus sajor-caju (Fr.) Sing.] Stimulate Glucose Uptake in C2C12 Myotubes through the Activation of AMP-Activated Protein Kinase (AMPK) and Glucose Transporter 1 (GLUT1) Proteins. Sains Malays. 2023, 52, 2815–2827. [Google Scholar] [CrossRef]
- Effiong, M.E.; Umeokwochi, C.P.; Afolabi, I.S.; Chinedu, S.N. Assessing the Nutritional Quality of Pleurotus ostreatus (Oyster Mushroom). Front. Nutr. 2024, 10, 1279208. [Google Scholar] [CrossRef]
- González, A.; Nobre, C.; Simões, L.S.; Cruz, M.; Loredo, A.; Rodríguez-Jasso, R.M.; Contreras, J.; Texeira, J.; Belmares, R. Evaluation of Functional and Nutritional Potential of a Protein Concentrate from Pleurotus ostreatus Mushroom. Food Chem. 2021, 346, 128884. [Google Scholar] [CrossRef] [PubMed]
- Lesa, K.N.; Khandaker, M.U.; Mohammad Rashed Iqbal, F.; Sharma, R.; Islam, F.; Mitra, S.; Emran, T.B. Nutritional Value, Medicinal Importance, and Health-Promoting Effects of Dietary Mushroom (Pleurotus ostreatus). J. Food Qual. 2022, 2022, 2454180. [Google Scholar] [CrossRef]
- Özünlü, O.; Ergezer, H. Possibilities of Using Dried Oyster Mushroom (Pleurotus ostreatus) in the Production of Beef Salami. J. Food Process Preserv. 2021, 45, e15117. [Google Scholar] [CrossRef]
- Espinosa-Páez, E.; Hernández-Luna, C.E.; Longoria-García, S.; Martínez-Silva, P.A.; Ortiz-Rodríguez, I.; Villarreal-Vera, M.T.; Cantú-Saldaña, C.M. Pleurotus ostreatus: A Potential Concurrent Biotransformation Agent/Ingredient on Development of Functional Foods (Cookies). LWT 2021, 148, 111727. [Google Scholar] [CrossRef]
- Lebeque, Y.; Morris, H.J.; Beltrán, Y.; Llaurado, G.; Gaime-Perraud, I.; Meneses, M.; Moukha, S.; Bermúdez, R.C.; Garcia, N. Proximal Composition, Nutraceutical Properties, and Acute Toxicity Study of Culinary-Medicinal Oyster Mushroom Powder, Pleurotus ostreatus (Agaricomycetes). Int. J. Med. Mushrooms 2018, 20, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Sales-Campos, C.; da Silva, J.F.; do Nascimento, L.B.d.B.; Gouvêa, P.R.d.S.; de Aguiar, L.V.B.; Fariña, J.I.; Pontes, G.S.; Chevreuil, L.R. Nutritional and Bioactive Properties of an Amazon Wild Oyster Culinary-Medicinal Mushroom, Pleurotus ostreatus (Agaricomycetes): Contributions to Functional Food and Human Health. Int. J. Med. Mushrooms 2021, 23, 79–90. [Google Scholar] [CrossRef]
- Royse, D.J.; Baars, J.; Tan, Q. Current Overview of Mushroom Production in the World. In Edible and Medicinal Mushrooms; Wiley: Hoboken, NJ, USA, 2017; pp. 5–13. [Google Scholar] [CrossRef]
- Calleja-Gómez, M.; Castagnini, J.M.; Carbó, E.; Ferrer, E.; Berrada, H.; Barba, F.J. Evaluation of Pulsed Electric Field-Assisted Extraction on the Microstructure and Recovery of Nutrients and Bioactive Compounds from Mushroom (Agaricus Bisporus). Separations 2022, 9, 302. [Google Scholar] [CrossRef]
- Yang, Z.; Xiong, Q.; Yin, T.; You, J.; Xiong, S.; Liu, R. Advancements in Emerging Non-Thermal Preservation Techniques for Aquatic Products: A Comprehensive Review of Mechanisms, Applications, and Future Directions. Innov. Food Sci. Emerg. Technol. 2025, 102, 103996. [Google Scholar] [CrossRef]
- Bohrer, B.M. An Investigation of the Formulation and Nutritional Composition of Modern Meat Analogue Products. Food Sci. Hum. Wellness 2019, 8, 320–329. [Google Scholar] [CrossRef]
- Cheung, P.C.K. The Nutritional and Health Benefits of Mushrooms. Nutr. Bull. 2010, 35, 292–299. [Google Scholar] [CrossRef]
- Morya, S.; Sandhu, D.; Thakur, A.; Neumann, A.; Awuchi, C.G. Entomophagy: Application of Edible Insects in 3D Printed Foods. In 3D Printing of Sustainable Insect Materials; Springer International Publishing: Cham, Switzerland, 2023; pp. 83–100. [Google Scholar] [CrossRef]
- Wang, J.; Hu, H.; Liu, Z.; Shi, Y.; Huang, Y. Optimization of 3D Printing Nozzle Parameters and the Optimal Combination of 3D Printer Process Parameters for Engineering Plastics with High Melting Points and Large Thermal Expansion Coefficients. Materials 2025, 18, 500. [Google Scholar] [CrossRef]
- Kedare, P.K.; Khan, S.A.; Kumar, H. 3D Printer Nozzle Design and Its Parameters: A Systematic Review; Springer: Singapore, 2020; pp. 777–785. [Google Scholar] [CrossRef]
- Tong, Q.; Meng, Y.; Tong, Y.; Wang, D.; Dong, X. The Effect of Nozzle Temperature on the Low-Temperature Printing Performance of Low-Viscosity Food Ink. Foods 2023, 12, 2666. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Lu, X.; Zheng, X.; Li, W.; Wang, L.; Qian, Y.; Zeng, M. Rheological and Physicochemical Properties of Spirulina Platensis Residues-Based Inks for Extrusion 3D Food Printing. Food Res. Int. 2023, 169, 112823. [Google Scholar] [CrossRef] [PubMed]
- Santhapur, R.; Jayakumar, D.; McClements, D.J. Formation and Characterization of Mycelium–Potato Protein Hybrid Materials for Application in Meat Analogs or Substitutes. Foods 2024, 13, 4109. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, S.; Qazanfarzadeh, Z.; Majzoobi, M.; Sheiband, S.; Oladzadabbasabad, N.; Esmaeili, Y.; Barrow, C.J.; Timms, W. Alternative Proteins; A Path to Sustainable Diets and Environment. Curr. Res. Food Sci. 2024, 9, 100882. [Google Scholar] [CrossRef]
Component | Structure | Functional Properties (Quantitative) | Contribution to 3D Printing | Ref. |
---|---|---|---|---|
Chitin | β-(1,4)-linked polymer of N-acetylglucosamine |
|
| [13,14,15] |
β-glucans | β-(1,3)- and β-(1,6)-D-glucans |
|
| [16,17] |
Mannogalactans | Complex polysaccharides |
|
| [12,18] |
Proteins | Various |
|
| [12,18] |
Composition | Printing Parameters | Printed Product/Observations | Ref. |
---|---|---|---|
P. ostreatus hydrogel + CMC + agar + starch | Extrusion mode: Syringe Nozzle: Not specified Temperature: Room temperature Pressure/Speed: Not reported Layer height: Not reported | Printable mycelium-rich food-grade hydrogel; stable form; biocompatible and edible; no sterile environment required | [58] |
P. ostreatus paste (rheology-focused) | Extrusion mode: Pneumatic Nozzle/Pressure/Speed: Not reported Rheology: Studied; flow affected by nutrient–water ratio | Rheology-adjusted oyster mushroom pastes printable with decent structural fidelity; good shape retention at optimized moisture content | [59] |
P. eryngii protein paste (20% solids) | Extrusion mode: Syringe Nozzle/Speed/Pressure: Not reported Temperature: Room temp | Good extrudability and shape retention at 20% PEP; formulation suitable for baked snack applications | [38] |
Button mushroom powder + wheat flour (snack) | Nozzle: Ø 1.28 mm Printing speed: 800 mm/min Pressure: 4 bar Post-processing: microwave (800 W, 10 min) | Accurate constructs (~78% fidelity); 5.4% shrinkage after cooking; savory version rated best in sensory analysis | [10] |
Mushroom by-product flour + potato flour + olive oil | Formulation: 2–6% mushroom flour, 5% olive oil, and 8–14% solids Extrusion type: Syringe (assumed) Nozzle/Speed/Pressure: Not reported | Mushroom flour reduced viscosity, olive oil increased it; high solid inks (14%) gave best shape and extrusion consistency | [60] |
Macronutrient | Content (Per 100 g dw) | Nutritional Significance | Ref. |
---|---|---|---|
Carbohydrates | 43.42 | Primary energy component | [68,71] |
Crude Fiber | 23.63 | Contributes to digestive health | [68,71] |
Protein | 17.06 | Complete amino acid profile that meets adult requirements | [68,71] |
Ash Content | 8.22 | Indicates rich mineral presence | [68,71] |
Lipids | 1.21 | Aligns with low-fat dietary recommendations | [68,71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiupova, A.; Harasym, J. Structure-Forming Properties of Pleurotus ostreatus: A Promising Resource for Edible 3D Printing Applications. Molecules 2025, 30, 3350. https://doi.org/10.3390/molecules30163350
Tiupova A, Harasym J. Structure-Forming Properties of Pleurotus ostreatus: A Promising Resource for Edible 3D Printing Applications. Molecules. 2025; 30(16):3350. https://doi.org/10.3390/molecules30163350
Chicago/Turabian StyleTiupova, Alona, and Joanna Harasym. 2025. "Structure-Forming Properties of Pleurotus ostreatus: A Promising Resource for Edible 3D Printing Applications" Molecules 30, no. 16: 3350. https://doi.org/10.3390/molecules30163350
APA StyleTiupova, A., & Harasym, J. (2025). Structure-Forming Properties of Pleurotus ostreatus: A Promising Resource for Edible 3D Printing Applications. Molecules, 30(16), 3350. https://doi.org/10.3390/molecules30163350