Ligands of Biological and Environmental Interest as Sequestering Agents for Fe3+ in Aqueous Solution: A Speciation Study of Natural Fluids
Abstract
1. Introduction
2. Results and Discussion
2.1. Hydrolytic Behavior of Iron(III)
2.2. Tranexamic Acid
2.3. Indol-3-Acetic Acid
2.4. Aminomethylphosphonic Acid
2.5. Stability Constants at Infinite Dilution and Parameters for the Dependence on Ionic Strength
2.6. Sequestering Ability of the Ligands Towards Fe3+
2.7. Simulations in Natural Waters and Biological Fluids
3. Materials and Methods
3.1. Chemicals
3.2. Potentiometric Equipment and Procedure
3.3. Spectrophotometric Apparatus and Procedure
3.4. Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adeloju, S. Voltammetry-Inorganic Compounds. In The Encyclopedia of Analytical Science, 2nd ed.; Elsevier: Oxford, UK, 2005; pp. 212–217. [Google Scholar]
- Arenas-Lago, D.; Rodríguez-Seijo, A.; Couce, L.A.; Vega, F.A. A Multianalytical Approach for the Assessment of Toxic Element Distribution in Soils from Mine and Quarry Areas. In Assessment, Restoration and Reclamation of Mining Influenced Soils, 1st ed.; Janco C. Inc.: Mumbai, India, 2017. [Google Scholar]
- Ashiq, A.; Kulkarni, J.; Vithanage, M. Chapter 10-Hydrometallurgical Recovery of Metals from E-waste. In Electronic Waste Management and Treatment Technology, 1st ed.; Prasad, M.N.V., Vithanage, M., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 225–246. [Google Scholar]
- Meers, E.; Du Laing, G.; Unamuno, V.; Ruttens, A.; Vangronsveld, J.; Tack, F.; Verloo, M. Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma 2007, 141, 247–259. [Google Scholar] [CrossRef]
- Dunn, C.J.; Goa, K.L. Tranexamic acid: A review of its use in surgery and other indications. Drugs 1999, 57, 1005–1032. [Google Scholar] [CrossRef]
- Reed, M.R.; Woolley, L.T. Uses of tranexamic acid. Contin. Educ. Anaesth. Crit. Care Pain 2015, 15, 32–37. [Google Scholar] [CrossRef]
- Relke, N.; Chornenki, N.L.J.; Sholzberg, M. Tranexamic acid evidence and controversies: An illustrated review. Res. Pract. Thromb. Haemost. 2021, 5, e12546. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ding, B.; Li, R.; Chen, X.; Yin, D.; Song, M.; Ye, X. The efficient capture of polysaccharides in Tetradesmus obliquus of indole-3-acetic acid coupling sludge extraction. Sci. Total. Environ. 2023, 912, 168963. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Kong, L.; Feng, Y.; Zheng, R.; Zhou, J.; Sun, J.; Liu, S. Communication mediated interaction between bacteria and micro-algae advances photogranulation. Sci. Total. Environ. 2024, 914, 169975. [Google Scholar] [CrossRef]
- Shi, T.; Lure, M.; Zhang, R.; Liu, Z.; Hu, Q.; Liu, J.; Yang, S.; Jing, L. Indole-3-acetic acid improves periphyton’s resistance to ultra-violet-B: From physiological-biochemical properties and bacteria community to livestock-polluted water purification. Environ. Res. 2024, 246, 118029. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Q.; Zhang, S.; Hamid, Y.; Lian, J.; Huang, X.; Zou, T.; Lin, Q.; Feng, Y.; He, Z.; et al. Foliar application of plant growth regulators for enhancing heavy metal phytoextraction efficiency by Sedum alfredii Hance in contaminated soils: Lab to field experiments. Sci. Total. Environ. 2024, 913, 169788. [Google Scholar] [CrossRef]
- Pesticide Residues in Food, 1st ed.; FAO and WHO: Lion, France, 1997.
- Qu, M.; Wang, L.; Xu, Q.; An, J.; Mei, Y.; Liu, G. Influence of glyphosate and its metabolite aminomethylphosphonic acid on aquatic plants in different ecological niches. Ecotoxicol. Environ. Saf. 2022, 246, 114155. [Google Scholar] [CrossRef]
- Bai, S.H.; Ogbourne, S.M. Glyphosate: Environmental contamination, toxicity and potential risks to human health via food con-tamination. Environ. Sci. Pollut. Res. 2016, 23, 18988–19001. [Google Scholar] [CrossRef]
- Delgado, R.; do Carmo Figueira, M.; Quintino, S. Redox method for the determination of stability constants of some trivalent metal complexes. Talanta 1997, 45, 451–462. [Google Scholar] [CrossRef]
- Roverso, M.; Di Marco, V.; Favaro, G.; Di Gangi, I.M.; Badocco, D.; Zerlottin, M.; Refosco, D.; Tapparo, A.; Bogialli, S.; Pastore, P. New insights in the slow ligand exchange reaction between Cr(III)-EDTA and Fe(III), and direct analysis of free and complexed EDTA in tannery wastewaters by liquid chromatography-Tandem mass spectrometry. Chemosphere 2020, 264, 128487. [Google Scholar] [CrossRef]
- Wu, J.; Luther, G.W., III. Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Mar. Chem. 1995, 50, 159–177. [Google Scholar] [CrossRef]
- Irto, A.; Cigala, R.M.; De Stefano, C.; Crea, F. Advances in iron(III) hydrolysis studies. Effect of the metal concentration, ionic medium and ionic strength. J. Mol. Liq. 2023, 391, 123361. [Google Scholar] [CrossRef]
- Brown, P.L.; Ekberg, C. Hydrolysis of Metal Ions; Wiley-VCH Verlag GmbH &, Co. KGaA: Weinheim, Germany, 2016. [Google Scholar]
- De Stefano, C.; Sammartano, S.; Mineo, P.; Rigano, C. Computer Tools for the Speciation of Natural Fluids. In Marine Chemistry-An Environmental Analytical Chemistry Approach; Gianguzza, A., Pelizzetti, E., Sammartano, S., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1997; pp. 71–83. [Google Scholar]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPER-QUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef] [PubMed]
- Recaldin, D.A.; Heath, O.V.S. Chelation or Complex-formation by Indoleacetic Acid in vitro. Nature 1958, 182, 539–540. [Google Scholar] [CrossRef]
- Cigala, R.M.; De Stefano, C.; Irto, A.; Lanzafame, P.; Papanikolaou, G.; Crea, F. Environmental behaviour of a pesticide metabo-lite, the AMPA. Sequestration of Ca2+, Mg2+, Cu2+, Zn2+ and Al3+. Chemosphere 2022, 306, 135535. [Google Scholar] [CrossRef]
- Song, B.; Chen, D.; Bastian, M.; Sigel, H.; Martin, R.B. Metal-Ion-Coordinating Properties of a Viral Inhibitor, a pyrophosphate analogue, and a herbicide metabolite, a glycinate analogue: The solution properties of the potentially five-membered chelates derived from phosphonoformic acid and (aminomethyl)phosphonic acid. Helvetica Chim. Acta 1994, 77, 1738–1756. [Google Scholar] [CrossRef]
- Barja, B.C.; Herszage, J.; dos Santos Afonso, M. Iron(III)–phosphonate complexes. Polyhedron 2001, 20, 1821–1830. [Google Scholar] [CrossRef]
- May, E.F.; May, P.M.; Murray, K.; Darren, R. Joint Expert Speciation System; JESS Primer. 2019. Available online: http://jess.murdoch.edu.au/jess_onjess.shtml (accessed on 18 June 2025).
- Crea, F.; De Stefano, C.; Foti, C.; Milea, D.; Sammartano, S. Chelating Agents for the Sequestration of Mercury(II) and Monomethyl Mercury(II). Curr. Med. Chem. 2014, 21, 3819–3836. [Google Scholar] [CrossRef]
- Golterman, H.L. Chemical composition of freshwater. In The Chemistry of Phosphate and Nitrogen Compounds in Sediments; Springer: Dordrecht, The Netherlands, 2004; pp. 25–50. [Google Scholar]
- Sarigul, N.; Korkmaz, F.; Kurultak, I. A New Artificial Urine Protocol to Better Imitate Human Urine. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Crea, F.; De Stefano, C.; Milea, D.; Pettignano, A.; Sammartano, S. SALMO and S3M: A Saliva Model and a Single Saliva Salt Model for Equilibrium Studies. Bioinorg. Chem. Appl. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lentner, C. Geigy Scientific Tables, Volume 1: Units of Measurement Body Fluids, Composition of the Body, and Nutrition; Ciba Pharmaceutical Co.: West Caldwell, NJ, USA, 1981. [Google Scholar]
- Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolution Technol. 2011, 18, 15–28. [Google Scholar] [CrossRef]
- Flaschka, H.A. EDTA Titration; Pergamon Press: London, UK, 1959. [Google Scholar]
- Flaschka, H.A.; Naiman, B. EDTA Titrations; An Introduction to Theory and Practice. J. Electrochem. Soc. 1959, 106, 226C. [Google Scholar] [CrossRef]
- Weast, R.C.J.C.-P. Handbook of Chemistry and Physics: 1st Student Edition; CRC Press: Boca Raton, FL, USA, 1988. [Google Scholar]
- Brönsted, J.N. Studies on solubility. IV. The principle of the specific interaction of ions. J. Am. Chem. Soc. 1922, 44, 877–898. [Google Scholar] [CrossRef]
- Guggenheim, E.A.; Turgeon, J.C. Specific interaction of ions. Trans. Faraday Soc. 1955, 51, 747–761. [Google Scholar] [CrossRef]
- Ciavatta, L. The specific interaction theory in evaluating ionic equilibria. Ann. Chim. 1980, 70, 551. [Google Scholar]
- Alderighi, L.; Gans, P.; Ienco, A.; Peters, D.; Sabatini, A.; Vacca, A. Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Co-Ord. Chem. Rev. 1999, 184, 311–318. [Google Scholar] [CrossRef]
Ī (b)/mol dm−3 | ||||
---|---|---|---|---|
Species | 0.150 | 0.481 | 0.720 | 0.953 |
NaNO3(aq) | ||||
Fe(TXA)H3+ | 14.84 ± 0.01 (c) | 15.00 ± 0.01 | 15.36 ± 0.01 | 15.90 ± 0.04 |
Fe(TXA)2+ | 22.15 ± 0.03 | 22.46 ± 0.03 | 23.07 ± 0.02 | 23.18 ± 0.05 |
Fe(TXA)(OH)+ | 8.99 ± 0.02 | 8.82 ± 0.03 | 9.03 ± 0.04 | 9.88 ± 0.04 |
Fe(TXA)(OH)2(aq) | 5.05 ± 0.02 | 5.04 ± 0.02 | 5.28 ± 0.02 | 6.30 ± 0.04 |
0.010 | 0.144 | 0.501 | 0.998 | |
NaCl(aq) | ||||
Fe(IAA)2+ | 6.52 ± 0.01 (c) | 6.47 ± 0.04 | 6.30 ± 0.01 | 6.54 ± 0.06 |
0.105 | 0.486 | 0.949 | ||
NaCl(aq) | ||||
Fe(AMPA)H23+ | 24.30 ± 0.04 (c) | 24.59 ± 0.04 | 22.79 ± 0.05 | |
Fe(AMPA)H2+ | 21.08 ± 0.04 | 21.36 ± 0.01 | 19.30 ± 0.05 | |
Fe(AMPA)+ | 15.07 ± 0.03 | 15.88 ± 0.04 | 13.49 ± 0.06 |
Species | C (a) | Δε (a) | logβ0 (b) | logβ (b) | |||
---|---|---|---|---|---|---|---|
I/mol dm−3 | |||||||
0 | 0.15 | 0.50 | 0.75 | 1.00 | |||
Fe(TXA)H3+ (c) | 0.80 ± 0.04 (d) | 1.15 ± 0.13 (d) | 14.94 ± 0.02 (d) | 14.81 | 14.99 | 15.15 | 15.33 |
Fe(TXA)2+ | 2.24 ± 0.08 | 2.44 ± 0.11 | 22.98 ± 0.05 | 22.07 | 22.35 | 22.74 | 23.18 |
Fe(TXA)(OH)+ | 1.24 ± 0.08 | 1.59 ± 0.18 | 9.64 ± 0.04 | 8.82 | 8.86 | 9.03 | 9.24 |
Fe(TXA)(OH)20 (aq) | 2.21 ± 0.07 | 2.29 ± 0.17 | 5.43 ± 0.04 | 4.76 | 5.13 | 5.55 | 6.01 |
Fe(IAA)2+ | 0.84 ± 0.07 | 0.82 ± 0.07 | 6.92 ± 0.04 | 6.30 | 6.30 | 6.41 | 6.55 |
Fe(AMPA)H23+ | −0.336 ± 0.006 | −0.36 ± 0.01 | 26.17 ± 0.02 | 25.37 | 24.95 | 24.76 | 24.61 |
Fe(AMPA)H2+ | −0.17 ± 0.02 | −0.18 ± 0.04 | 20.35 ± 0.05 | 19.08 | 18.52 | 18.30 | 18.14 |
Fe(AMPA)+ | −0.022 ± 0.007 | −0.026 ± 0.008 | 17.31 ± 0.05 | 15.81 | 15.20 | 14.99 | 14.84 |
Chemical | CAS n° | Purification | Assay (% wt.) |
---|---|---|---|
Hydrochloric acid | 7647-01-0 | No | 37% |
Sodium hydroxide | 1310-73-2 | No | ≥97% |
Sodium carbonate | 497-19-8 | No | ≥99.5% |
Potassium phthalate monobasic | 877-24-7 | No | ≥99.5% |
Sodium nitrate | 7631-99-4 | No | ≥99.0% |
Sodium chloride | 7647-14-5 | No | ≥99% |
Iron(III) nitrate nonahydrate | 7782-61-8 | No | ≥98% |
Iron(III) chloride hexahydrate | 10025-77-1 | No | ≥98% |
Tranexamic acid | 1197-18-8 | No | >99.5% |
Indole-3-acetic acid | 87-51-4 | No | >99.5% |
Aminomethylphosphonic acid | 1066-51-9 | No | >99.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irto, A.; Ielo, I.; Bretti, C.; Crea, F.; De Stefano, C.; Cigala, R.M. Ligands of Biological and Environmental Interest as Sequestering Agents for Fe3+ in Aqueous Solution: A Speciation Study of Natural Fluids. Molecules 2025, 30, 2991. https://doi.org/10.3390/molecules30142991
Irto A, Ielo I, Bretti C, Crea F, De Stefano C, Cigala RM. Ligands of Biological and Environmental Interest as Sequestering Agents for Fe3+ in Aqueous Solution: A Speciation Study of Natural Fluids. Molecules. 2025; 30(14):2991. https://doi.org/10.3390/molecules30142991
Chicago/Turabian StyleIrto, Anna, Ileana Ielo, Clemente Bretti, Francesco Crea, Concetta De Stefano, and Rosalia Maria Cigala. 2025. "Ligands of Biological and Environmental Interest as Sequestering Agents for Fe3+ in Aqueous Solution: A Speciation Study of Natural Fluids" Molecules 30, no. 14: 2991. https://doi.org/10.3390/molecules30142991
APA StyleIrto, A., Ielo, I., Bretti, C., Crea, F., De Stefano, C., & Cigala, R. M. (2025). Ligands of Biological and Environmental Interest as Sequestering Agents for Fe3+ in Aqueous Solution: A Speciation Study of Natural Fluids. Molecules, 30(14), 2991. https://doi.org/10.3390/molecules30142991