Optimization of a Natural-Deep-Eutectic-Solvent-Based Dispersive Liquid–Liquid Microextraction Method for the Multi-Target Determination of Emerging Contaminants in Wastewater
Abstract
1. Introduction
2. Results
2.1. Evaluation and Selection of the NADES Extractant Phase
2.2. Multivariate Optimization of the NADES-DLLME Conditions
2.3. Calibration and Analytical Figures of Merit
2.4. Evaluation of the Sustainability, Practicality, and Applicability of the Method
2.5. Application and Validation
3. Materials and Methods
3.1. Reagents and Standard Solutions
3.2. NADES Preparation
3.3. Instrumentation
3.4. Samples and Microextraction Procedure
3.5. UHPLC-QTOF-MS Measurement Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, Y.; Wang, Z.; Yao, B.; Zhou, Y. Occurrence, Bioaccumulation, Fate, and Risk Assessment of Emerging Pollutants in Aquatic Environments: A Review. Sci. Total Environ. 2024, 923, 171388. [Google Scholar] [CrossRef] [PubMed]
- Marumure, J.; Simbanegavi, T.T.; Makuvara, Z.; Karidzagundi, R.; Alufasi, R.; Goredema, M.; Gufe, C.; Chaukura, N.; Halabowski, D.; Gwenzi, W. Emerging Organic Contaminants in Drinking Water Systems: Human Intake, Emerging Health Risks, and Future Research Directions. Chemosphere 2024, 356, 141699. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive Review of Emerging Contaminants: Detection Technologies, Environmental Impact, and Management Strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D.; Ternes, T.A. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2022, 94, 382–416. [Google Scholar] [CrossRef] [PubMed]
- Tijani, J.O.; Fatoba, O.O.; Babajide, O.O.; Petrik, L.F. Pharmaceuticals, Endocrine Disruptors, Personal Care Products, Nanomaterials and Perfluorinated Pollutants: A Review. Environ. Chem. Lett. 2016, 14, 27–49. [Google Scholar] [CrossRef]
- Khan, N.A.; López-Maldonado, E.A.; Majumder, A.; Singh, S.; Varshney, R.; López, J.R.; Méndez, P.F.; Ramamurthy, P.C.; Khan, M.A.; Khan, A.H.; et al. A State-of-Art-Review on Emerging Contaminants: Environmental Chemistry, Health Effect, and Modern Treatment Methods. Chemosphere 2023, 344, 140264. [Google Scholar] [CrossRef] [PubMed]
- Al-Farsi, R.S.; Ahmed, M.; Al-Busaidi, A.; Choudri, B.S. Translocation of Pharmaceuticals and Personal Care Products (PPCPs) into Plant Tissues: A Review. Emerg. Contam. 2017, 3, 132–137. [Google Scholar] [CrossRef]
- Shyamalagowri, S.; Shanthi, N.; Manjunathan, J.; Kamaraj, M.; Manikandan, A.; Aravind, J. Techniques for the Detection and Quantification of Emerging Contaminants. Phys. Sci. Rev. 2023, 8, 2191–2218. [Google Scholar] [CrossRef]
- Zhao, M.; Yan, S.; Zhang, Y.; Song, Y.; Chan, S.-A.; Song, W. Simultaneous and Rapid Analysis of Multiclass Emerging Contaminants Using a Column-Switching LC-MS Method. Environ. Sci. Technol. Lett. 2024, 11, 1391–1397. [Google Scholar] [CrossRef]
- Egli, M.; Hartmann, A.; Rapp Wright, H.; Ng, K.T.; Piel, F.B.; Barron, L.P. Quantitative Determination and Environmental Risk Assessment of 102 Chemicals of Emerging Concern in Wastewater-Impacted Rivers Using Rapid Direct-Injection Liquid Chromatography—Tandem Mass Spectrometry. Molecules 2021, 26, 5431. [Google Scholar] [CrossRef] [PubMed]
- Volpatto, F.; Vitali, L. Development of a New Method Using Dispersive Liquid–Liquid Microextraction with Hydrophobic Natural Deep Eutectic Solvent for the Analysis of Multiclass Emerging Contaminants in Surface Water by Liquid Chromatography-Mass Spectrometry. Anal. Methods 2025, 17, 1032–1046. [Google Scholar] [CrossRef] [PubMed]
- Arismendi, D.; Becerra-Herrera, M.; Cerrato, I.; Richter, P. Simultaneous Determination of Multiresidue and Multiclass Emerging Contaminants in Waters by Rotating-Disk Sorptive Extraction–Derivatization-Gas Chromatography/Mass Spectrometry. Talanta 2019, 201, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Gago-Ferrero, P.; Bletsou, A.A.; Damalas, D.E.; Aalizadeh, R.; Alygizakis, N.A.; Singer, H.P.; Hollender, J.; Thomaidis, N.S. Wide-Scope Target Screening of >2000 Emerging Contaminants in Wastewater Samples with UPLC-Q-ToF-HRMS/MS and Smart Evaluation of Its Performance through the Validation of 195 Selected Representative Analytes. J. Hazard. Mater. 2020, 387, 121712. [Google Scholar] [CrossRef] [PubMed]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A Review of the Modern Principles and Applications of Solid-Phase Extraction Techniques in Chromatographic Analysis. Anal. Sci. 2022, 38, 1457–1487. [Google Scholar] [CrossRef] [PubMed]
- Arvaniti, O.S.; Arvaniti, E.S.; Gyparakis, S.; Sabathianakis, I.; Karagiannis, E.; Pettas, E.; Gkotsis, G.; Nika, M.C.; Thomaidis, N.S.; Manios, T.; et al. Occurrence of Pharmaceuticals in the Wastewater of a Greek Hospital: Combining Consumption Data Collection and LC-QTOF-MS Analysis. Sci. Total Environ. 2023, 858, 160153. [Google Scholar] [CrossRef] [PubMed]
- Arvaniti, O.S.; Gkotsis, G.; Nika, M.-C.; Gyparakis, S.; Manios, T.; Thomaidis, N.S.; Fountoulakis, M.S.; Stasinakis, A.S. Study on the Occurrence of Artificial Sweeteners, Parabens, and Other Emerging Contaminants in Hospital Wastewater Using LC-QToF-MS Target Screening Approach. Water 2023, 15, 936. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the SIGNIFICANCE Mnemonic of Green Analytical Practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- López-Lorente, Á.I.; Pena-Pereira, F.; Pedersen-Bjergaard, S.; Zuin, V.G.; Ozkan, S.A.; Psillakis, E. The Ten Principles of Green Sample Preparation. TrAC Trends Anal. Chem. 2022, 148, 116530. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Bendicho, C.; Pavlović, D.M.; Martín-Esteban, A.; Díaz-Álvarez, M.; Pan, Y.; Cooper, J.; Yang, Z.; Safarik, I.; Pospiskova, K.; et al. Miniaturized Analytical Methods for Determination of Environmental Contaminants of Emerging Concern—A Review. Anal. Chim. Acta 2021, 1158, 238108. [Google Scholar] [CrossRef] [PubMed]
- Kokosa, J.M.; Przyjazny, A. Green Microextraction Methodologies for Sample Preparations. Green Anal. Chem. 2022, 3, 100023. [Google Scholar] [CrossRef]
- Notardonato, I.; Avino, P. Dispersive Liquid–Liquid Micro Extraction: An Analytical Technique Undergoing Continuous Evolution and Development—A Review of the Last 5 Years. Separations 2024, 11, 203. [Google Scholar] [CrossRef]
- Sajid, M. Dispersive Liquid-Liquid Microextraction: Evolution in Design, Application Areas, and Green Aspects. TrAC Trends Anal. Chem. 2022, 152, 116636. [Google Scholar] [CrossRef]
- Armenta, S.; Esteve-Turrillas, F.A.; Garrigues, S.; de la Guardia, M. Alternative Green Solvents in Sample Preparation. Green Anal. Chem. 2022, 1, 100007. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Kloskowski, A.; Namieśnik, J. Perspectives on the Replacement of Harmful Organic Solvents in Analytical Methodologies: A Framework toward the Implementation of a Generation of Eco-Friendly Alternatives. Green Chem. 2015, 17, 3687–3705. [Google Scholar] [CrossRef]
- Bragagnolo, F.S.; Strieder, M.M.; Pizani, R.S.; de Souza Mesquita, L.M.; González-Miquel, M.; Rostagno, M.A. Revisiting Natural Deep Eutectic Solvents (NADES) as Extraction Media and Ready-to-Use Purposes. TrAC Trends Anal. Chem. 2024, 175, 117726. [Google Scholar] [CrossRef]
- van Osch, D.J.G.P.; Dietz, C.H.J.T.; van Spronsen, J.; Kroon, M.C.; Gallucci, F.; van Sint Annaland, M.; Tuinier, R. A Search for Natural Hydrophobic Deep Eutectic Solvents Based on Natural Components. ACS Sustain. Chem. Eng. 2019, 7, 2933–2942. [Google Scholar] [CrossRef]
- Yang, Z. Toxicity and Biodegradability of Deep Eutectic Solvents and Natural Deep Eutectic Solvents. In Deep Eutectic Solvents; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 43–60. ISBN 978-3-527-81848-8. [Google Scholar]
- Martins, M.A.R.; Crespo, E.A.; Pontes, P.V.A.; Silva, L.P.; Bülow, M.; Maximo, G.J.; Batista, E.A.C.; Held, C.; Pinho, S.P.; Coutinho, J.A.P. Tunable Hydrophobic Eutectic Solvents Based on Terpenes and Monocarboxylic Acids. ACS Sustain. Chem. Eng. 2018, 6, 8836–8846. [Google Scholar] [CrossRef]
- Plastiras, O.-E.; Samanidou, V. Applications of Deep Eutectic Solvents in Sample Preparation and Extraction of Organic Molecules. Molecules 2022, 27, 7699. [Google Scholar] [CrossRef] [PubMed]
- Schincaglia, A.; Cavazzini, A.; Pasti, L.; Purcaro, G.; Beccaria, M. Eutectic Solvent Mixtures in Environmental Contaminants Analysis: A Review on Current Trends and Future Perspectives. Green Anal. Chem. 2025, 12, 100220. [Google Scholar] [CrossRef]
- Andruch, V.; Vojteková, V.; Kalyniukova, A.; Zengin, G.; Hagarová, I.; Yordanova, T. Application of Deep Eutectic Solvents for the Determination of Inorganic Analytes. Adv. Sample Prep. 2025, 13, 100158. [Google Scholar] [CrossRef]
- Marchel, M.; Rayaroth, M.P.; Wang, C.; Kong, L.; Khan, J.A.; Boczkaj, G. Hydrophobic (Deep) Eutectic Solvents (HDESs) as Extractants for Removal of Pollutants from Water and Wastewater—A Review. Chem. Eng. J. 2023, 475, 144971. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, X.; Gu, H.; Gao, M. Morphological Transformation Assisted Switchable Deep Eutectic Solvents Combined with HPLC-DAD for the Detection of Six UV-Filters in Surface and Bathing Waters. Microchem. J. 2021, 169, 106626. [Google Scholar] [CrossRef]
- Cao, J.; Liu, Y.; Zhao, F. Novel Tributyl Phosphate-Based Hydrophobic Deep Eutectic Solvent: Application in Simultaneous Liquid–Liquid Microextraction of Parabens and Their Metabolite in Surface Water Samples. Green Chem. 2022, 24, 8005–8013. [Google Scholar] [CrossRef]
- Ao, Y.-T.; Chen, Y.-C.; Ding, W.-H. Deep Eutectic Solvent-Based Ultrasound-Assisted Emulsification Microextraction for the Rapid Determination of Benzotriazole and Benzothiazole Derivatives in Surface Water Samples. J. Hazard. Mater. 2021, 401, 123383. [Google Scholar] [CrossRef] [PubMed]
- Deepika; Juneja, S.; Pandey, S. Water Miscibility, Surface Tension, Density, and Dynamic Viscosity of Hydrophobic Deep Eutectic Solvents Composed of Capric Acid, Menthol, and Thymol. J. Chem. Eng. Data 2022, 67, 3400–3413. [Google Scholar] [CrossRef]
- Florindo, C.; Romero, L.; Rintoul, I.; Branco, L.C.; Marrucho, I.M. From Phase Change Materials to Green Solvents: Hydrophobic Low Viscous Fatty Acid–Based Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2018, 6, 3888–3895. [Google Scholar] [CrossRef]
- Cherniakova, M.; Varchenko, V.; Belikov, K. Menthol-Based (Deep) Eutectic Solvents: A Review on Properties and Application in Extraction. Chem. Rec. 2024, 24, e202300267. [Google Scholar] [CrossRef] [PubMed]
- Yue, G.-L.; Chang, Y.-H.; Yu, L.; Xu, J.; Wan, N.; Duan, C.-J.; Zhang, Y.; Fu, Y.-J. Extraction and Separation Characteristic Stilbene Compounds from Pigeon Pea Leaves Using V-Type Thymol-Based Natural Deep Eutectic Solvent Systems. Chem. Eng. Res. Des. 2023, 193, 600–612. [Google Scholar] [CrossRef]
- Mostafa, A.; Shaaban, H.; Alqarni, A.M.; Alghamdi, M.; Alsultan, S.; Saleh Al-Saeed, J.; Alsaba, S.; AlMoslem, A.; Alshehry, Y.; Ahmad, R. Vortex-Assisted Dispersive Liquid–Liquid Microextraction Using Thymol Based Natural Deep Eutectic Solvent for Trace Analysis of Sulfonamides in Water Samples: Assessment of the Greenness Profile Using AGREE Metric, GAPI and Analytical Eco-Scale. Microchem. J. 2022, 183, 107976. [Google Scholar] [CrossRef]
- Abranches, D.O.; Martins, M.A.R.; Silva, L.P.; Schaeffer, N.; Pinho, S.P.; Coutinho, J.A.P. Phenolic Hydrogen Bond Donors in the Formation of Non-Ionic Deep Eutectic Solvents: The Quest for Type V DES. Chem. Commun. 2019, 55, 10253–10256. [Google Scholar] [CrossRef] [PubMed]
- Bergua, F.; Castro, M.; Lafuente, C.; Artal, M. Thymol+l-Menthol Eutectic Mixtures: Thermophysical Properties and Possible Applications as Decontaminants. J. Mol. Liq. 2022, 368, 120789. [Google Scholar] [CrossRef]
- Yin, L.; Yu, L.; Guo, Y.; Wang, C.; Ge, Y.; Zheng, X.; Zhang, N.; You, J.; Zhang, Y.; Shi, M. Green Analytical Chemistry Metrics for Evaluating the Greenness of Analytical Procedures. J. Pharm. Anal. 2024, 14, 101013. [Google Scholar] [CrossRef] [PubMed]
- Nowak, P.M.; Wietecha-Posłuszny, R.; Płotka-Wasylka, J.; Tobiszewski, M. How to Evaluate Methods Used in Chemical Laboratories in Terms of the Total Chemical Risk?—A ChlorTox Scale. Green Anal. Chem. 2023, 5, 100056. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Tobiszewski, M.; Wojnowski, W.; Psillakis, E. A Tutorial on AGREEprep an Analytical Greenness Metric for Sample Preparation. Adv. Sample Prep. 2022, 3, 100025. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
- Manousi, N.; Wojnowski, W.; Płotka-Wasylka, J.; Samanidou, V. Blue Applicability Grade Index (BAGI) and Software: A New Tool for the Evaluation of Method Practicality. Green Chem. 2023, 25, 7598–7604. [Google Scholar] [CrossRef]
- Asimakopoulos, A.G.; Ajibola, A.; Kannan, K.; Thomaidis, N.S. Occurrence and Removal Efficiencies of Benzotriazoles and Benzothiazoles in a Wastewater Treatment Plant in Greece. Sci. Total Environ. 2013, 452–453, 163–171. [Google Scholar] [CrossRef] [PubMed]
Analyte | DLLME EFs | LOD a/ng mL−1 | LOQ a/ng mL−1 | SEFs | Precision b/% | |
---|---|---|---|---|---|---|
Level 1 | Level 2 | |||||
BTR | 32 ± 3 | 0.058 | 0.19 | 12 | 11.3 | 9.0 |
5Me-BTR | 36 ± 3 | 0.044 | 0.15 | 14 | 5.1 | 3.9 |
2OH-BTH | 50 ± 6 | 0.070 | 0.23 | 19 | 13.2 | 7.3 |
5,6diMe-BTR | 55 ± 4 | 0.048 | 0.16 | 19 | 12.0 | 5.2 |
2Am,6Cl-BTH | 53 ± 2 | 0.016 | 0.052 | 19 | 8.2 | 2.2 |
BP3 | 49 ± 5 | 0.069 | 0.23 | 18 | 12.0 | 5.9 |
OCT | 53 ± 2 | 0.071 | 0.24 | 19 | 6.8 | 4.1 |
MP | 29 ± 2 | 0.088 | 0.26 | 11 | 13.5 | 6.2 |
PP | 52 ± 4 | 0.024 | 0.072 | 19 | 10.4 | 6.6 |
Metric Tool | Score/Pictogram |
---|---|
ChlorTox | DLLME: 0.005 g DLLME UHPL-QTOF-MS: 6 g |
AGREEprep 1. Sample preparation placement 2. Hazardous materials 3. Sustainability–renewability of materials 4. Waste 5. Size economy of the sample 6. Sample throughput 7. Integration and automation 8. Energy consumption 9. Post-sample preparation analysis 10. Operator’s safety | |
AGREE 1. Sample treatment placement 2. Sample amount 3. Device position 4. Sample prep. stages 5. Automation/minimization 6. Derivatization 7. Waste 8. Analysis throughput 9. Energy consumption 10. Source of reagents 11. Toxicity 12. Operator’s safety | |
BAGI 1. Type of analysis 2. Multi- or single-analyte determination 3. Analytical technique 4. Simultaneous sample preparation 5. Sample pretreatment 6. Samples analyzed per hour 7. Reagents and materials 8. Necessity of preconcentration 9. Degree of automation 10. Amount of sample |
Analyte Concentration (ng mL−1) | Samples | |||
---|---|---|---|---|
WW-1 | WW-2 | WW-3 | WW-4 | |
BTR | 0.32 ± 0.05 | 0.60 ± 0.05 | 0.52 ± 0.05 | 0.84 ± 0.09 |
5Me-BTR | 0.35 ± 0.02 | <0.044 | <0.15 | <0.15 |
2OH-BTH | 0.82 ± 0.03 | <0.070 | <0.070 | <0.070 |
5,6diMe-BTR | <0.048 | <0.048 | <0.048 | <0.048 |
2Am,6Cl-BTH | <0.016 | <0.016 | <0.016 | <0.016 |
BP3 | 0.57 ± 0.03 | 0.56 ± 0.06 | <0.23 | <0.23 |
OCT | 0.91 ± 0.03 | 0.51 ± 0.02 | 0.53 ± 0.05 | 0.71 ± 0.03 |
MP | <0.088 | <0.088 | <0.088 | <0.088 |
PP | <0.024 | <0.024 | <0.024 | <0.024 |
NADES | Components (HBA-HBD) | Molar Ratio | Melting Point (°C) | Viscosity (mPa s) a |
---|---|---|---|---|
1Thy-1C8 | Thymol–octanoic acid | 1:1 | 11 [28] | 7–10 [28] |
Thy-1C10 | Thymol–decanoic acid | 1:1 | 15 [28] | 10–15 [28] |
1Thy-1C12 | Thymol–dodecanoic acid | 1:1 | 28 [28] | 12 [28] |
1Men-1C8 | Menthol–octanoic acid | 1:1 | −5 [28] | 12–20 [28] |
1Men-1C10 | Menthol–decanoic acid | 1:1 | 7 [28] | 15–25 [28] |
1Men-1C12 | Menthol–dodecanoic acid | 1:1 | 23 [28] | 21–28 [28] |
1Thy-1Men | Thymol–menthol | 1:1 | −8 [41] | 35 [42] |
1C8–1C12 | Octanoic acid–dodecanoic acid | 1:1 | 21 [37] | 7–9 [37] |
1C10–1C12 | Decanoic acid–dodecanoic acid | 1:1 | 23 [37] | 9–13 [37] |
1Thy-2Men | Thymol–menthol | 1:2 | −5 [42] | 41 [42] |
2Thy-1Men | Thymol–menthol | 2:1 | 9 [42] | 26 [42] |
4Thy-1Men | Thymol–menthol | 4:1 | 28 [41] | - |
Analyte | Retention Time (min) | Precursor ION m/z | Ionization Mode |
---|---|---|---|
Benzotriazole (BTR) | 6.88 | 136.0215 | + |
5,6-dimethyl benzotriazole (5,6diMe-BTR) | 6.76 | 148.0869 | + |
5-methyl benzotriazole (5Me-BTR) | 5.83 | 134.0713 | + |
2-hydroxy benzothiazole (2OH-BTH) | 6.53 | 152.0165 | + |
2-amino-6-Chloro Benzothiazole(2Am-6Cl-BTH) | 8.00 | 184.9934 | + |
Octocrylene (Oct) | 13.36 | 379.2380 | + |
Methylparaben (MP) | 5.97 | 151.0400 | − |
Propylparaben (PP) | 8.30 | 179.0714 | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Nieto, B.; Konomi, A.; Gkotsis, G.; Nika, M.-C.; Thomaidis, N.S. Optimization of a Natural-Deep-Eutectic-Solvent-Based Dispersive Liquid–Liquid Microextraction Method for the Multi-Target Determination of Emerging Contaminants in Wastewater. Molecules 2025, 30, 2988. https://doi.org/10.3390/molecules30142988
Gómez-Nieto B, Konomi A, Gkotsis G, Nika M-C, Thomaidis NS. Optimization of a Natural-Deep-Eutectic-Solvent-Based Dispersive Liquid–Liquid Microextraction Method for the Multi-Target Determination of Emerging Contaminants in Wastewater. Molecules. 2025; 30(14):2988. https://doi.org/10.3390/molecules30142988
Chicago/Turabian StyleGómez-Nieto, Beatriz, Antigoni Konomi, Georgios Gkotsis, Maria-Christina Nika, and Nikolaos S. Thomaidis. 2025. "Optimization of a Natural-Deep-Eutectic-Solvent-Based Dispersive Liquid–Liquid Microextraction Method for the Multi-Target Determination of Emerging Contaminants in Wastewater" Molecules 30, no. 14: 2988. https://doi.org/10.3390/molecules30142988
APA StyleGómez-Nieto, B., Konomi, A., Gkotsis, G., Nika, M.-C., & Thomaidis, N. S. (2025). Optimization of a Natural-Deep-Eutectic-Solvent-Based Dispersive Liquid–Liquid Microextraction Method for the Multi-Target Determination of Emerging Contaminants in Wastewater. Molecules, 30(14), 2988. https://doi.org/10.3390/molecules30142988