Metabolites from Streptomyces aureus (VTCC43181) and Their Inhibition of Mycobacterium tuberculosis ClpC1 Protein
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of the Strain VTCC43181
2.2. Chemistry
2.3. Affection of the Isolated Compounds to ATPase Activity of ClpC1
3. Materials and Methods
3.1. Sample Collection
3.2. Equipment and Chemicals
3.3. Isolation of the Actinomycete
3.4. Identification of the Actinomycete
3.5. Extraction and Isolation of the Compounds from Streptomyces aureus
3.6. Screening for ClpC1 Inhibitors
3.6.1. Cloning, Expression and Purification Recombinant Protein ClpC1
3.6.2. Measurement of Protein Concentration and Buffer Exchange
3.6.3. ATPase Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gagneux, S. Ecology and evolution of Mycobacterium tuberculosis. Nat. Rev. Microbiol. 2018, 16, 202–213. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2022. 2022. Available online: https://www.who.int/publications/i/item/9789240061729 (accessed on 27 October 2022).
- Motta, I.; Boeree, M.; Chesov, D.; Dheda, K.; Günther, G.; Horsburgh, C.R.; Kherabi, Y.; Lange, C.; Lienhardt, C.; McIlleron, H.M.; et al. Recent advances in the treatment of tuberculosis. Clin. Microbiol. Infect. 2023, 23, 00339–00347. [Google Scholar] [CrossRef] [PubMed]
- Low, J.; Lee, C.; Leo, Y.; Guek-Hong Low, J.; Lee, C.-C.; Leo, Y.-S. Severe acute respiratory syndrome and pulmonary tuberculosis. Clin. Infect. Dis. 2004, 38, e123–e125. [Google Scholar] [CrossRef] [PubMed]
- Chakaya, J.; Petersen, E.; Nantanda, R.; Mungai, B.N.; Migliori, G.B.; Amanullah, F.; Lungu, P.; Ntoumi, F.; Kumarasamy, N.; Maeurer, M. The WHO Global Tuberculosis 2021 Report–not so good news and turning the tide back to End TB. Int. J. Infect. Dis. 2022, 124, S26–S29. [Google Scholar] [CrossRef]
- Koegelenberg, C.F.; Schoch, O.D.; Lange, C. Tuberculosis: The past, the present and the future. Respiration 2021, 100, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Ngo, D.M.; Doan, N.B.; Tran, S.N.; Hoang, L.B.; Nguyen, H.B.; Nguyen, V.D. Practice regarding tuberculosis care among physicians at private facilities: A cross-sectional study from Vietnam. PLoS ONE 2023, 18, e0284603. [Google Scholar] [CrossRef] [PubMed]
- Rahlwes, K.C.; Dias, B.R.; Campos, P.C.; Alvarez-Arguedas, S.; Shiloh, M.U. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023, 14, 2150449. [Google Scholar] [CrossRef]
- Nguyen, T.M.P.; Le, T.H.M.; Merle, C.S.C.; Pedrazzoli, D.; Nguyen, N.L.; Decroo, T.; Nguyen, B.H.; Hoang, T.T.T.; Nguyen, V.N. Effectiveness and safety of bedaquiline-based, modified all-oral 9–11-month treatment regimen for rifampicin-resistant tuberculosis in Vietnam. Int. J. Infect. Dis. 2023, 126, 148–154. [Google Scholar] [CrossRef]
- Weinhäupl, K.; Gragera, M.; Bueno-Carrasco, M.T.; Arranz, R.; Krandor, O.; Akopian, T.; Soares, R.; Rubin, E.; Felix, J.; Fraga, H. Structure of the drug target ClpC1 unfoldase in action provides insights on antibiotic mechanism of action. J. Biol. Chem. 2022, 298, 102553–102563. [Google Scholar] [CrossRef]
- Schmitz, K.R.; Sauer, R.T. Substrate delivery by the AAA+ ClpX and ClpC1 unfoldases activates the mycobacterial ClpP1P2 peptidase. Mol. Microbiol. 2014, 93, 617–628. [Google Scholar] [CrossRef]
- Leodolter, J.; Warweg, J.; Weber-Ban, E. The Mycobacterium tuberculosis ClpP1P2 protease interacts asymmetrically with its ATPase partners ClpX and ClpC1. PLoS ONE 2015, 10, e0125345. [Google Scholar] [CrossRef] [PubMed]
- Bhanot, A.; Lunge, A.; Kumar, N.; Kidwai, S.; Singh, R.; Sundriyal, S.; Agarwal, N. Discovery of small molecule inhibitors of Mycobacterium tuberculosis ClpC1: SAR studies and antimycobacterial evaluation. Results Chem. 2023, 5, 100904–100914. [Google Scholar] [CrossRef]
- Choules, M.P.; Wolf, N.M.; Lee, H.; Anderson, J.R.; Grzelak, E.M.; Wang, Y.; Ma, R.; Gao, W.; McAlpine, J.B.; Jin, Y.Y.; et al. Rufomycin targets ClpC1 proteolysis in Mycobacterium tuberculosis and M. abscessus. Antimicrob. Agents Chemother. 2019, 63, 1110–1128. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, P.M.; Hoi, D.M.; Cheung, C.-Y.; Wang, T.; Quan, D.; Sasi, V.M.; Liu, D.Y.; Linington, R.G.; Jackson, C.J.; Oehlers, S.H. Potent bactericidal antimycobacterials targeting the chaperone ClpC1 based on the depsipeptide natural products ecumicin and ohmyungsamycin A. J. Med. Chem. 2022, 65, 4893–4908. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.A.; McGaw, L.J. Natural cyclic peptides as an attractive modality for therapeutics: A mini review. Molecules 2018, 23, 2080–2098. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, E.K.; Riwanto, M.; Sambandamurthy, V.; Roggo, S.; Miault, C.; Zwingelstein, C.; Krastel, P.; Noble, C.; Beer, D.; Rao, S.P. The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew. Chem. Inter. Ed. 2011, 50, 5889–5891. [Google Scholar] [CrossRef] [PubMed]
- Gavrish, E.; Sit, C.S.; Cao, S.; Kandror, O.; Spoering, A.; Peoples, A.; Ling, L.; Fetterman, A.; Hughes, D.; Bissell, A. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol. 2014, 21, 509–518. [Google Scholar] [CrossRef]
- Gao, W.; Kim, J.-Y.; Chen, S.-N.; Cho, S.-H.; Choi, J.; Jaki, B.U.; Jin, Y.-Y.; Lankin, D.C.; Lee, J.-E.; Lee, S.-Y. Discovery and characterization of the tuberculosis drug lead ecumicin. Org. Lett. 2014, 16, 6044–6047. [Google Scholar] [CrossRef]
- Stapley, E.O.; Hendlin, D.; Jackson, M.; Miller, A.K.; Hernandez, S.; Mata, J.M. Azirinomycin. I Microbial production and biological characteristics. J. Antibiot. 1971, 24, 42–47. [Google Scholar] [CrossRef]
- Miller, T.W.; Tristram, E.W.; Wolf, F.J. Azirinomycin. II Isolation and chemical characterization as 3-methyl-2 (2H) azirinecarboxylic acid. J. Antibiot. 1971, 24, 48–50. [Google Scholar] [CrossRef]
- Haneda, M.; Nawata, Y.; Hayashi, T.; Ando, K. Tetranactin, a new miticidal antibiotic. VI Determination of dinactin, trinactin and tetranactin in their mixtures by NMR spectroscopy. J. Antibiot. 1974, 27, 555–557. [Google Scholar] [CrossRef]
- Petříčková, K.; Pospíšil, S.; Kuzma, M.; Tylová, T.; Jágr, M.; Tomek, P.; Chroňáková, A.; Brabcová, E.; Anděra, L.; Krištůfek, V. Biosynthesis of Colabomycin E, a New Manumycin-Family Metabolite, Involves an Unusual Chain-Length Factor. ChemBioChem 2014, 15, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Feng, M.; Li, X.; Chen, F.; Zhang, Z.; Yang, W.; Shao, C.; Tao, L.; Zhang, Y. Antibacterial Activity of Aureonuclemycin Produced by Streptomyces aureus Strain SPRI-371. Molecules 2022, 27, 5041–5055. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.A.V.; Nogawa, T.; Futamura, Y.; Shimizu, T.; Osada, H. Nocardamin glucuronide, a new member of the ferrioxamine siderophores isolated from the ascamycin-producing strain Streptomyces sp. 80H647. J. Antibiot. 2019, 72, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, Y.; Arai, M.A.; Hara, Y.; Ishibashi, M. Identification of BMI1 promoter inhibitors from Streptomyces sp. IFM-11958. Bioorg. Med. Chem. 2019, 27, 2998–3003. [Google Scholar] [CrossRef] [PubMed]
- Ueki, M.; Suzuki, R.; Takamatsu, S.; Takagi, H.; Uramoto, M.; Ikeda, H.; Osada, H. Nocardamin production by Streptomyces avermitilis. Actinomycetologica 2009, 23, 34–39. [Google Scholar] [CrossRef]
- Lee, I.-S.; Ryoo, I.-J.; Kwon, K.-Y.; Ahn, J.S.; Yoo, I.-D. Pleurone, a novel human neutrophil elastase inhibitor from the fruiting bodies of the mushroom Pleurotus eryngii var. ferulae. J. Antibiot. 2011, 64, 587–589. [Google Scholar] [CrossRef]
- Lin, J.; Yang, L.Y.; Pan, Z.D. Identification of potential bioactive compounds from Aspergillus terreus against HCV NS3 serine protease. Chem. Biodivers 2023, 20, e202300532. [Google Scholar] [CrossRef]
- Yang, L.; Tan, R.-X.; Wang, Q.; Huang, W.-Y.; Yin, Y.-X. Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Lett. 2002, 43, 6545–6548. [Google Scholar] [CrossRef]
- Dahiya, R.; Pathak, D. First total synthesis and biological evaluation of halolitoralin A. J. Serb. Chem. Soc. 2007, 72, 101–107. [Google Scholar] [CrossRef]
- Frank, J.A.; Reich, C.I.; Sharma, S.; Weisbaum, J.S.; Wilson, B.A.; Olsen, G.J. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 2008, 74, 2461–2470. [Google Scholar] [CrossRef]
- Martinou, A.; Koutsioulis, D.; Bouriotis, V. Cloning and expression of a chitin deacetylase gene (CDA2) from Saccharomyces cerevisiae in Escherichia coli: Purification and characterization of the cobalt-dependent recombinant enzyme. Enzym. Microb. Technol. 2003, 32, 757–763. [Google Scholar] [CrossRef]
- Pavan, M.E.; Pavan, E.E.; Cairó, F.M.; Pettinari, M.J. Expression and refolding of the protective antigen of Bacillus anthracis: A model for high-throughput screening of antigenic recombinant protein refolding. Rev. Argent. Microbiol. 2016, 48, 5–14. [Google Scholar] [CrossRef]
- Ito, K.; Akiyama, Y. Cellular functions, mechanism of action, and regulation of FtsH protease. Annu. Rev. Microbiol. 2005, 59, 211–231. [Google Scholar] [CrossRef]
- Tayyab, H.; Ridzwan, N.F.; Mohamad, S.B. Ensemble-Based Virtual Screening of Mycobacterium tuberculosis ClpC1 Inhibitors. Arch. Clin. Biomed. Res. 2022, 6, 503–516. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.T.P.; Huynh, N.N.T.; Pham, N.T.; Nguyen, D.T.; Tran, C.V.; Nguyen, U.Q.; Ho, A.N.; Suh, J.-W.; Cheng, J.; Nguyen, T.K.N.; et al. Metabolites from Streptomyces aureus (VTCC43181) and Their Inhibition of Mycobacterium tuberculosis ClpC1 Protein. Molecules 2024, 29, 720. https://doi.org/10.3390/molecules29030720
Tran TTP, Huynh NNT, Pham NT, Nguyen DT, Tran CV, Nguyen UQ, Ho AN, Suh J-W, Cheng J, Nguyen TKN, et al. Metabolites from Streptomyces aureus (VTCC43181) and Their Inhibition of Mycobacterium tuberculosis ClpC1 Protein. Molecules. 2024; 29(3):720. https://doi.org/10.3390/molecules29030720
Chicago/Turabian StyleTran, Thao Thi Phuong, Ni Ngoc Thi Huynh, Ninh Thi Pham, Dung Thi Nguyen, Chien Van Tran, Uyen Quynh Nguyen, Anh Ngoc Ho, Joo-Won Suh, Jinhua Cheng, Thao Kim Nu Nguyen, and et al. 2024. "Metabolites from Streptomyces aureus (VTCC43181) and Their Inhibition of Mycobacterium tuberculosis ClpC1 Protein" Molecules 29, no. 3: 720. https://doi.org/10.3390/molecules29030720
APA StyleTran, T. T. P., Huynh, N. N. T., Pham, N. T., Nguyen, D. T., Tran, C. V., Nguyen, U. Q., Ho, A. N., Suh, J. -W., Cheng, J., Nguyen, T. K. N., Tran, S. V., & Nguyen, D. M. (2024). Metabolites from Streptomyces aureus (VTCC43181) and Their Inhibition of Mycobacterium tuberculosis ClpC1 Protein. Molecules, 29(3), 720. https://doi.org/10.3390/molecules29030720