Exploring Carbon Monoxide and Carbon Dioxide Adsorption on (5,5) Aluminum Nitride Nanotubes for Enhanced Sensor Applications: A DFT Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pristine Aluminum Nitride Nanotube
2.2. Silicon-Doped (5,5) Aluminum Nitride Nanotube [Si-(5,5) AlNNT]
2.3. CO2 Adsorbed on (5,5) AlNNT [(5,5) AlNNT/CO2]
2.4. CO2 Adsorbed on Si-(5,5) AlNNT [Si-(5,5) AlNNT/CO2]
2.5. CO Adsorbed on (5,5) AlNNT [(5,5) AlNNT/CO]
2.6. CO Adsorbed on Si-(5,5) AlNNT [Si-(5,5) AlNNT/CO]
2.7. Potential Challenges of Implementing AlNNT-Based Sensors
3. Materials and Methods
Computational Details
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, E.; Short, S.; Shuker, L.; Harrison, P. Carbon Monoxide Exposure in the Home Environment and the Evaluation of Risks to Health—A UK Perspective. Indoor Built Environ. 1999, 8, 168–175. [Google Scholar] [CrossRef]
- Kinoshita, H.; Türkan, H.; Vucinic, S.; Naqvi, S.; Bedair, R.; Rezaee, R.; Tsatsakis, A. Carbon monoxide poisoning. Toxicol. Rep. 2020, 7, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Picano, E.; Mangia, C.; D’andrea, A. Climate Change, Carbon Dioxide Emissions, and Medical Imaging Contribution. J. Clin. Med. 2023, 12, 215. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, R.; Mochizuki, H.; Moriguchi, Y.; Nakano, T.; Motohashi, M.; Sakai, Y.; Inaba, A. Estimation of CO2 Emissions of Internal Combustion Engine Vehicle and Battery Electric Vehicle Using LCA. Sustainability 2019, 11, 2690. [Google Scholar] [CrossRef]
- Bierwirth, P. Long-Term Carbon Dioxide Toxicity and Climate Change: A Major Unapprehended Risk for Human Health; Working Paper. 6 April 2023. [Google Scholar] [CrossRef]
- Johansen, N. Carbon Monoxide Detection and Alarm Requirements: Literature Review. 6 April 2023. [Google Scholar]
- Hnatov, M.V. Non-Fire Carbon Monoxide Deaths Associated with the Use of Consumer Products: 2007 Annual Estimates, January 2011. 6 April 2023. [Google Scholar]
- Francisco, P.W.; Pigg, S.; Cautley, D.; Rose, W.B.; Jacobs, D.E.; Cali, S. Carbon monoxide measurements in homes. Sci. Technol. Built Environ. 2018, 24, 118–123. [Google Scholar] [CrossRef]
- Fisher, D.S.; Bowskill, S.; Saliba, L.; Flanagan, R.J. Unintentional domestic non-fire related carbon monoxide poisoning: Data from media reports, UK/Republic of Ireland 1986–2011. Clin. Toxicol. 2013, 51, 409–416. [Google Scholar] [CrossRef]
- Long, J.; Sun, Y.; Zhao, J.; Liu, J.; Peng, X. Temporal trends of carbon monoxide poisoning mortality at the global, regional and national levels: A cross-sectional study from the Global Burden of Disease study, 1990 and 2017. BMJ Open 2021, 11, e053240. [Google Scholar] [CrossRef] [PubMed]
- Al-Asmari, A.I.; Al-Zahrani, A.E.; Halwani, M.A. Carbon monoxide related deaths in Jeddah, Saudi Arabia: A forensic carboxyhemoglobin autopsy-based study. Forensic Sci. Int. Rep. 2021, 4, 100232. [Google Scholar] [CrossRef]
- Saleem, M.W.; Tahir, M.H.; Ashfaq, M.W. Fossil Fuel Based Carbon Footprint of Pakistan and Its Role towards Fossil Fuel Based Carbon Footprint of Pakistan and Its Role towards Sustainable Development. 6 April 2023. [Google Scholar]
- Zimakowska-Laskowska, M.; Laskowski, P. Emission from Internal Combustion Engines and Battery Electric Vehicles: Case Study for Poland. Atmosphere 2022, 13, 401. [Google Scholar] [CrossRef]
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Al Khourdajie, A.; House, J.; et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- Yue, X.-L.; Gao, Q.-X. Contributions of natural systems and human activity to greenhouse gas emissions. Adv. Clim. Chang. Res. 2018, 9, 243–252. [Google Scholar] [CrossRef]
- Marland, G.; Rotty, R.M. Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950-1982. Tellus B Chem. Phys. Meteorol. 1984, 36, 232. [Google Scholar] [CrossRef]
- Kweku, D.W.; Bismark, O.; Maxwell, A.; Desmond, K.A.; Danso, K.B.; Oti-Mensah, E.A.; Quachie, A.T.; Adormaa, B.B. Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming. J. Sci. Res. Rep. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Venterea, R.T. Climate Change 2007: Mitigation of Climate Change. J. Environ. Qual. 2009, 38, 837. [Google Scholar] [CrossRef]
- Gaffney, J.S.; Marley, N.A. The impacts of combustion emissions on air quality and climate—From coal to biofuels and beyond. Atmos. Environ. 2009, 43, 23–36. [Google Scholar] [CrossRef]
- Florides, G.A.; Christodoulides, P. Global warming and carbon dioxide through sciences. Environ. Int. 2009, 35, 390–401. [Google Scholar] [CrossRef]
- Ahn, J.; Brook, E.J.; Mitchell, L.; Rosen, J.; McConnell, J.R.; Taylor, K.; Etheridge, D.; Rubino, M. Atmospheric CO2over the last 1000 years: A high-resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core. Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef]
- Le Quéré, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Global warming: Causes and impacts on agroecosystems productivity and food security with emphasis on cassava comparative advantage in the tropics/subtropics. Photosynthetica 2014, 52, 161–178. [Google Scholar] [CrossRef]
- Sparavigna, A.C. Carbon Dioxide Concentration and Emissions in Atmosphere: Trends and Recurrence Plots. Int. J. Sci. 2014, 3, 8–15. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Vidal, J.-P.; Soubeyroux, J.-M. Impact of climate change on drought and soil moisture in France. In Proceedings of the SEC2008—International Symposium—Drought and Constructions, Paris, France, 1–3 September 2008; pp. 25–31. [Google Scholar]
- North, G.R. Global Climate Change. In A World after Climate Change and Culture-Shift; Springer: Dordrecht, The Netherlands, 2014; pp. 25–42. [Google Scholar] [CrossRef]
- Marx, W.; Haunschild, R.; Bornmann, L. Heat waves: A hot topic in climate change research. Theor. Appl. Clim. 2021, 146, 781–800. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W. Extreme Weather Events and their Consequences. Pap. Glob. Chang. IGBP 2016, 23, 59–69. [Google Scholar] [CrossRef]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J.; et al. Extreme Weather and Climate Change: Population Health and Health System Implications. Annu. Rev. Public Health 2020, 42, 293–315. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Matawal, D.S.; Maton, D.J. Climate Change and Global Warming: Signs, Impact and Solutions. Int. J. Environ. Sci. Dev. 2013, 4, 62–66. [Google Scholar] [CrossRef]
- Martinez, P.; Bandala, E.R. Heat Waves: A Growing Climate Change-Related Risk. 6 April 2023; pp. 1–3. [Google Scholar]
- Xia, Y.; Guan, D.; Jiang, X.; Peng, L.; Schroeder, H.; Zhang, Q. Assessment of socioeconomic costs to China’s air pollution. Atmos. Environ. 2016, 139, 147–156. [Google Scholar] [CrossRef]
- Ciscar, J.-C.; Iglesias, A.; Feyen, L.; Szabó, L.; Van Regemorter, D.; Amelung, B.; Nicholls, R.; Watkiss, P.; Christensen, O.B.; Dankers, R.; et al. Physical and economic consequences of climate change in Europe. Proc. Natl. Acad. Sci. USA 2011, 108, 2678–2683. [Google Scholar] [CrossRef]
- Xu, X.; Yang, H.; Li, C. Theoretical Model and Actual Characteristics of Air Pollution Affecting Health Cost: A Review. Int. J. Environ. Res. Public Health 2022, 19, 3532. [Google Scholar] [CrossRef]
- Sonwani, S.S.S.; Maurya, V.M.V. Impact of air pollution on the environment and economy. In Air Pollution: Sources, Impacts and Controls; CAB International: Wallingford, UK, 2019; pp. 113–134. [Google Scholar] [CrossRef]
- Meisner, C.; Gjorgjev, D.; Tozija, F. Estimating health impacts and economic costs of air pollution in the Republic of Macedonia. South East Eur. J. Public Health 2015, 10, 1–8. [Google Scholar] [CrossRef]
- Szlávik, J.; Füle, M. Economic consequences of climate change. AIP Conf. Proc. 2009, 1157, 73–82. [Google Scholar] [CrossRef]
- Noei, M.; Soleymanabadi, H.; Peyghan, A.A. Aluminum nitride nanotubes. Chem. Pap. 2017, 71, 881–893. [Google Scholar] [CrossRef]
- Hao, S.; Zhang, L.; Wang, X.; Zhao, G.; Hou, P.; Xu, X. Design of Multilayered Porous Aluminum Nitride for Supercapacitor Applications. Energy Fuels 2021, 35, 12628–12636. [Google Scholar] [CrossRef]
- Beheshtian, J.; Baei, M.T.; Bagheri, Z.; Peyghan, A.A. AlN nanotube as a potential electronic sensor for nitrogen dioxide. Microelectron. J. 2012, 43, 452–455. [Google Scholar] [CrossRef]
- Zheng, N.; Zhang, C.; Fan, R.; Sun, Z. Melamine foam-based shape-stable phase change composites enhanced by aluminum nitride for thermal management of lithium-ion batteries. J. Energy Storage 2022, 52, 105052. [Google Scholar] [CrossRef]
- Wu, Q.; Hu, Z.; Wang, X.; Lu, Y.; Chen, X.; Xu, H.; Chen, Y. Synthesis and Characterization of Faceted Hexagonal Aluminum Nitride Nanotubes. J. Am. Chem. Soc. 2003, 125, 10176–10177. [Google Scholar] [CrossRef]
- Yin, L.-W.; Bando, Y.; Zhu, Y.-C.; Li, M.-S.; Tang, C.C.; Golberg, D. Single-Crystalline AlN Nanotubes with Carbon-Layer Coatings on the Outer and Inner Surfaces via a Multiwalled-Carbon-Nanotube-Template-Induced Route. Adv. Mater. 2005, 17, 213–217. [Google Scholar] [CrossRef]
- Hesabi, M.; Hesabi, M. The interaction between carbon nanotube and skin anti-cancer drugs: A DFT and NBO approach. J. Nanostructure Chem. 2013, 3, 22. [Google Scholar] [CrossRef]
- Peyghan, A.A.; Omidvar, A.; Hadipour, N.L.; Bagheri, Z.; Kamfiroozi, M. Can aluminum nitride nanotubes detect the toxic NH3 molecules? Phys. E Low-Dimens. Syst. Nanostruct. 2012, 44, 1357–1360. [Google Scholar] [CrossRef]
- Kuzmin, A.V.; Shainyan, B.A. Single Si-Doped Graphene as a Catalyst in Oxygen Reduction Reactions: An In Silico Study. ACS Omega 2020, 5, 15268–15279. [Google Scholar] [CrossRef]
- Zhao, J.-X.; Chen, Y.; Fu, H.-G. Si-embedded graphene: An efficient and metal-free catalyst for CO oxidation by N2O or O2. Theor. Chem. Accounts 2012, 131, 1–11. [Google Scholar] [CrossRef]
- Ghanbari, M.; Afshari, S.; Amri, S.A.N. New capability of graphene as hydrogen storage by Si and/or Ge doping: Density functional theory. Int. J. Hydrogen Energy 2020, 45, 23048–23055. [Google Scholar] [CrossRef]
- Shahabi, M.; Raissi, H. Investigation of the molecular structure, electronic properties, AIM, NBO, NMR and NQR parameters for the interaction of Sc, Ga and Mg-doped (6,0) aluminum nitride nanotubes with COCl2 gas by DFT study. J. Incl. Phenom. Macrocycl. Chem. 2015, 84, 99–114. [Google Scholar] [CrossRef]
- Ahmadi, A.; Hadipour, N.L.; Kamfiroozi, M.; Bagheri, Z. Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde. Sens. Actuators B Chem. 2012, 161, 1025–1029. [Google Scholar] [CrossRef]
- Mahdavifar, Z.; Abbasi, N. The influence of Cu-doping on aluminum nitride, silicon carbide and boron nitride nanotubes’ ability to detect carbon dioxide; DFT study. Phys. E Low-Dimens. Syst. Nanostruct. 2014, 56, 268–276. [Google Scholar] [CrossRef]
- Mirzaei, M.; Seif, A.; Hadipour, N.L. The C-doped zigzag AlN nanotube: A computational NMR study. Chem. Phys. Lett. 2008, 461, 246–248. [Google Scholar] [CrossRef]
- Soltani, A.; Raz, S.G.; Rezaei, V.J.; Khalaji, A.D.; Savar, M. Ab initio investigation of Al- and Ga-doped single-walled boron nitride nanotubes as ammonia sensor. Appl. Surf. Sci. 2012, 263, 619–625. [Google Scholar] [CrossRef]
- Cao, Y.; Farahmand, M.; Ahmadi, R.; Heravi, M.R.P.; Ahmadi, S.; Mahmoud, M.Z. Unraveling the effect of Ti doping on the sensing properties of AlN nanotubes toward acrylonitrile gas. Inorg. Chem. Commun. 2022, 137, 109161. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Menazea, A.A.; Awwad, N.S.; Ibrahium, H.A.; Ebaid, G.; Ali, H.E. Selective detection of sulfur trioxide in the presence of environmental gases by AlN nanotube. J. Sulfur Chem. 2022, 43, 290–303. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Fang, R.; Jing, L.; Wu, P.; Tian, S. Adsorption and Sensing of CO2, CH4 and N2O Molecules by Ti-Doped HfSe2 Monolayer Based on the First-Principle. Chemosensors 2022, 10, 414. [Google Scholar] [CrossRef]
- Balasubramanian, C.; Bellucci, S.; Castrucci, P.; De Crescenzi, M.; Bhoraskar, S. Scanning tunneling microscopy observation of coiled aluminum nitride nanotubes. Chem. Phys. Lett. 2004, 383, 188–191. [Google Scholar] [CrossRef]
- Hosseinzadeh, B.; Beni, A.S.; Eskandari, R.; Karami, M.; Khorram, M. Interaction of propylthiouracil, an anti-thyroid drug with boron nitride nanotube: A DFT study. Adsorption 2020, 26, 1385–1396. [Google Scholar] [CrossRef]
- Sakharova, N.A.; Antunes, J.M.; Pereira, A.F.G.; Fernandes, J.V. Developments in the evaluation of elastic properties of carbon nanotubes and their heterojunctions by numerical simulation. AIMS Mater. Sci. 2017, 4, 706–737. [Google Scholar] [CrossRef]
- Rayan, B.; Rayan, A. Avogadro Program for Chemistry Education: To What Extent can Molecular Visualization and Three-dimensional Simulations Enhance Meaningful Chemistry Learning? World J. Chem. Educ. 2017, 5, 136–141. [Google Scholar] [CrossRef]
Model | Eads | HOMO | LUMO | Eg | %Eg | µ | η | ω | |
---|---|---|---|---|---|---|---|---|---|
(5,5) AlNNT | - | −6.310 | −2.220 | 4.090 | - | - | −4.265 | 2.045 | 4.447 |
Si-(5,5) AlNNT | - | −5.988 | −2.273 | 3.725 | - | - | −4.131 | 1.863 | 4.580 |
(5,5)AlNNT/ CO2 | −24.36 | −6.026 | −2.302 | 3.724 | 8.95 | 428,899.920 | −4.164 | 1.862 | 4.656 |
Si-(5,5) AlNNT/CO2 | −19.69 | −6.080 | −2.154 | 3.926 | 5.40 | 178.689 | −4.117 | 1.963 | 4.317 |
(5,5) AlNNT/CO | −25.20 | −6.000 | −2.282 | 3.718 | 9.095 | 1,739,274.942 | −4.410 | 1.859 | 5.230 |
Si-(5,5) AlNNT/CO | −20.78 | −6.033 | −2.202 | 3.831 | 4.29 | 1099.171 | −4.118 | 1.916 | 4.425 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleiman, N.; Apalangya, V.A.; Mensah, B.; Kan-Dapaah, K.; Yaya, A. Exploring Carbon Monoxide and Carbon Dioxide Adsorption on (5,5) Aluminum Nitride Nanotubes for Enhanced Sensor Applications: A DFT Study. Molecules 2024, 29, 557. https://doi.org/10.3390/molecules29030557
Suleiman N, Apalangya VA, Mensah B, Kan-Dapaah K, Yaya A. Exploring Carbon Monoxide and Carbon Dioxide Adsorption on (5,5) Aluminum Nitride Nanotubes for Enhanced Sensor Applications: A DFT Study. Molecules. 2024; 29(3):557. https://doi.org/10.3390/molecules29030557
Chicago/Turabian StyleSuleiman, Nafiu, Vitus Atanga Apalangya, Bismark Mensah, Kwabena Kan-Dapaah, and Abu Yaya. 2024. "Exploring Carbon Monoxide and Carbon Dioxide Adsorption on (5,5) Aluminum Nitride Nanotubes for Enhanced Sensor Applications: A DFT Study" Molecules 29, no. 3: 557. https://doi.org/10.3390/molecules29030557
APA StyleSuleiman, N., Apalangya, V. A., Mensah, B., Kan-Dapaah, K., & Yaya, A. (2024). Exploring Carbon Monoxide and Carbon Dioxide Adsorption on (5,5) Aluminum Nitride Nanotubes for Enhanced Sensor Applications: A DFT Study. Molecules, 29(3), 557. https://doi.org/10.3390/molecules29030557