Cuprous Halide Coordination Polymer for Efficient NIR-I Photothermal Effect and Photo-Thermo-Electric Conversion
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, S. What Else Can Photoelectrochemical Solar Energy Conversion Do Besides Water Splitting and CO2 Reduction? ACS Energy Lett. 2018, 10, 2610–2612. [Google Scholar] [CrossRef]
- Gui, J.; Li, C.; Cao, Y.; Liu, Z.; Shen, Y.; Huang, W.; Tian, X. Hybrid Solar Evaporation System for Water and Electricity Co-Generation: Comprehensive Utilization of Solar and Water Energy. Nano Energy 2023, 107, 108155. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, A.; Ai, X.; Liao, J.; Song, Q.; Reith, H.; Cao, X.; Fang, Y.; Schierning, G.; Nielsch, K.; et al. Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion. Adv. Energy Mater. 2021, 11, 2101213. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, D.; Hu, L.; Muto, A.; Chen, X.; Chen, G.; Chiesa, M. Photovoltaic-Thermoelectric Hybrid Systems: A General Optimization Methodology. Appl. Phys. Lett. 2008, 92, 243503. [Google Scholar] [CrossRef]
- Huang, Q.; Ye, X.; Chen, W.; Song, X.; Chen, Y.; Wen, X.; Zhang, M.; Wang, Y.; Chen, S.L.; Dang, L.; et al. Boosting Photo-thermo-electric Conversion via a Donor−Acceptor Organic Cocrystal Strategy. ACS Energy Lett. 2023, 8, 4179–4185. [Google Scholar] [CrossRef]
- Ren, J.; Ding, Y.; Gong, J.; Qu, J.; Niu, R. Simultaneous Solar-driven Steam and Electricity Generation by Cost-effective, Easy Scale-up MnO2-based Flexible Membranes. Energy Environ. Mater. 2023, 6, e12376. [Google Scholar] [CrossRef]
- Fan, Z.; Ren, J.; Bai, H.; He, P.; Hao, L.; Liu, N.; Chen, B.; Niu, R.; Gong, J. Shape-controlled fabrication of MnO/C hybrid nanoparticle from waste polyester for solar evaporation and thermoelectricity generation. Chem. Eng. J. 2023, 451, 138534. [Google Scholar] [CrossRef]
- Li, N.; Yang, D.J.; Shao, Y.; Liu, Y.; Tang, J.; Yang, L.; Sun, T.; Zhou, W.; Liu, H.; Xue, G. Nanostructured Black Aluminum Prepared by Laser Direct Writing as a High-Performance Plasmonic Absorber for Photothermal/Electric Conversion. ACS Appl. Mater. Interfaces 2021, 13, 4305–4315. [Google Scholar] [CrossRef]
- Duan, Y.; Weng, M.; Zhang, W.; Qian, Y.; Luo, Z.; Chen, L. Multi-functional carbon nanotube paper for solar water evaporation combined with electricity generation and storage. Energy Convers. Manage. 2021, 241, 114306. [Google Scholar] [CrossRef]
- Ghaffar, A.; Imran, Q.; Hassan, M.; Usman, M.; Khan, M.U. Simultaneous solar water desalination and energy generation by high efficient graphene oxide-melanin photothermal membrane. J. Environ. Chem. Eng. 2022, 10, 108424. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Long, Y.; Xu, Y.; Yang, J.; Zhu, H.; Liu, T.; Shi, G. High-Efficiency Photo-Thermo-Electric System with Waste Heat Utilization and Energy Storage. ACS Appl. Mater. Interfaces 2022, 14, 40437–40446. [Google Scholar] [CrossRef]
- Lin, Z.; Wu, T.; Feng, Y.F.; Shi, J.; Zhou, B.; Zhu, C.; Wang, Y.; Liang, R.; Mizuno, M. Poly(N-phenylglycine)/MoS2 Nanohybrid with Synergistic SolarThermal Conversion for Efficient Water Purification and Thermoelectric Power Generation. ACS Appl. Mater. Interfaces 2022, 14, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Liu, J.; Li, Z.; Ji, M.; Zhao, M.; Shen, M.; Han, X.; Jia, T.; Li, C.; Wang, Y. Donor–Acceptor-Type Organic-Small-Molecule-Based Solar-Energy-Absorbing Material for Highly Efcient Water Evaporation and Thermoelectric Power Generation. Adv. Funct. Mater. 2021, 31, 2106247. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, N.N.; Si, J.W.; Li, Z.Y.; Krautscheid, H. Bidirectional π–π stacking for near-infrared photothermal effects and photo-thermo-electric conversion in a semiconductive hydroxamate coordination polymer. Chem. Eng. J. 2024, 491, 152054. [Google Scholar] [CrossRef]
- Yan, Y.; Li, Z.Y.; Zhang, N.N.; Krautscheid, H. A π–π stacked porous framework for highly efficient second near-infrared photothermal effects and photo-thermo-electric conversion. Chem. Eng. J. 2024, 499, 156059. [Google Scholar] [CrossRef]
- Weng, X.L.; Liu, J.Y. Strategies for maximizing photothermal conversion efficiency based on organic dyes. Drug Discov. Today 2021, 26, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Li, W.L.; Chang, Y.; Yuan, B.; Wu, Y.; Zhang, M.T.; Xu, J.F.; Li, J.; Zhang, X. A Supramolecular Radical Dimer: High-Efficiency NIR-II Photothermal Conversion and Therapy. Angew. Chem. Int. Ed. 2019, 58, 15526–15531. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kang, M.; Zhang, Z.; Li, X.; Xu, W.; Wang, D.; Gao, X.; Tang, B.Z. Synchronously Manipulating Absorption and Extinction Coefficient of Semiconducting Polymers via Precise Dual-Acceptor Engineering for NIR-II Excited Photothermal Theranostics. Angew. Chem. Int. Ed. 2023, 62, e202301617. [Google Scholar]
- Liao, J.Z.; Zhu, Z.C.; Liu, S.T.; Ke, H. Photothermal Conversion Perylene-Based Metal–Organic Framework with Panchromatic Absorption Bandwidth across the Visible to Near-Infrared. Inorg. Chem. 2024, 63, 3327–3334. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Li, S.; Kan, J.L.; Gong, L.; Lin, C.; Liu, W.; Qi, D.; Wang, K.; Yan, X.; Jiang, J. A cruciform phthalocyanine pentad-based NIR-II photothermal agent for highly efficient tumor ablation. Chem. Sci. 2019, 10, 8246–8252. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, S.; Xiong, J.; Lin, Z.; Wei, W.; Xu, Y. Near-infrared photothermal conversion of stable radicals photoinduced from a viologen-based coordination polymer. Chem. Commun. 2020, 56, 7399–7402. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Zhang, B.; Liu, Y.; Hu, D.; Sheng, Z.; Zhang, X.; Yuan, Z. Molecular Engineering of Near-Infrared Light-Responsive BODIPY-Based Nanoparticles with Enhanced Photothermal and Photoacoustic Efficiencies for Cancer Theranostics. Theranostics 2019, 9, 5315–5331. [Google Scholar] [CrossRef]
- Chen, Y.T.; Zhuo, M.-P.; Wen, X.; Chen, W.; Zhang, K.Q.; Li, M.-D. Organic Photothermal Cocrystals: Rational Design, Controlled Synthesis, and Advanced Application. Adv. Sci. 2023, 10, 2206830. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, S.; Bao, A.; Chen, Y.; Liang, H.; Ji, S.; Chen, J.; Ye, B.; Yang, Q.; Liu, Y.; et al. Anion-Counterion Strategy toward Organic Cocrystal Engineering for Near-Infrared Photothermal Conversion and Solar-Driven Water Evaporation. Angew. Chem. Int. Ed. 2024, 63, e202318628. [Google Scholar]
- Chen, K.K.; Qin, C.C.; Ding, M.J.; Guo, S.; Lu, T.-B.; Zhang, Z.-M. Broadband and strong visible-light-absorbing cuprous sensitizers for boosting photosynthesis. Proc. Natl. Acad. Sci. USA 2022, 119, e2213479119. [Google Scholar] [CrossRef] [PubMed]
- Lazorski, M.S.; Castellano, F.N. Advances in the light conversion properties of Cu(I)-based photosensitizers. Polyhedron 2014, 82, 57–70. [Google Scholar] [CrossRef]
- Scaltrito, D.V.; Thompson, D.W.; O’Callaghan, J.A.; Meyer, G.J. MLCT excited states of cuprous bis-phenanthroline coordination compounds. Coord. Chem. Rev. 2000, 208, 243–266. [Google Scholar] [CrossRef]
- Munakata, M.; Kuroda-Sowa, T.; Maekawa, M.; Honda, A.; Kitagawa, S. Building a Two-dimensional Co-ordination Polymer having a Multilayered Arrangement. A Molecular Assembly comprising Hanging Phenazine Molecules between Polymeric Stair Frameworks of Copper(I) Halides. J. Chem. Soc. Dalton Trans. 1994, 2771–2775. [Google Scholar] [CrossRef]
- Zhang, N.N.; Liu, Y.T.; Li, L.; Liu, X.T.; Xu, K.; Li, Z.Y.; Yan, Y. Highly efficient NIR-II photothermal conversion from a 2,2’-biquinoline-4,4’-dicarboxylate based photochromic complex. Inorg. Chem. Front. 2024, 11, 4867–4875. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K.; Pople, J.A. Gaussian-3X (G3X) theory: Use of improved geometries, zero-point energies, and Hartree–Fock basis sets. J. Chem. Phys. 2001, 114, 108–117. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Kristallogr.-Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Hammer, B.; Hansen, L.B.; Norskov, J.K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B Condens. Matter. Mater. Phys. 1999, 59, 7413–7421. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B Condens. Matter. Mater. Phys. 1992, 45, 13244–13249. [Google Scholar] [CrossRef]
- Hamann, D.R.; Schlüter, M.; Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 1979, 43, 1494–1497. [Google Scholar] [CrossRef]
- Lin, J.S.; Qteish, A.; Payne, M.C.; Heine, V. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys. Rev. B Condens. Matter. Mater. Phys. 1993, 47, 4174–4180. [Google Scholar] [CrossRef]
- Wu, H.; Sun, Y.; Sun, L.; Wang, L.; Zhang, X.; Hu, W. Deep insight into the charge transfer interactions in 1,2,4,5-tetracyanobenzene-phenazine cocrystal. Chin. Chem. Lett. 2021, 32, 3007–3010. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.-N.; Liu, X.-T.; Xu, K.; Liu, Y.-T.; Liu, L.-X.; Yan, Y. Cuprous Halide Coordination Polymer for Efficient NIR-I Photothermal Effect and Photo-Thermo-Electric Conversion. Molecules 2024, 29, 6034. https://doi.org/10.3390/molecules29246034
Zhang N-N, Liu X-T, Xu K, Liu Y-T, Liu L-X, Yan Y. Cuprous Halide Coordination Polymer for Efficient NIR-I Photothermal Effect and Photo-Thermo-Electric Conversion. Molecules. 2024; 29(24):6034. https://doi.org/10.3390/molecules29246034
Chicago/Turabian StyleZhang, Ning-Ning, Xiang-Tong Liu, Ke Xu, Ya-Tong Liu, Lin-Xu Liu, and Yong Yan. 2024. "Cuprous Halide Coordination Polymer for Efficient NIR-I Photothermal Effect and Photo-Thermo-Electric Conversion" Molecules 29, no. 24: 6034. https://doi.org/10.3390/molecules29246034
APA StyleZhang, N.-N., Liu, X.-T., Xu, K., Liu, Y.-T., Liu, L.-X., & Yan, Y. (2024). Cuprous Halide Coordination Polymer for Efficient NIR-I Photothermal Effect and Photo-Thermo-Electric Conversion. Molecules, 29(24), 6034. https://doi.org/10.3390/molecules29246034