Theoretical Study on Singlet Fission Dynamics and Triplet Migration Process in Symmetric Heterotrimer Models
Abstract
:1. Introduction
2. Methodology
2.1. Effective Energy-Matching Conditions for Heterotrimers
2.2. Construction of Exciton Hamiltonian
- (where the two-electron integral is defined by physicists’ representation: ) is the transfer integral of S1 exciton between neighboring monomers (FE coupling).
- , , , are CT-FE couplings. They are approximately interpreted as the Fock matrix elements denoted as LUMO-LUMO or HOMO-HOMO electron transfer integral for , and for , , where the , , , and represents the diabatic molecular orbitals localized to the lowest unoccupied molecular orbitals (LUMO) and the highest-occupied molecular orbitals (HOMO). If = , and are derived.
- and are CT-TT couplings, which is dominantly represented as the Fock matrix element of LUMO and HOMO: and . If = , .
- and are direct couplings between FE-TT states. Because these couplings only include two-electron integrals smaller than 0.1 meV, the effect of these couplings on SF dynamics is not significant compared with the CT-mediate coupling in this study.
- is the TTET coupling. In this study, we approximate this coupling by effective triplet transfer coupling obtained from quantum chemical calculation in dimer structure [41,42]. In this scheme, the perturbative 3CT-mediated triplet transfer pass shown in Figure 3b is added to the direct two-integral coupling as described in the following formula:
2.3. Quantum Master Equation
3. Results
3.1. Pre-Screening of Candidate Systems
3.2. Electronic Coupling
3.3. SF Dynamics Simulations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Molecule | E(S1) | E(T1) | ST-Gap | HOMO | LUMO | HL-Gap | σp *1 |
---|---|---|---|---|---|---|---|
PEN | 2.335 | 1.127 | 1.2079 | −5.89 | −1.56 | 4.33 | 0 |
F2PEN | 2.261 | 1.070 | 1.1916 | −5.95 | −1.69 | 4.26 | 0.06 |
Cl2PEN | 2.220 | 1.035 | 1.1845 | −6.11 | −1.91 | 4.20 | 0.23 |
CN2PEN | 2.067 | 0.935 | 1.1324 | −6.59 | −2.59 | 4.01 | 0.66 |
CF32PEN | 2.188 | 1.015 | 1.1728 | −6.40 | −2.20 | 4.20 | 0.54 |
Pr2PEN *2 | 2.226 | 1.054 | 1.1725 | −5.73 | −1.51 | 4.21 | −0.13 |
OCH32PEN | 2.212 | 1.041 | 1.1711 | −5.74 | −1.53 | 4.21 | −0.27 |
Ar2PEN *2 | 2.259 | 1.085 | 1.1749 | −5.77 | −1.51 | 4.27 | −0.01 |
Thi2PEN *2 | 2.235 | 1.065 | 1.1702 | −5.90 | −1.67 | 4.23 | 0.05 |
References
- Smith, M.B.; Michl, J. Singlet Fission. Chem. Rev. 2010, 110, 6891–6936. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.B.; Michl, J. Recent Advances in Singlet Fission. Annu. Rev. Phys. Chem. 2013, 64, 361–386. [Google Scholar] [CrossRef] [PubMed]
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Hanna, M.C.; Nozik, A.J. Solar Conversion Efficiency of Photovoltaic and Photoelectrolysis Cells with Carrier Multiplication Absorbers. J. Appl. Phys. 2006, 100, 074510. [Google Scholar] [CrossRef]
- Casanova, D. Theoretical Modeling of Singlet Fission. Chem. Rev. 2018, 118, 7164–7207. [Google Scholar] [CrossRef]
- Ito, S.; Nagami, T.; Nakano, M. Molecular Design for Efficient Singlet Fission. J. Photochem. Photobiol. C 2018, 34, 85–120. [Google Scholar] [CrossRef]
- Berkelbach, T.C.; Hybertsen, M.C.; Reichman, D.R. Microscopic Theory of Singlet Exciton Fission. I. General Formulation. J. Chem. Phys. 2013, 138, 114102. [Google Scholar] [CrossRef]
- Mirjani, F.; Renaud, N.; Gorczak, N.; Grozema, F.C. Theoretical Investigation of Singlet Fission in Molecular Dimers: The Role of Charge Transfer States and Quantum Interference. J. Phys. Chem. C 2014, 118, 14192–14199. [Google Scholar] [CrossRef]
- Berkelbach, T.C.; Hybertsen, M.C.; Reichman, D.R. Microscopic Theory of Singlet Exciton Fission. II. Application to Pentacene Dimers and the Role of Superexchange. J. Chem. Phys. 2013, 138, 114103. [Google Scholar] [CrossRef]
- Tao, G. Bath Effect in Singlet Fission Dynamics. J. Phys. Chem. C 2014, 118, 27258–27264. [Google Scholar] [CrossRef]
- Tempelaar, R.; Reichman, D.R. Vibronic Exciton Theory of Singlet Fission. III. How Vibronic Coupling and Thermodynamics Promote Rapid Triplet Generation in Pentacene Crystals. J. Chem. Phys. 2018, 148, 244701. [Google Scholar] [CrossRef]
- Ito, S.; Nagami, T.; Nakano, M. Density Analysis of Intra- and Intermolecular Vibronic Couplings toward Bath Engineering for Singlet Fission. J. Phys. Chem. Lett. 2015, 6, 4972–4977. [Google Scholar] [CrossRef]
- Miyata, K.; Conrad-Burton, F.S.; Geyer, F.L.; Zhu, X.-Y. Triplet Pair States in Singlet Fission. Chem. Rev. 2019, 119, 4261–4292. [Google Scholar] [CrossRef]
- Matsuda, S.; Oyama, S.; Kobori, Y. Electron spin polarization generated by transport of singlet and quintet multiexcitons to spin-correlated triplet pairs during singlet fissions. Chem. Sci. 2020, 11, 2934. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, Y.; Hamachi, T.; Yamauchi, A.; Nishimura, K.; Nakashima, Y.; Fujiwara, S.; Kimizuka, N.; Ryu, T.; Tamura, T.; Saigo, M.; et al. Singlet Fission as a Polarized Spin Generator for Dynamic Nuclear Polarization. Nat. Commun. 2023, 14, 1056. [Google Scholar] [CrossRef]
- Smyser, K.E.; Eaves, J.D. Singlet Fission for Quantum Information and Quantum Computing: The Parallel JDE Model. Sci. Rep. 2020, 10, 18480. [Google Scholar] [CrossRef]
- Wang, Y.; Haze, M.; Bui, H.T.; Soe, W.H.; Aubin, H.; Ardavan, A.; Heinrich, A.J.; Phark, S.H. Universal Quantum Control of an Atomic Spin Qubit on a Surface. npj Quantum Inf. 2023, 9, 48. [Google Scholar] [CrossRef]
- Zeng, T.; Hoffman, R.; Ananth, N. The Low-Lying Electronic States of Pentacene and Their Roles in Singlet Fission. J. Am. Chem. Soc. 2014, 136, 5755–5764. [Google Scholar] [CrossRef]
- Petelenz, P.; Snamina, M.; Mazur, G. Charge-Transfer States in Pentacene: Dimer versus Crystal. J. Phys. Chem. C 2015, 119, 14338–14342. [Google Scholar] [CrossRef]
- Petelenz, P.; Snamina, M. Locally Broken Crystal Symmetry Facilitates Singlet Exciton Fission. J. Phys. Chem. Lett. 2016, 7, 1913–1916. [Google Scholar] [CrossRef] [PubMed]
- Nagami, T.; Miyamoto, H.; Sakai, R.; Nakano, M. Stabilization of Charge-Transfer States in Pentacene Crystals and Its Role in Singlet Fission. J. Phys. Chem. C 2021, 125, 2264–2275. [Google Scholar] [CrossRef]
- Tonami, T.; Sugimori, R.; Sakai, R.; Tokuyama, K.; Miyamoto, H. Theoretical study on the effect of applying an external static electric field on the singlet fission dynamics of pentacene dimer models. Phys. Chem. Chem. Phys. 2021, 23, 11624–11634. [Google Scholar] [CrossRef]
- Miyamoto, H.; Nakano, M. Theoretical Study on Singlet Fission Dynamics in Pentacene Ring-Shaped Aggregate Models with Different Configurations. ChemPhotoChem 2020, 4, 5249–5263. [Google Scholar] [CrossRef]
- Miyamoto, H.; Okada, K.; Tokuyama, K.; Nakano, M. Theoretical Study on Singlet Fission Dynamics in Slip-Stack-Like Pentacene Ring-Shaped Aggregate Models. J. Phys. Chem. A 2021, 125, 5585–5600. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Sakai, H.; Fuki, M.; Ooie, R.; Ishiwari, F.; Saeki, A.; Tkachenko, N.V.; Kobori, Y.; Hasobe, T. Thermodynamic Control of Intramolecular Singlet Fission and Exciton-Transport in Linear Oligomeric Forms. Angew. Chem. 2023, 135, e202217704. [Google Scholar] [CrossRef]
- Dill, R.D.; Smyser, K.E.; Rugg, B.K.; Damrauer, N.H.; Eaves, J.D. Entangled spin-polarized excitons from singlet fission in a rigid dimer. Nat. Commun. 2023, 14, 1180. [Google Scholar] [CrossRef]
- Bayliss, S.L.; Weiss, L.R.; Kraffert, F.; Granger, D.B.; Anthony, J.E.; Behrends, J.; Bittl, R. Probing the wavefunction and dynamics of the quintet multiexciton state with coherent control in a singlet fission material. Phys. Rev. X 2020, 10, 021070. [Google Scholar]
- Mena, A.; Mann, S.K.; Cowley-Semple, A.; Bryan, E.; Heutz, S.; McCamey, D.R.; Attwood, M.; Bayliss, S.L. Room-temperature optically detected coherent control of molecular spins. Phys. Rev. Lett. 2024, 133, 120801. [Google Scholar] [CrossRef]
- Hirata, S.; Head-Gordon, M. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett. 1999, 314, 291–299. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Tripp, M.W.; Koert, U. Synthesis of 6,13-difluoropentacene. J. Org. Chem. 2020, 16, 2136–2140. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, M.; Ren, S.; Gao, X.; Hong, W.; Li, H.; Zhu, D. High performance organic thin film transistor based on pentacene derivative: 6,13-dichloropentacene. J. Mater. Chem. 2012, 22, 10496. [Google Scholar] [CrossRef]
- Schwaben, J.; Münster, N.; Breuer, T.; Klues, M.; Harms, K.; Witte, G.; Koert, U. Synthesis and Solid-State Structures of 6,13-Bis(trifluoromethyl)- and 6,13-Dialkoxypentacene. Eur. J. Org. Chem. 2013, 2013, 1639–1643. [Google Scholar] [CrossRef]
- Schwaben, J.; Münster, N.; Klues, M.; Breuer, T.; Hoffmann, P.; Harms, K.; Witte, G.; Koert, U. Efficient Syntheses of Novel Fluoro-Substituted Pentacenes and Azapentacenes: Molecular and Solid-State Properties. Chem.-Eur. J. 2015, 21, 13758–13771. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Kashima, K.; Li, S.; Nakajima, K.; Kanno, K. Isolation of 6,13-Dipropylpentacene and Its Tautomerization. J. Am. Chem. Soc. 2007, 129, 15752–15753. [Google Scholar] [CrossRef]
- Miao, Q.; Chi, X.; Xiao, S.; Zeis, R.; Lefenfeld, M.; Siegrist, T.; Steigerwald, M.L.; Nuckolls, C. Organization of Acenes with a Cruciform Assembly Motif. J. Am. Chem. Soc. 2006, 128, 1340–1345. [Google Scholar] [CrossRef]
- Sakamoto, K.; Hamachi, T.; Miyokawa, K.; Tateishi, K.; Uesaka, T.; Kurashige, Y.; Yanai, N. Polarizing agents beyond pentacene for efficient triplet dynamic nuclear polarization in glass matrices. Proc. Natl. Acad. Sci. USA 2023, 120, e2307926120. [Google Scholar] [CrossRef]
- Feng, X.; Luzanov, A.V.; Krylov, A.I. Fission of Entangled Spins: An Electronic Structure Perspective. J. Phys. Chem. Lett. 2013, 4, 3845–3852. [Google Scholar] [CrossRef]
- Matsika, S.; Feng, X.; Luzanov, A.V.; Krylov, A.I. What We Can Learn from the Norms of One-Particle Density Matrices, and What We Can’t: Some Results for Interstate Properties in Model Singlet Fission Systems. J. Phys. Chem. A 2014, 118, 11943–11955. [Google Scholar] [CrossRef]
- Harcourt, R.D.; Scholes, G.D.; Ghiggino, K.P. Rate expressions for excitation transfer. II. Electronic considerations of direct and through–configuration exciton resonance interactions. J. Chem. Phys. 1994, 101, 10521–10525. [Google Scholar] [CrossRef]
- Wehner, J.; Baumeier, B. Intermolecular Singlet and Triplet Exciton Transfer Integrals from Many-Body Green’s Functions Theory. J. Chem. Theor. Comp. 2017, 13, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Granovsky, A.A. Extended Multi-Configuration Quasi-Degenerate Perturbation Theory: The New Approach to Multi-State Multi-Reference Perturbation Theory. J. Chem. Phys. 2011, 134, 214113. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Truhlar, D.G. Direct Diabatization of Electronic States by the Fourfold Way. II. Dynamical Correlation and Rearrangement Processes. J. Chem. Phys. 2002, 117, 5576. [Google Scholar] [CrossRef]
- Barca, G.M.; Bertoni, C.; Carrington, L.; Datta, D.; De Silva, N.; Deustua, J.E.; Fedorov, D.G.; Gour, J.R.; Gunina, A.O.; Guidez, E.; et al. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020, 152, 154102. [Google Scholar] [CrossRef]
- Xie, X.; Santana-Bonilla, A.; Fang, W.; Liu, C.; Troisi, A.; Ma, H. Exciton–Phonon Interaction Model for Singlet Fission in Prototypical Molecular Crystals. J. Chem. Theor. Comp. 2019, 15, 3721–3729. [Google Scholar] [CrossRef]
- Nakano, M.; Nagami, T.; Tonami, T.; Okada, K.; Ito, S.; Kishi, R.; Kitagawa, Y.; Kubo, T. Quantum Master Equation Approach to Singlet Fission Dynamics in Pentacene Linear Aggregate Models: Size Dependences of Excitonic Coupling Effects. J. Comput. Chem. 2018, 40, 89–104. [Google Scholar] [CrossRef]
- Renaud, N.; Grozema, F.C. Intermolecular Vibrational Modes Speed up Singlet Fission in Perylenediimide Crystals. J. Phys. Chem. Lett. 2015, 6, 360–365. [Google Scholar] [CrossRef]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Reddy, S.R.; Coto, P.B.; Thoss, M. Quantum dynamical simulation of intramolecular singlet fission in covalently coupled pentacene dimers. J. Chem. Phys. 2019, 151, 044307. [Google Scholar] [CrossRef] [PubMed]
- Nagami, T.; Takayoshi, T.; Okada, K.; Yoshida, W.; Miyamoto, H.; Nakano, M. Vibronic coupling density analysis and quantum dynamics simulation for singlet fission in pentacene and its halogenated derivatives. J. Chem. Phys. 2020, 153, 134302. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.; Taft, R.W. A Survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyamoto, H.; Okada, K.; Tada, K.; Kishi, R.; Kitagawa, Y. Theoretical Study on Singlet Fission Dynamics and Triplet Migration Process in Symmetric Heterotrimer Models. Molecules 2024, 29, 5449. https://doi.org/10.3390/molecules29225449
Miyamoto H, Okada K, Tada K, Kishi R, Kitagawa Y. Theoretical Study on Singlet Fission Dynamics and Triplet Migration Process in Symmetric Heterotrimer Models. Molecules. 2024; 29(22):5449. https://doi.org/10.3390/molecules29225449
Chicago/Turabian StyleMiyamoto, Hajime, Kenji Okada, Kohei Tada, Ryohei Kishi, and Yasutaka Kitagawa. 2024. "Theoretical Study on Singlet Fission Dynamics and Triplet Migration Process in Symmetric Heterotrimer Models" Molecules 29, no. 22: 5449. https://doi.org/10.3390/molecules29225449
APA StyleMiyamoto, H., Okada, K., Tada, K., Kishi, R., & Kitagawa, Y. (2024). Theoretical Study on Singlet Fission Dynamics and Triplet Migration Process in Symmetric Heterotrimer Models. Molecules, 29(22), 5449. https://doi.org/10.3390/molecules29225449