Photoprotective Effects of Yeast Pulcherrimin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cytotoxicity of Pulcherrimin against HaCaT Cells
2.2. Protective Activity of Pulcherrimin after Subjecting HaCaT Cells to Oxidative Stress
2.3. Protective Activity of Pulcherrimin against UVC Radiation
2.4. Determination of SPF for Yeast Pulcherrimin
2.5. Estimation of the Degree of Protection against UVA
3. Materials and Methods
3.1. Chemicals and Other Materials
3.2. Obtaining Yeast Pulcherrimin
3.3. Cell Cultures
3.4. PrestoBlue Assay
3.5. Antioxidant Activity of Pulcherrimin
3.5.1. Measurement of Cell Viability after Exposure to H2O2 with Pulcherrimin Pre-Incubation
3.5.2. Measurement of ROS after Exposure to H2O2 and Pre-Incubation with Pulcherrimin
3.5.3. DNA Repair Measurement
3.6. DNA Damage Induced by UVC Radiation
3.7. Single Cell Gel Electrophoresis Assay (SCGE)
3.8. In Vitro Spectrophotometric Determination of SPF for Pulcherrimin
3.9. UVA Protection Parameters: Boots Star Rating System and Critical Wavelength
3.10. Statistical Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Radiation: Ultraviolet (UV) Radiation. 2016. Available online: https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv) (accessed on 10 August 2024).
- Beissert, S.; Granstein, R.D. UV-induced cutaneous photobiology. Crit. Rev. Biochem. Mol. Biol. 1996, 31, 381–404. [Google Scholar] [CrossRef]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. J. Inflamm. Res. 2022, 71, 817–831. [Google Scholar] [CrossRef]
- Slominski, R.M.; Chen, J.Y.; Raman, C.; Slominski, A.T. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc. Natl. Acad. Sci. USA 2024, 121, e2308374121. [Google Scholar] [CrossRef]
- Slominski, A.T.; Zmijewski, M.A.; Plonka, P.M.; Szaflarski, J.P.; Paus, R. How UV light touches the brain and endocrine system through skin, and why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef]
- Hessling, M.; Haag, R.; Sieber, N.; Vatter, P. The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes—A collection and analysis of a hundred years of data. GMS Hyg. Infect. 2021, 16, Doc07. [Google Scholar]
- Krutmann, J.; Schalka, S.; Watson, R.E.B.; Wei, L.; Morita, A. Daily photoprotection to prevent photoaging. Photodermatol. Photoimmunol. Photomed. 2021, 37, 482–489. [Google Scholar] [CrossRef]
- Gu, Y.; Han, J.; Jiang, C.; Zhang, Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020, 59, 101036. [Google Scholar] [CrossRef]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02009R1223-20190813 (accessed on 15 July 2024).
- Nisar, M.F.; Yousaf, M.; Saleem, M.; Khalid, H.; Niaz, K.; Yaqub, M.; Waqas, M.Y.; Ahmed, A.; Abaid-Ullah, M.; Chen, J.; et al. Development of iron sequester antioxidant quercetin@ZnO nanoparticles with photo-protective effects on UVA-irradiated HaCaT cells. Oxid. Med. Cell. Longev. 2021, 2021, 6072631. [Google Scholar] [CrossRef]
- Thompson, A.J.; Hart-Cooper, W.M.; Cunniffe, J.C.; Johnson, K.; Orts, W.J. Safer sunscreens: Investigation of naturally derived UV absorbers for potential use in consumer products. ACS Sustain. Chem. Eng. 2021, 9, 237746889. [Google Scholar] [CrossRef]
- Farris, P.K.; Valacchi, G. Ultraviolet light protection: Is it really enough? Antioxidants 2022, 11, 1484. [Google Scholar] [CrossRef]
- Ramadoss, T.; Weimer, D.S.; Mayrovitz, H.N. Topical iron chelator therapy: Current status and future prospects. Cureus 2023, 15, e47720. [Google Scholar] [CrossRef]
- Bernstein, E.F.; Sarkas, H.W.; Boland, P. Iron oxides in novel skin care formulations attenuate blue light for enhanced protection against skin damage. J. Cosmet. Dermatol. 2021, 20, 532–537. [Google Scholar] [CrossRef]
- Pouillot, A.; Polla, A.; Polla, B.S. Iron and iron chelators: A review on potential effects on skin aging. Curr. Aging Sci. 2013, 6, 225–231. [Google Scholar] [CrossRef]
- Kontoghiorghes, G.J.; Kontoghiorghe, C.N. Iron and chelation in biochemistry and medicine: New approaches to controlling iron metabolism and treating related diseases. Cells 2020, 9, 1456. [Google Scholar] [CrossRef]
- Miao, J.; Liao, W.; Pan, Z.; Wang, Q.; Duan, S.; Xiao, S.; Yang, Z.; Cao, Y. Isolation and identification of iron-chelating peptides from casein hydrolysates. Food Funct. 2019, 10, 2372–2381. [Google Scholar] [CrossRef]
- Saubenova, M.; Oleinikova, Y.; Rapoport, A.; Maksimovich, S.; Yermekbay, Z.; Khamedova, E. Bioactive peptides derived from whey proteins for health and functional beverages. Fermentation 2024, 10, 359. [Google Scholar] [CrossRef]
- Yuan, S.; Yong, X.; Zhao, T.; Li, Y.; Liu, J. Research progress of the biosynthesis of natural bio-antibacterial agent pulcherriminic acid in Bacillus. Molecules 2020, 25, 5611. [Google Scholar] [CrossRef]
- Sipiczki, M. Metschnikowia pulcherrima and related pulcherrimin-producing yeasts: Fuzzy species boundaries and complex antimicrobial antagonism. Microorganisms 2020, 8, 1029. [Google Scholar] [CrossRef]
- Rahmat, E.; Yu, J.S.; Lee, B.S.; Lee, J.; Ban, Y.; Yim, N.H.; Park, J.H.; Kang, C.H.; Kim, K.H.; Kang, Y. Secondary metabolites and transcriptomic analysis of novel pulcherrimin producer Metschnikowia persimmonesis KIOM G15050: A potent and safe food biocontrol agent. Heliyon 2024, 10, e28464. [Google Scholar] [CrossRef]
- Wang, D.; Zhan, Y.; Cai, D.; Li, X.; Wang, Q.; Chen, S. Regulation of the synthesis and secretion of the iron chelator cyclodipeptide pulcherriminic acid in Bacillus licheniformis. Appl. Environ. Microbiol. 2018, 84, e00262-18. [Google Scholar] [CrossRef]
- Pawlikowska, E.; Kolesińska, B.; Nowacka, M.; Kręgiel, D. A new approach to producing high yields of pulcherrimin from Metschnikowia yeasts. Fermentation 2020, 6, 114. [Google Scholar] [CrossRef]
- Kręgiel, D.; Nowacka, M.; Rygała, A.; Vadkertiová, R. Biological activity of pulcherrimin from the Metschnikowia pulcherrima clade. Molecules 2022, 27, 1855. [Google Scholar] [CrossRef] [PubMed]
- Kręgiel, D.; Czarnecka-Chrebelska, K.H.; Schusterová, H.; Vadkertiová, R.; Nowak, A. The Metschnikowia pulcherrima clade as a model for assessing inhibition of Candida spp. and the toxicity of its metabolite, pulcherrimin. Molecules 2023, 28, 5064. [Google Scholar] [CrossRef] [PubMed]
- Jayalakshmi, R.; Bavanilatha, M.; Narendrakumar, G.; Samrot, A.V. Bioactivity of pulcherrimin isolated from Bacillus subtilis SU-10 grown in FeSO4 rich medium. Int. J. Future Biotechnol. 2012, 1, 1–4. [Google Scholar]
- Tam, T.F.; Leung-Toung, R.; Li, W.; Wang, Y.; Karimian, K.; Spino, M. Iron chelator research: Past, present, and future. Curr. Med. Chem. 2003, 10, 983–995. [Google Scholar] [CrossRef]
- Reelfs, O.; Eggleston, I.M.; Pourzand, C. Skin protection against UVA-induced iron damage by multiantioxidants and iron chelating drugs/prodrugs. Curr. Drug Metab. 2010, 11, 242–249. [Google Scholar] [CrossRef]
- Karisma, V.W.; Wu, W.; Lei, M.; Liu, H.; Nisar, M.F.; Lloyd, M.D.; Pourzand, C.; Zhong, J.L. UVA-triggered drug release and photo-protection of skin. Front. Cell Dev. Biol. 2021, 9, 598717. [Google Scholar] [CrossRef]
- Zou, W.; Ramanathan, R.; Urban, S.; Sinclair, C.; King, K.; Tinker, R.; Bansal, V. Sunscreen testing: A critical perspective and future roadmap. Trends Analyt Chem. 2022, 157, 116724. [Google Scholar] [CrossRef]
- Commission Recommendation of 22 September 2006 on the Efficacy of Sunscreen Products and the Claims Made Relating Thereto. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32006H0647 (accessed on 15 July 2024).
- Fonseca, A.P.; Rafaela, N. Determination of sun protection factor by UV-vis spectrophotometry. Health Care Curr. Rev. 2013, 1, 108. [Google Scholar]
- Zarkogianni, M.; Nikolaidis, N. Determination of sun protection factor (SPF) and stability of oil-in-water emulsions containing Greek red saffron (Crocus sativus L.) as a main antisolar agent. Int. J. Adv. Res. Chem. Sci. 2016, 3, 1–7. [Google Scholar]
- Mansur, J.S.; Breder, M.N.; Mansur, M.C.; Azulay, R.D. Determination of sun protection factor by spectrophotometry. An. Bras. Dermatol. 1986, 61, 121–124. [Google Scholar]
- Ácsová, A.; Hojerová, J.; Janotková, L.; Bendová, H.; Jedličková, L.; Hamranová, V.; Martiniaková, S. The real UVB photoprotective efficacy of vegetable oils: In vitro and in vivo studies. Photochem. Photobiol. Sci. 2021, 20, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Era, B.; Floris, S.; Sogos, V.; Porcedda, C.; Piras, A.; Medda, R.; Fais, A.; Pintus, F. Anti-aging potential of extracts from Washingtonia filifera seeds. Plants 2021, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Hermund, D.B.; Torsteinsen, H.; Vega, J.; Figueroa, F.L.; Jacobsen, C. Screening for new cosmeceuticals from brown algae Fucus vesiculosus with antioxidant and photo-protecting properties. Mar. Drugs 2022, 20, 687. [Google Scholar] [CrossRef]
- Sunil, K.; Prasanna Kumara, T.P.; Kumar, B.A. To determine the sun protection factor by using ultra violet visible spectrophotometer for topical herbal formulations. Int. J. Adv. Res. 2020, 8, 365–372. [Google Scholar] [CrossRef]
- Prasanna Kumar, T.P.; Sarath Chandra Prakash, N.K.; Lokesh, P.; Manral, K. A simple and rapid method developed to determine the sun protection factor (SPF) by using UV-visible spectrophotometer for topical formulations. IOSR J. Res. Method. Educ. 2015, 5, 1–5. [Google Scholar]
- Kinda, A.; Boglarka-Katalin, B.; Erzsebet, F.; Emese, S.; Ibolya, F. Determination of the sun protection factor of sunscreens. Bull. Med. Sci. 2022, 95, 64–77. [Google Scholar]
- Yang, S.I.; Liu, S.; Brooks, G.J.; Lanctot, Y.; Gruber, J.V. Reliable and simple spectrophotometric determination of sun protection factor: A case study using organic UV filter-based sunscreen products. J. Cosmet. Dermatol. 2018, 17, 518–522. [Google Scholar] [CrossRef]
- The Boots, Co. PLC. The Revised Guidelines to the Practical Measurement of UVA/UVB Ratios According to the Boots Star Rating System; The Boots Co. PLC: Nottingham, UK, 2004. [Google Scholar]
- Moyal, D. UVA protection labeling and in vitro testing methods. Photochem. Photobiol. Sci. 2010, 9, 516–523. [Google Scholar] [CrossRef]
- Pavelkova, R.; Matouskova, P.; Hoova, J.; Porizka, J.; Marova, I. Preparation and characterisation of organic UV filters based on combined PHB/liposomes with natural phenolic compounds. J. Biotechnol. 2020, 324S, 100021. [Google Scholar] [CrossRef]
- Quintero-Rincón, P.; Pino-Benítez, N.; Galeano, E.; Rojo-Uribe, C.; Mesa-Arango, A.C.; Flórez-Acosta, O.A. Sloanea chocoana and S. pittieriana (Elaeocarpaceae): Chemical and biological studies of ethanolic extracts and skincare properties. Plants 2023, 12, 3953. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Giraldo, J.C.; Gallardo, C.; Puertas-Mejía, M.A. Selected extracts from high mountain plants as potential sunscreens with antioxidant capacity. Photochem. Photobiol. 2022, 98, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Favre-Bonvin, J.; Bernillon, J.; Salin, N.; Arpin, N. Biosynthesis of mycosporines: Mycosporine glutaminol in Trichothecium roseum. Phytochemistry 1987, 26, 2509–2514. [Google Scholar] [CrossRef]
- Wu, H.C.; Chen, Y.F.; Cheng, M.J.; Wu, M.D.; Chen, Y.L.; Chang, H.S. Investigations into chemical components from Monascus purpureus with photoprotective and anti-melanogenic activities. J. Fungi 2021, 7, 619. [Google Scholar] [CrossRef]
- Jain, S.; Prajapat, G.; Abrar, M.; Ledwani, L.; Singh, A.; Agrawal, A. Cyanobacteria as efficient producers of mycosporine-like amino acids. J. Basic. Microbiol. 2017, 57, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Lalegerie, F.; Lajili, S.; Bedoux, G.; Taupin, L.; Stiger-Pouvreau, V.; Connan, S. Photoprotective compounds in red macroalgae from Brittany: Considerable diversity in mycosporine-like amino acids (MAAs). Mar. Environ. Res. 2019, 147, 37–48. [Google Scholar] [CrossRef]
- Raj, S.; Kuniyil, A.M.; Sreenikethanam, A.; Gugulothu, P.; Jeyakumar, R.B.; Bajhaiya, A.K. Microalgae as a source of mycosporine-like amino acids (MAAs); Advances and Future Prospects. Int. J. Environ. Res. Public Health 2021, 18, 12402. [Google Scholar] [CrossRef]
- Su, W.; Wang, L.; Fu, X.; Ni, L.; Duan, D.; Xu, J.; Gao, X. Protective effect of a fucose-rich fucoidan isolated from Saccharina japonica against ultraviolet B-induced photodamage in vitro in human keratinocytes and in vivo in zebrafish. Mar. Drugs 2020, 18, 316. [Google Scholar] [CrossRef]
- Wang, K.; Deng, Y.; He, Y.; Cao, J.; Zhang, L.; Qin, L.; Qu, C.; Li, H.; Miao, J. Protective effect of mycosporine-like amino acids isolated from an antarctic diatom on UVB-induced skin damage. Int. J. Mol. Sci. 2023, 24, 15055. [Google Scholar] [CrossRef]
- Oda, Y.; Zhang, Q.; Matsunaga, S.; Fujita, M.J.; Sakai, R. Two new mycosporine-like amino acids LC-343 and mycosporine-ethanolamine from the micronesian marine sponge Lendenfeldia chondrodes. Chem. Lett. 2017, 46, 1272–1274. [Google Scholar] [CrossRef]
- Braun, C.; Reef, R.; Siebeck, U.E. Ultraviolet absorbing compounds provide a rapid response mechanism for UV protection in some reef fish. J. Photochem. Photobiol. B. 2016, 160, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Mayser, P.; Schäfer, U.; Krämer, H.J.; Irlinger, B.; Steglich, W. Pityriacitrin—An ultraviolet-absorbing indole alkaloid from the yeast Malassezia furfur. Arch. Dermatol. Res. 2002, 294, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Moliné, M.; Libkind, D.; Diéguez Mdel, C.; van Broock, M. Photoprotective role of carotenoids in yeasts: Response to UV-B of pigmented and naturally-occurring albino strains. J. Photochem. Photobiol. B 2009, 95, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988, 106, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Dutra, E.A.; Oliveira, D.A.; Kedor-Hackmann, E.R.M.; Santoro, M.I.R.M. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Braz. J. Pharm. Sci. 2004, 40, 381–385. [Google Scholar] [CrossRef]
- Sayre, R.M.; Agin, P.P.; LeVee, G.J.; Marlowe, E. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol. 1979, 29, 559–566. [Google Scholar] [CrossRef]
λ [nm] | Absorbance A | p Value (UMW Test) | |
---|---|---|---|
pH 7 | pH 10 | ||
290 | 2.411 ± 0.157 | 1.946 ± 0.084 | 0.029 |
295 | 2.135 ± 0.138 | 1.738 ± 0.190 | 0.030 |
300 | 2.018 ± 0.127 | 1.639 ± 0.116 | 0.030 |
305 | 1.977 ± 0.121 | 1.600 ± 0.118 | 0.030 |
310 | 1.955 ± 0.120 | 1.582 ± 0.120 | 0.030 |
315 | 1.933 ± 0.115 | 1.554 ± 0.127 | 0.030 |
320 | 1.919 ± 0.116 | 1.549 ± 0.123 | 0.030 |
SPF * | 20.00 ± 1.44 (20 *) | 16.20 ± 1.36 (15 *) | 0.030 |
pH Level | λcr [nm] | R | Star Rating | Protection Category |
---|---|---|---|---|
7 | 387.99 ± 0.47 | 1.08 ± 0.02 | ***** | ultra |
10 | 389.00 ± 0.88 | 1.05 ± 0.02 | ***** | ultra |
λ [nm] | EE(λ) × I(λ) |
---|---|
290 | 0.0150 |
295 | 0.0817 |
300 | 0.2874 |
305 | 0.3278 |
310 | 0.1864 |
315 | 0.0839 |
320 | 0.0180 |
R | Star Rating | Protection Category |
---|---|---|
0–0.2 | None | none |
0.21–0.41 | * | minimal |
0.42–0.61 | ** | moderate |
0.62–0.81 | *** | good |
0.82–0.91 | **** | superior |
>0.92 | ***** | ultra |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kregiel, D.; Krajewska, A.; Kowalska-Baron, A.; Czarnecka-Chrebelska, K.H.; Nowak, A. Photoprotective Effects of Yeast Pulcherrimin. Molecules 2024, 29, 4873. https://doi.org/10.3390/molecules29204873
Kregiel D, Krajewska A, Kowalska-Baron A, Czarnecka-Chrebelska KH, Nowak A. Photoprotective Effects of Yeast Pulcherrimin. Molecules. 2024; 29(20):4873. https://doi.org/10.3390/molecules29204873
Chicago/Turabian StyleKregiel, Dorota, Agnieszka Krajewska, Agnieszka Kowalska-Baron, Karolina H. Czarnecka-Chrebelska, and Adriana Nowak. 2024. "Photoprotective Effects of Yeast Pulcherrimin" Molecules 29, no. 20: 4873. https://doi.org/10.3390/molecules29204873
APA StyleKregiel, D., Krajewska, A., Kowalska-Baron, A., Czarnecka-Chrebelska, K. H., & Nowak, A. (2024). Photoprotective Effects of Yeast Pulcherrimin. Molecules, 29(20), 4873. https://doi.org/10.3390/molecules29204873