Regulating Microstructure and Macroscopic Properties in Saturated Salt Solutions Containing Disordered Anions and Cations by Magnetic Field
Abstract
:1. Introduction
2. Results and Discussion
2.1. Raman Spectroscopy Results and Analysis
2.2. Contact Angle Results Analysis
2.3. Analysis of XRD Results
2.4. Simulation Results Analysis
3. Materials and Methods
3.1. Magnetization
3.2. Raman Spectroscopy Experiment
3.3. Contact Angle Measurement
3.4. XRD Measurement and Data Analysis Utilizing PDFgetX3 Software
3.5. MD Simulations and Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, J.; Yi, F.; Marshall, M.; Chaffee, A.L.; Chang, L. Hydrothermal dewatering of a Chinese lignite and properties of the solid products. Fuel 2016, 180, 473–480. [Google Scholar] [CrossRef]
- Doi, T.; Adachi, T.; Kudo, T.; Usuki, N. In situ investigation of CO2 corrosion in Cr-containing steels in CO2-saturated salt solution at elevated temperatures and pressures. Corros. Sci. 2020, 177, 108931. [Google Scholar] [CrossRef]
- Bui, R.; Labat, M.; Aubert, J. Comparison of the Saturated Salt Solution and the Dynamic Vapor Sorption techniques based on the measured sorption isotherm of barley straw. Constr. Build. Mater. 2017, 141, 140–151. [Google Scholar] [CrossRef]
- Halimi, M.; Poli, F.; Mancuso, N.; Olivieri, A.; Mattioli, E.J.; Calvaresi, M.; Chafik, T.; Zanelli, A.; Soavi, F. Circumneutral concentrated ammonium acetate solution as water-in-salt electrolyte. Electrochim. Acta 2021, 389, 138653. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Wei, G.Y.; Qiang, G.U.O.; Qu, J.K.; Tao, Q.I. Crystallization of gibbsite from synthetic chromate leaching solution in sub-molten salt process. Trans. Nonferrous Met. Soc. China 2015, 25, 2734–2743. [Google Scholar] [CrossRef]
- Chen, S.; Sun, P.; Sun, B.; Humphreys, J.; Zou, P.; Xie, K.; Tao, S. Nitrate-based ‘oversaturated gel electrolyte’ for high-voltage and high-stability aqueous lithium batteries. Energy Storage Mater. 2021, 37, 598–608. [Google Scholar] [CrossRef]
- Zhao, J.; Duan, H.; Jiang, R. Synergistic corrosion inhibition effect of quinoline quaternary ammonium salt and Gemini surfactant in H2S and CO2 saturated brine solution. Corros. Sci. 2015, 91, 108–119. [Google Scholar] [CrossRef]
- Holysz, L.; Szczes, A.; Chibowski, E. Effects of a static magnetic field on water and electrolyte solutions. J. Colloid Interface Sci. 2007, 316, 996–1002. [Google Scholar] [CrossRef]
- Eshaghi, Z.; Gholizadeh, M. The effect of magnetic field on the stability of (18-crown-6) complexes with potassium ion. Talanta 2004, 64, 558–561. [Google Scholar] [CrossRef]
- Higashitani, K.; Oshitani, J. Magnetic effects on thickness of adsorbed layer in aqueous solutions evaluated directly by atomic force micro-scope. J. Colloid Interface Sci. 1998, 204, 363–368. [Google Scholar] [CrossRef]
- Chang, K.T.; Weng, C.I. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J. Appl. Phys. 2006, 100, 043917. [Google Scholar] [CrossRef]
- Ohata, R.; Tomita, N.; Ikada, Y. Effect of a static magnetic field on ion transport in a cellulose membrane. J. Colloid Interface Sci. 2004, 270, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Knez, S.; Pohar, C. The magnetic field influence on the polymorph composition of CaCO3 precipitated from carbonized aqueous solutions. J. Colloid Interface Sci. 2005, 281, 377–388. [Google Scholar] [CrossRef]
- Zhong, C.; Wakayama, N.I. Effect of a high magnetic field on the viscosity of an aqueous solution of protein. J. Cryst. Growth 2001, 226, 327–332. [Google Scholar] [CrossRef]
- Silva, I.B.; Neto, J.C.Q.; Petri, D.F.S. The effect of magnetic field on ion hydration and sulfate scale formation. Colloids Surf. A Physicochem. Eng. Asp. 2015, 465, 175–183. [Google Scholar] [CrossRef]
- Niu, X.; Du, K.; Xiao, F. Experimental study on the effect of magnetic field on the heat conductivity and viscosity of ammonia–water. Energy Build. 2011, 43, 1164–1168. [Google Scholar] [CrossRef]
- Iwasaka, M.; Ueno, S. Structure of water molecules under 14 T magnetic field. J. Appl. Phys. 1998, 83, 6459–6461. [Google Scholar] [CrossRef]
- Murad, S. The role of magnetic fields on the membrane-based separation of aqueous electrolyte solutions. Chem. Phys. Lett. 2006, 417, 465–470. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, H.; Wu, Y.; Hu, T.; Li, Q. Hydration and coordination of K+ solvation in water from ab initio molecular-dynamics simulation. J. Chem. Phys. 2010, 132, 124503. [Google Scholar] [CrossRef]
- Bouř, P. A cluster model of liquid water and its IR spectroscopic response. Chem. Phys. Lett. 2002, 365, 82–88. [Google Scholar] [CrossRef]
- Ramaniah, L.M.; Bernasconi, M.; Parrinello, M. Ab initio molecular-dynamics simulation of K+ solvation in water. J. Chem. Phys. 1999, 111, 1587–1591. [Google Scholar] [CrossRef]
- Wang, J.; Lin, H.; An, S.; Li, S.; Li, F.; Yuan, J. Concentration-dependent structure of KCl aqueous solutions under weak magnetic field from the X-ray diffraction and molecular dynamics simulation. J. Mol. Struct. 2020, 1201, 127130. [Google Scholar] [CrossRef]
- Sun, Q. Local statistical interpretation for water structure. Chem. Phys. Lett. 2013, 568, 90–94. [Google Scholar] [CrossRef]
- Li, Q.; Wu, G.; Yu, Z. The role of methyl groups in the formation of hydrogen bond in DMSO− methanol mixtures. J. Am. Chem. Soc. 2006, 128, 1438–1439. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Lin, K.; Hu, N.Y.; Zhou, X.G.; Liu, S.L. Ion Pairs in aqueous magnesium nitrate solution by excess Raman spectroscopy. Acta Phys.-Chim. Sin. 2012, 28, 1823–1829. [Google Scholar] [CrossRef]
- Dawson, B.S.W.; Irish, D.E.; Toogood, G.E. Vibrational spectral studies of solutions at elevated temperatures and pressures. 8. A Raman spectral study of ammonium hydrogen sulfate solutions and the hydrogen sulfate-sulfate equilibrium. J. Phys. Chem. 1986, 90, 334–341. [Google Scholar] [CrossRef]
- Wang, C.H. Study of the libration of the ammonium ion in ammonium bromide in the ordered tetragonal phase by Raman spectroscopy. J. Chem. Phys. 1973, 58, 2934–2939. [Google Scholar] [CrossRef]
- Higashitani, K.; Oshitani, J. Measurements of magnetic effects on electrolyte solutions by atomic force microscope. Process Saf. Envi-Ronmental Prot. 1997, 75, 115–119. [Google Scholar] [CrossRef]
- Otsuka, I.; Ozeki, S. Does magnetic treatment of water change its properties? J. Phys. Chem. B 2006, 110, 1509–1512. [Google Scholar] [CrossRef]
- Chang, K.T.; Weng, C.I. An investigation into the structure of aqueous NaCl electrolyte solutions under magnetic fields. Comput. Mater. Sci. 2008, 43, 1048–1055. [Google Scholar] [CrossRef]
- Oshitani, J.; Yamada, D.; Miyahara, M.; Higashitani, K. Magnetic effect on ion-exchange kinetics. J. Colloid Interface Sci. 1999, 210, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Juhás, P.; Davis, T.; Farrow, C.L.; Billinge, S.J. PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Crystallogr. 2013, 46, 560–566. [Google Scholar] [CrossRef]
- Fu, L.; Bienenstock, A.; Brennan, S. X-ray study of the structure of liquid water. J. Chem. Phys. 2009, 131, 234702. [Google Scholar] [CrossRef] [PubMed]
- Tuckerman, M.; Berne, B.J.; Martyna, G.J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 1992, 97, 1990–2001. [Google Scholar] [CrossRef]
- Cassone, G.; Creazzo, F.; Giaquinta, P.V.; Saija, F.; Saitta, A.M. Ab initio molecular dynamics study of an aqueous NaCl solution under an electric field. Phys. Chem. Chem. Phys. 2016, 18, 23164–23173. [Google Scholar] [CrossRef]
- Neilson, G.W.; Skipper, N. K+ coordination in aqueous solution. Chem. Phys. Lett. 1985, 114, 35–38. [Google Scholar] [CrossRef]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; An, S.; Ren, J. Regulating Microstructure and Macroscopic Properties in Saturated Salt Solutions Containing Disordered Anions and Cations by Magnetic Field. Molecules 2024, 29, 543. https://doi.org/10.3390/molecules29020543
Wang J, An S, Ren J. Regulating Microstructure and Macroscopic Properties in Saturated Salt Solutions Containing Disordered Anions and Cations by Magnetic Field. Molecules. 2024; 29(2):543. https://doi.org/10.3390/molecules29020543
Chicago/Turabian StyleWang, Jihong, Shasha An, and Junchao Ren. 2024. "Regulating Microstructure and Macroscopic Properties in Saturated Salt Solutions Containing Disordered Anions and Cations by Magnetic Field" Molecules 29, no. 2: 543. https://doi.org/10.3390/molecules29020543
APA StyleWang, J., An, S., & Ren, J. (2024). Regulating Microstructure and Macroscopic Properties in Saturated Salt Solutions Containing Disordered Anions and Cations by Magnetic Field. Molecules, 29(2), 543. https://doi.org/10.3390/molecules29020543