Stability and Electronic Properties of Mixed Rare-Earth Tri-Metallofullerenes YxDy3-x@C80 (x = 1 or 2)
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental and Theoretical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shinohara, H. Endohedral metallofullerenes. Rep. Prog. Phys. 2000, 63, 843. [Google Scholar] [CrossRef]
- Chaur, M.N.; Melin, F.; Ortiz, A.L.; Echegoyen, L. Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew. Chem. Int. Ed. 2009, 48, 7514–7538. [Google Scholar] [CrossRef]
- Cong, H.; Yu, B.; Akasaka, T.; Lu, X. Endohedral metallofullerenes: An unconventional core–shell coordination union. Coord. Chem. Rev. 2013, 257, 2880–2898. [Google Scholar]
- Popov, A.A.; Yang, S.; Dunsch, L. Endohedral fullerenes. Chem. Rev. 2013, 113, 5989–6113. [Google Scholar] [CrossRef]
- Wang, T.; Wang, C. Endohedral Metallofullerenes Based on Spherical Ih-C80 Cage: Molecular Structures and Paramagnetic Properties. Acc. Chem. Res. 2014, 47, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wei, T.; Jin, F. When metal clusters meet carbon cages: Endohedral clusterfullerenes. Chem. Soc. Rev. 2017, 46, 5005–5058. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.S.; Wang, W.W.; Zheng, J.J.; Zhao, X.; Nagase, S. Fused-Pentagon-Configuration-Dependent Electron Transfer of Monotitanium-Encapsulated Fullerenes. Inorg. Chem. 2017, 56, 6890–6896. [Google Scholar] [CrossRef]
- Jin, P.; Li, Y.; Magagula, S.; Chen, Z. Exohedral functionalization of endohedral metallofullerenes: Interplay between inside and outside. Coord. Chem. Rev. 2019, 388, 406–439. [Google Scholar] [CrossRef]
- Shen, W.; Hu, S.; Lu, X. Endohedral metallofullerenes: New structures and unseen phenomena. Chem. Eur. J. 2020, 26, 5748–5757. [Google Scholar] [CrossRef]
- Li, M.; Zhao, R.; Dang, J.; Zhao, X. Theoretical study on the stabilities, electronic structures, and reaction and formation mechanisms of fullerenes and endohedral metallofullerenes. Coord. Chem. Rev. 2022, 471, 214762. [Google Scholar] [CrossRef]
- Shen, W.; Bao, L.; Lu, X. Endohedral Metallofullerenes: An Ideal Platform of Sub-Nano Chemistry. Chin. J. Chem. 2022, 40, 275–284. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Ullah, A.; Gutiérrez-Finol, G.M.; Bedoya-Pinto, A.; Gargiani, P.; Shi, D.; Yang, S.; Shi, Z.; Gaita-Ariño, A.; et al. High-temperature magnetic blocking in a monometallic dysprosium azafullerene single-molecule magnet. Chem 2023, 9, 3613–3622. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Morales-Martínez, R.; Zhong, J.; de Graaf, C.; Rodríguez-Fortea, A.; Poblet, J.M.; Echegoyen, L.; Feng, L.; Chen, N. U2@Ih(7)-C80: Crystallographic Characterization of a Long-Sought Dimetallic Actinide Endohedral Fullerene. J. Am. Chem. Soc. 2018, 140, 3907–3915. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Roselló, Y.; Yao, Y.R.; Zhuang, J.; Zhang, X.; Rodríguez-Fortea, A.; de Graaf, C.; Echegoyen, L.; Poblet, J.M.; Chen, N. U2N@Ih(7)-C80: Fullerene Cage Encapsulating an Unsymmetrical U (IV) = N = U (V) Cluster. Chem. Sci. 2021, 12, 282–292. [Google Scholar] [CrossRef]
- Junghans, K.; Rosenkranz, M.; Popov, A.A. Sc3CH@C80: Selective 13C enrichment of the central carbon atom. Chem. Commun. 2016, 52, 6561–6564. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Tan, K.; Nie, M.; Lu, Y.; Zhang, J.; Wang, C.; Lu, X.; Wang, T. Scandium Tetrahedron Supported by H Anion and CN Pentaanion inside Fullerene C80. Inorg. Chem. 2020, 59, 8284–8290. [Google Scholar] [CrossRef]
- Fuertes-Espinosa, C.; Gómez-Torres, A.; Morales-Martínez, R.; Rodríguez-Fortea, A.; García-Simón, C.; Gándara, F.; Imaz, I.; Juanhuix, J.; Maspoch, D.; Poblet, J.M.; et al. Purification of Uranium-based Endohedral Metallofullerenes (EMFs) by Selective Supramolecular Encapsulation and Release. Angew. Chem. 2018, 130, 11464–11469. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, L.; Ji, J.; Hou, Q.; Li, L.; Jin, P. Undiscovered Effect of C ↔ N Interchange Inside the Metal Carbonitride Clusterfullerenes: A Density Functional Theory Investigation. Inorg. Chem. 2020, 59, 6518–6527. [Google Scholar] [CrossRef]
- Wei, T.; Wang, S.; Lu, X.; Tan, Y.; Huang, J.; Liu, F.; Li, Q.; Xie, S.; Yang, S. Entrapping a group-VB transition metal, vanadium, within an endohedral metallofullerene: V x Sc3–x N@ I h-C80 (x= 1, 2). J. Am. Chem. Soc. 2016, 138, 207–214. [Google Scholar] [CrossRef]
- Takata, M.; Umeda, B.; Nishibori, E.; Sakata, M.; Saitot, Y.; Ohno, M.; Shinohara, H. Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 1995, 377, 46–49. [Google Scholar] [CrossRef]
- Shinohara, H.; Sato, H.; Saito, Y.; Ohkohchi, M.; Ando, Y. Mass spectroscopic and ESR characterization of soluble yttrium-containing metallofullerenes YC82 and Y2C82. J. Phys. Chem. 2002, 96, 3571–3573. [Google Scholar] [CrossRef]
- Xu, D.; Jiang, Y.; Wang, Y.; Zhou, T.; Shi, Z.; Omachi, H.; Shinohara, H.; Sun, B.; Wang, Z. Turning on the Near-Infrared Photoluminescence of Erbium Metallofullerenes by Covalent Modification. Inorg. Chem. 2019, 58, 14325–14330. [Google Scholar] [CrossRef]
- Lu, X.; Akasaka, T.; Nagase, S. Chemistry of endohedral metallofullerenes: The role of metals. Chem. Commun. 2011, 47, 5942–5957. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Liu, M.T.; Nagase, S.; Akasaka, T. New horizons in chemical functionalization of endohedral metallofullerenes. Molecules 2020, 25, 3626. [Google Scholar] [CrossRef]
- Akasaka, T.; Wakahara, T.; Nagase, S.; Kobayashi, K.; Waelchli, M.; Yamamoto, K.; Kondo, M.; Shirakura, S.; Okubo, S.; Maeda, Y.; et al. La@ C82 anion. An unusually stable metallofullerene. J. Am. Chem. Soc. 2000, 122, 9316–9317. [Google Scholar] [CrossRef]
- Feng, L.; Nakahodo, T.; Wakahara, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Kato, T.; Horn, E.; Yoza, K.; Mizorogi, N.; et al. A singly bonded derivative of endohedral metallofullerene: La@ C82CBr (COOC2H5) 2. J. Am. Chem. Soc. 2005, 127, 17136–17137. [Google Scholar] [CrossRef]
- García-Hernández, D.A.; Manchado, A.; Cataldo, F. Hydrogenation of [Li@C60]PF6: A comparison with fulleranes derived from C60. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 1245–1251. [Google Scholar]
- Kobayashi, K.; Nagase, S.; Akasaka, T. A theoretical study of C80 and La2@C80. Chem. Phys. Lett. 1995, 245, 230–236. [Google Scholar] [CrossRef]
- Wang, Z.; Kitaura, R.; Shinohara, H. Metal-dependent stability of pristine and functionalized unconventional dimetallofullerene M2@Ih-C80. J. Phys. Chem. C 2014, 118, 13953–13958. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Z.; Zhang, J.; Wang, Z. Endohedral metallofullerene M2@C80: A new class of magnetic superhalogen. J. Phys. Chem. C 2019, 124, 2131–2136. [Google Scholar] [CrossRef]
- Liu, F.; Velkos, G.; Krylov, D.S.; Spree, L.; Zalibera, M.; Ray, R.; Samoylova, N.A.; Chen, C.H.; Rosenkranz, M.; Schiemenz, S.; et al. Air-stable redox-active nanomagnets with lanthanide spins radical-bridged by a metal–metal bond. Nat. Commun. 2019, 10, 571. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.; Dunsch, L. Isolation and characterisation of two Sc3N@C80 isomers. ChemPhysChem 2004, 5, 1445–1449. [Google Scholar] [CrossRef]
- Kurihara, H.; Iiduka, Y.; Rubin, Y.; Waelchli, M.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Unexpected formation of a Sc3C2@C80 bisfulleroid derivative. J. Am. Chem. Soc. 2012, 134, 4092–4095. [Google Scholar] [CrossRef]
- Wang, T.S.; Chen, N.; Xiang, J.F.; Li, B.; Wu, J.Y.; Xu, W.; Jiang, L.; Tan, K.; Shu, C.Y.; Lu, X.; et al. Russian-doll-type metal carbide endofullerene: Synthesis, isolation, and characterization of Sc4C2@C80. J. Am. Chem. Soc. 2009, 131, 16646–16647. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Shen, W.; Bao, L.; Pan, C.; Slanina, Z.; Lu, X. Trapping an unprecedented Ti3C3 unit inside the icosahedral C80 fullerene: A crystallographic survey. Chem. Sci. 2019, 10, 10925–10930. [Google Scholar] [CrossRef]
- Jin, F.; Xin, J.; Guan, R.; Xie, X.M.; Chen, M.; Zhang, Q.; Popov, A.A.; Xie, S.Y.; Yang, S. Stabilizing a three-center single-electron metal–metal bond in a fullerene cage. Chem. Sci. 2021, 12, 6890–6895. [Google Scholar] [CrossRef] [PubMed]
- Tagmatarchis, N.; Aslanis, E.; Prassides, K.; Shinohara, H. Mono-, di- and trierbium endohedral metallofullerenes: Production, separation, isolation, and spectroscopic study. Chem. Mater. 2001, 13, 2374–2379. [Google Scholar] [CrossRef]
- Yang, S.; Dunsch, L. Di-and tridysprosium endohedral metallofullerenes with cages from C94 to C100. Angew. Chem. Int. Ed. 2006, 45, 1299–1302. [Google Scholar] [CrossRef]
- Guo, Y.J.; Zheng, H.; Yang, T.; Nagase, S.; Zhao, X. Theoretical Insight into the Ambiguous Endohedral Metallofullerene Er3C74: Covalent Interactions among Three Lanthanide Atoms. Inorg. Chem. 2015, 54, 8066–8076. [Google Scholar] [CrossRef]
- Lian, Y.; Shi, Z.; Zhou, X.; Gu, Z. Different extraction Behaviors between divalent and trivalent endohedral metallofullerenes. Chem. Mater. 2004, 16, 1704–1714. [Google Scholar] [CrossRef]
- Popov, A.A.; Zhang, L.; Dunsch, L. A pseudoatom in a cage: Trimetallofullerene Y3@C80 mimics Y3N@C80 with nitrogen substituted by a pseudoatom. ACS Nano 2010, 4, 795–802. [Google Scholar] [CrossRef]
- Xu, W.; Feng, L.; Calvaresi, M.; Liu, J.; Liu, Y.; Niu, B.; Shi, Z.; Lian, Y.; Zerbetto, F. An Experimentally Observed Trimetallofullerene Sm3@Ih-C80: Encapsulation of Three Metal Atoms in a Cage without a Nonmetallic Mediator. J. Am. Chem. Soc. 2013, 135, 4187–4190. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Z.; Wu, Y.; Wang, Z. Ln3@C80+(Ln= lanthanide): A new class of stable metallofullerene cations with multicenter metal–metal bonding in the sub-nanometer confined space. Inorg. Chem. Front. 2022, 9, 2173–2181. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, L.; Mu, L.; Ren, J.; Kong, X. A systematic study on the generation of multimetallic lanthanide fullerene ions by laser ablation mass spectrometry. Rapid Commun. Mass Spectrom. 2018, 32, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ren, J.; Mu, L.; Kong, X. Metallofullerene ions of Lun (1⩽n⩽9, 50⩽2m⩽198) generated by laser ablation of graphene/LuCl3. Int. J. Mass Spectrom. 2017, 422, 105–110. [Google Scholar] [CrossRef]
- Mu, L.; Yang, S.; Feng, R.; Kong, X. Encapsulation of Platinum in Fullerenes: Is That Possible? Inorg. Chem. 2017, 56, 6035–6038. [Google Scholar] [CrossRef]
- Kong, X.; Bao, X. Formation of endohedral metallofullerene (EMF) ions of (M = La, Y, n ⩽ 6, 50 ⩽ 2 m ⩽ 194) in the laser ablation process with graphene as precursor. Rapid Commun. Mass Spectrom. 2017, 31, 865–872. [Google Scholar] [CrossRef]
- Sabirov, D.S.; Tukhbatullina, A.A.; Shepelevich, I.S. Digitalizing Structure–Symmetry Relations at the Formation of Endofullerenes in Terms of Information Entropy Formalism. Symmetry 2022, 14, 1800. [Google Scholar] [CrossRef]
- Popov, A.A.; Dunsch, L. Structure, Stability, and Cluster-Cage Interactions in Nitride Clusterfullerenes M3N@C2n(M = Sc, Y; 2n = 68-98): A Density Functional Theory Study. J. Am. Chem. Soc. 2007, 129, 11835–11849. [Google Scholar] [CrossRef]
- Jin, P.; Tang, C.; Chen, Z. Carbon atoms trapped in cages: Metal carbide clusterfullerenes. Coord. Chem. Rev. 2014, 270, 89–111. [Google Scholar] [CrossRef]
- Osawa, E. Formation Mechanism of C60 under Nonequilibrium and Irreversible Conditions—An Annotation. Fuller. Nanotub. Carbon Nanostruct. 2012, 20, 299–309. [Google Scholar] [CrossRef]
- Sabirov, D.S.; Terentyev, A.O.; Sokolov, V.I. Activation energies and information entropies of helium penetration through fullerene walls. Insights into the formation of endofullerenes nX@C60/70 (n = 1 and 2) from the information entropy approach. RSC Adv. 2016, 6, 72230–72237. [Google Scholar]
- Aoyagi, S.; Nishibori, E.; Sawa, H.; Sugimoto, K.; Takata, M.; Miyata, Y.; Kitaura, R.; Shinohara, H.; Okada, H.; Sakai, T.; et al. A layered ionic crystal of polar Li@C60 superatoms. Nat. Chem. 2010, 2, 678–683. [Google Scholar] [CrossRef]
- Aoyagi, S.; Sado, Y.; Nishibori, E.; Sawa, H.; Okada, H.; Tobita, H.; Kasama, Y.; Kitaura, R.; Shinohara, H. Rock-Salt-Type Crystal of Thermally Contracted C60 with Encapsulated Lithium Cation. Angew. Chem. Int. Ed. 2012, 124, 3433–3437. [Google Scholar] [CrossRef]
- Okada, H.; Komuro, T.; Sakai, T.; Matsuo, Y.; Ono, Y.; Omote, K.; Yokoo, K.; Kawachi, K.; Kasama, Y.; Ono, S.; et al. Preparation of endohedral fullerene containing lithium (Li@C60) and isolation as pure hexafluorophosphate salt ([Li+@C60][]). RSC Adv. 2012, 2, 10624–10631. [Google Scholar]
- Kandrashkin, Y.E.; Zaripov, R.B. Low-temperature motion of the scandium bimetal in endofullerene Sc@C80(CH2Ph). Phys. Chem. Chem. Phys. 2023, 25, 31493–31499. [Google Scholar] [CrossRef]
- Bhusal, S.; Baruah, T.; Yamamoto, Y.; Zope, R.R. Electronic structure calculation of vanadium-and scandium-based endohedral fullerenes VSc2N@C2n(2n = 70, 76, 78, 80). Int. J. Quantum. Chem. 2018, 118, e25785. [Google Scholar] [CrossRef]
- Hao, Y.; Velkos, G.; Schiemenz, S.; Rosenkranz, M.; Wang, Y.; Büchner, B.; Avdoshenko, S.M.; Popov, A.A.; Liu, F. Using internal strain and mass to modulate Dy⋯Dy coupling and relaxation of magnetization in heterobimetallic metallofullerenes DyM2N@C80 and Dy2MN@C80 (M = Sc, Y, La, Lu). Inorg. Chem. Front. 2023, 10, 468–484. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Savin, A.; Nesper, R.; Wengert, S.; Fässler, T.F. ELF: The electron localization function. Angew. Chem. Int. Ed. Engl. 1997, 36, 1808–1832. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
Molecular Formula | Relative Energy |
---|---|
Y2Dy@Ih-31924C80 | 0.00 |
Y2Dy@D5h-31923C80 | 12.04 |
Y2Dy@C2v-31922C80 | 17.13 |
Y2Dy@C1-28325C80 | 19.50 |
Y2Dy@C2-29591C80 | 24.54 |
Y2Dy@C2v-31920C80 | 25.58 |
Y2Dy@C1-31876C80 | 28.06 |
Y2Dy@C2-28319C80 | 29.20 |
Y2Dy@C1-28324C80 | 30.50 |
Molecular Formula | Relative Energy |
---|---|
YDy2@Ih-31924C80 | 0.00 |
YDy2@D5h-31923C80 | 12.08 |
YDy2@C2v-31922C80 | 18.67 |
YDy2@C1-28325C80 | 23.05 |
YDy2@C2-29591C80 | 27.81 |
YDy2@C2v-31920C80 | 28.11 |
YDy2@C1-31876C80 | 29.76 |
YDy2@C2-28319C80 | 30.49 |
YDy2@C1-28314C80 | 32.32 |
Molecular Formula | Relative Energy |
---|---|
Y2Dy@Ih-C80 | 0.00 |
Y2DyC2@C2-22010C78 | 42.95 |
Y2DyC2@C1-21975C78 | 59.17 |
Y2DyC2@C2v-24107C78 | 59.25 |
Y2DyC2@C2v-24088C78 | 71.57 |
Y2DyC2@D3h-24109C78 | 90.81 |
Molecular Formula | Relative Energy |
---|---|
YDy2@Ih-C80 | 0.00 |
YDy2C2@C2-22010C78 | 49.10 |
YDy2C2@C2v-24107C78 | 63.04 |
YDy2C2@C1-21975C78 | 65.24 |
YDy2C2@C2v-24088C78 | 78.04 |
YDy2C2@D3h-24109C78 | 95.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhou, Z.; Wang, Z. Stability and Electronic Properties of Mixed Rare-Earth Tri-Metallofullerenes YxDy3-x@C80 (x = 1 or 2). Molecules 2024, 29, 447. https://doi.org/10.3390/molecules29020447
Wu Y, Zhou Z, Wang Z. Stability and Electronic Properties of Mixed Rare-Earth Tri-Metallofullerenes YxDy3-x@C80 (x = 1 or 2). Molecules. 2024; 29(2):447. https://doi.org/10.3390/molecules29020447
Chicago/Turabian StyleWu, Yabei, Zhonghao Zhou, and Zhiyong Wang. 2024. "Stability and Electronic Properties of Mixed Rare-Earth Tri-Metallofullerenes YxDy3-x@C80 (x = 1 or 2)" Molecules 29, no. 2: 447. https://doi.org/10.3390/molecules29020447
APA StyleWu, Y., Zhou, Z., & Wang, Z. (2024). Stability and Electronic Properties of Mixed Rare-Earth Tri-Metallofullerenes YxDy3-x@C80 (x = 1 or 2). Molecules, 29(2), 447. https://doi.org/10.3390/molecules29020447