Development of a Quality Evaluation Method for Allii Macrostemonis Bulbus Based on Solid-Phase Extraction–High-Performance Liquid Chromatography–Evaporative Light Scattering Detection Chromatographic Fingerprinting, Chemometrics, and Quantitative Analysis of Multi-Components via a Single-Marker Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Examination of Chromatographic Conditions
2.2. Establishment of Fingerprints and Similarity Analysis (SA)
2.3. Examination of HPLC Fingerprinting and Quantification Methods
2.3.1. Linear Range Examination
2.3.2. Precision, Stability, and Repeatability Examination
2.3.3. Examination of LOD, LOQ, and Spiking Recoveries
2.4. Principal Component Analysis (PCA)
2.5. Hierarchical Cluster Analysis (HCA)
2.6. Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA)
2.7. Establishment of the Evaluation Model of the Quantitative Analysis of Multi-Components by Single-Marker (QAMS) Method
2.7.1. Calculation of Relative Correction Factors (RCFs)
2.7.2. Examination of Durability
2.7.3. Chromatographic Peak Localization
2.8. Content Determination
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Processing of Allii Macrostemonis Bulbus
3.3. Preparation and Purification of Standards and Test Samples
3.4. Chromatographic Conditions
3.5. Methodological Examination
3.5.1. Examination of HPLC Fingerprinting Methods
3.5.2. Examination of HPLC Quantification Methods
3.6. Data Analysis and Chemometric Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, Y.; Wu, H.; Wang, T.; Chen, Y.; Yang, J.; Fu, H.; Yang, X.; Li, X.; Zhang, G.; Yu, R. Geographical origin traceability of traditional Chinese medicine Atractylodes macrocephala Koidz. by using multi-way fluorescence fingerprint and chemometric methods. Spectrochim. Acta Part A 2022, 269, 120737. [Google Scholar] [CrossRef] [PubMed]
- National Administration of Traditional Chinese Medicine. Chinese Materia Medica, 8th ed.; Shanghai Scientific & Technical Publishers: Shanghai, China, 1999; pp. 30–35. [Google Scholar]
- Yao, Z.; Qin, Z.; Dai, Y.; Yao, X. Phytochemistry and pharmacology of Allii Macrostemonis Bulbus, a traditional Chinese medicine. Chin. J. Nat. Med. 2016, 14, 481–498. [Google Scholar] [CrossRef]
- Wu, J.F.; Cui, Y.; Ding, W.X.; Zhang, J.; Wang, L.L. The protective effect of Macrostemonoside T from Allium macrostemon Bunge against Isoproterenol-Induced myocardial injury via the PI3K/Akt/mTOR signaling pathway. Int. Immunopharmacol. 2024, 133, 112086. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.P.; Feng, H.; Guo, M.; Wang, C.S. Effects of saponins from Allium Macrostemon Bunge bulbs on platelet aggregation and interactions between platelets and neutrophils. Chin. J. Inf. Tradit. Chin. Med. 2018, 25, 33–37. [Google Scholar] [CrossRef]
- Wu, J.F.; Li, L.; Liu, C.; Li, C.Y.; Cui, Y.; Ding, W.X.; Zhang, J.; Shi, L.L. Two new compounds from Allii Macrostemonis Bulbus and their in vitro antioxidant activities. Molecules 2023, 28, 6176. [Google Scholar] [CrossRef] [PubMed]
- Baba, M.; Ohmura, M.; Kishi, N.; Okada, Y.; Shibata, S.; Peng, J.; Yao, S.S.; Nishino, H.; Okuyama, T. Saponins isolated from Allium chinense G. Don and antitumor-promoting activities of isoliquiritigenin and laxogenin from the same drug. Biol. Pharm. Bull. 2000, 23, 660–662. [Google Scholar] [CrossRef]
- YAOZH.COM. Available online: https://db.yaozh.com/Search?content=薤白&typeid=8452 (accessed on 20 June 2024).
- Wu, J.F.; Wang, L.L.; Cui, Y.; Liu, F.; Zhang, J. Allii Macrostemonis Bulbus: A Comprehensive Review of Ethnopharmacology, Phytochemistry and Pharmacology. Molecules 2023, 28, 2485. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, 2020 ed.; China Medical Science Press: Beijing, China, 2020; p. 392.
- Liu, X.; Jiang, W.; Su, M.; Sun, Y.; Liu, H.; Nie, L.; Zang, H. Quality evaluation of traditional Chinese medicines based on fingerprinting. J. Sep. Sci. 2020, 43, 6–17. [Google Scholar] [CrossRef]
- National Medical Products Administration of China. Technical Requirements for Fingerprinting Studies of Chinese Medicine Injections (Interim). Chin. Tradit. Pat. Med. 2000, 22, 3–7. [Google Scholar]
- Liang, Y.; Wang, W. Chromatographic fingerprinting coupled with chemometrics for quality control of traditional Chinese medicines. Chimia 2011, 65, 944–951. [Google Scholar] [CrossRef]
- Qin, Z.F.; Lin, P.; Dai, Y.; Yao, Z.H.; Wang, L.; Yao, X.S.; Liu, L.Y.; Chen, H.F. Quantification and semiquantification of multiple representative components for the holistic quality control of Allii Macrostemonis Bulbus by ultra high performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry. J. Sep. Sci. 2016, 39, 1834–1841. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, H.; Fu, X.; Wang, W. Multi-components quantitation by one marker new method for quality evaluation of Chinese herbal medicine. China J. Chin. Mater. Med. 2006, 23, 1925–1928. [Google Scholar]
- Hou, J.; Zhang, J.; Yao, C.; Bauer, R.; Khan, I.; Wu, W.; Guo, D. Deeper chemical perceptions for better traditional Chinese medicine standards. Engineering 2019, 5, 83–97. [Google Scholar] [CrossRef]
- Wang, Z.; Qian, Z.; Zhang, Q.; Zhu, J.; Gao, H.; Wang, Z. Technical Guidelines for quantitative analysis of multi-components by single-marker. China J. Chin. Mater. Med. 2011, 36, 657–658. [Google Scholar]
- Chen, M.; Liu, C.; Shen, Y.; Zou, J.; Zhang, Z.; Wan, Y.; Yang, L.; Jiang, S.; Qian, D.; Duan, J. A Powerful HPLC-ELSD Method for Simultaneous Determination of Fecal Bile Acids in T2DM Rats Interfered by Sanhuang Xiexin Tang. J. Chromatogr. Sci. 2021, 59, 871–876. [Google Scholar] [CrossRef]
- Sun, J.; Gan, C.; Huang, J.; Wang, Z.; Wu, C.; Jiang, S.; Yang, X.; Peng, H.; Wei, F.; Yang, C. Determination of triterpenoids and phenolic acids from Sanguisorba officinalis L. by HPLC-ELSD and its application. Molecules 2021, 26, 4505. [Google Scholar] [CrossRef]
- Sun, H.; Cai, Y.; Shen, J.; Ma, E.; Zhao, Z.; Yang, D.; Yang, X.; Xu, X. Chemical Fingerprint Analysis and Quantitative Analysis of Saccharides in Morindae Officinalis Radix by HPLC-ELSD. Molecules 2021, 26, 7242. [Google Scholar] [CrossRef]
- Viganó, J.; Sanches, V.; Mesquita, L.; Souza, M.; Silva, L.; Chaves, J.; Forster-Carneiro, T.; Rostagno, M. Comprehensive analysis of phenolic compounds from natural products: Integrating sample preparation and analysis. Anal. Chim. Acta 2021, 1178, 338845. [Google Scholar] [CrossRef]
- García-Seval, V.; Martínez-Alfaro, C.; Saurina, J.; Núñez, O.; Sentellas, S. Characterization, Classification and Authentication of Spanish Blossom and Honeydew Honeys by Non-Targeted HPLC-UV and Off-Line SPE HPLC-UV Polyphenolic Fingerprinting Strategies. Foods 2022, 11, 2345. [Google Scholar] [CrossRef]
- Long, X.; Li, R.; Liu, H.; Xia, Z.; Guo, S.; Gu, J.; Zhang, L.; Fan, Y.; Chen, Z. Chemical fingerprint analysis and quality assessment of Tibetan medicine Triphala from different origins by high-performance liquid chromatography. Phytochem. Anal. 2023, 34, 476–486. [Google Scholar] [CrossRef]
- Wu, M.; Gao, Y.; Liu, J.; Zheng, C.; Wang, J. Integrative hypergraph regularization principal component analysis for sample clustering and co-expression genes network analysis on multi-omics data. IEEE J. Biomed. Health Inform. 2019, 24, 1823–1834. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Gou, J.; Zhang, K.; Ruan, J. Principal components and cluster analysis of trace elements in buckwheat flour. Foods 2023, 12, 225. [Google Scholar] [CrossRef]
- Karim, M.; Beyan, O.; Zappa, A.; Costa, I.; Rebholz-Schuhmann, D.; Cochez, M.; Decker, S. Deep learning-based clustering approaches for bioinformatics. Briefings Bioinf. 2021, 22, 393–415. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, Z.; Wang, X.; Luo, W.; Yang, F. Quality Assessment and Classification of Codonopsis Radix Based on Fingerprints and Chemometrics. Molecules 2023, 28, 5127. [Google Scholar] [CrossRef] [PubMed]
- Worley, B.; Powers, R. PCA as a practical indicator of OPLS-DA model reliability. Curr. Metabolomics 2016, 4, 97–103. [Google Scholar] [CrossRef]
- Yun, J.; Cui, C.; Zhang, S.; Zhu, J.; Peng, C.; Cai, H.; Yang, X.; Hou, R. Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea. Food Chem. 2021, 360, 130033. [Google Scholar] [CrossRef]
- Shao, S.; Xu, M.; Lin, Y.; Chen, X.; Fang, D.; Cai, J.; Wang, J.; Jin, S.; Ye, N. Differential Analysis of Aroma Components of Huangguanyin Oolong Tea from Different Geographical Origins Using Electronic Nose and Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. Food Sci. 2023, 44, 232–239. [Google Scholar] [CrossRef]
- Zheng, C.; Li, W.; Yao, Y.; Zhou, Y. Quality Evaluation of Atractylodis Macrocephalae Rhizoma Based on Combinative Method of HPLC Fingerprint, Quantitative Analysis of Multi-Components and Chemical Pattern Recognition Analysis. Molecules 2021, 26, 7124. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, Y.; Wang, N.; Zhou, H.; Du, L.; Ma, X.; Shi, X.; Cai, G. Novel effects of macrostemonoside A, a compound from Allium macrostemon Bung, on hyperglycemia, hyperlipidemia, and visceral obesity in high-fat diet-fed C57BL/6 mice. Eur. J. Pharmacol. 2008, 599, 159–165. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, X.; Wang, N.; Zhang, Y.; Cai, G. Macrostemonoside A promotes visfatin expression in 3T3-L1 cells. Biol. Pharm. Bull. 2007, 30, 279–283. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Q.; Jiang, S.; Li, M.; Wang, X. Anti-colorectal cancer activity of macrostemonoside A mediated by reactive oxygen species. Biochem. Biophys. Res. Commun. 2013, 441, 825–830. [Google Scholar] [CrossRef]
- Wu, J.F.; Cui, Y.; Liu, C.; Ding, W.; Ren, S.; Zhang, J.; Wang, L. Antioxidant activity of spirostanol saponins from Allii Macrostemonis Bulbus and their contents in different origins and processed products. Food Chem. X 2024, 21, 101144. [Google Scholar] [CrossRef]
AMB | Origins | Processing Methods | Similarity |
---|---|---|---|
S1 | Changchun, Jilin | Post-steaming dried | 0.942 |
S2 | Changchun, Jilin | Directly dried | 0.926 |
S3 | Changchun, Jilin | Freeze dried | 0.924 |
S4 | Benxi, Liaoning | Post-steaming dried | 0.993 |
S5 | Benxi, Liaoning | Directly dried | 0.937 |
S6 | Benxi, Liaoning | Freeze dried | 0.971 |
S7 | Luoyang, Henan | Post-steaming dried | 0.921 |
S8 | Luoyang, Henan | Directly dried | 0.911 |
S9 | Luoyang, Henan | Freeze dried | 0.910 |
S10 | Zigong, Sichuan | Post-steaming dried | 0.745 |
S11 | Zigong, Sichuan | Directly dried | 0.753 |
S12 | Zigong, Sichuan | Freeze dried | 0.742 |
S13 | Bijie, Guizhou | Post-steaming dried | 0.720 |
S14 | Bijie, Guizhou | Directly dried | 0.685 |
S15 | Bijie, Guizhou | Freeze dried | 0.626 |
S16 | Changchun, Jilin | Post-steaming dried | 0.940 |
S17 | Changchun, Jilin | Directly dried | 0.915 |
S18 | Changchun, Jilin | Freeze dried | 0.959 |
Components | Standard Curves | Content Ranges (μg·mL−1) | R2 | LOD (μg·mL−1) | LOQ (μg·mL−1) | Precision | Stability | Repeatability | Spiked Recovery |
---|---|---|---|---|---|---|---|---|---|
Adenosine | y = 2463.0x − 127.53 | 6.62–109.11 | 0.9988 | 1.43 | 4.76 | 0.24 | 0.51 | 1.18 | 1.74 |
Syringin | y = 1254.7x − 78.93 | 14.24–96.31 | 0.9974 | 3.53 | 11.78 | 0.80 | 0.64 | 1.00 | 1.14 |
Macrostemonoside T | y = 861.0x − 69.574 | 25.83–81.35 | 0.9968 | 5.71 | 19.05 | 0.41 | 0.31 | 1.02 | 0.46 |
Macrostemonoside A | y = 2223.2x − 117.7 | 21.42–72.31 | 0.9970 | 5.67 | 18.90 | 0.34 | 0.54 | 1.00 | 0.62 |
Macrostemonoside U | y = 1308.1x − 71.569 | 24.37–86.44 | 0.9965 | 5.76 | 19.19 | 0.53 | 0.59 | 0.69 | 0.91 |
Macrostemonoside V | y = 1638.4x − 80.186 | 31.08–89.37 | 0.9983 | 8.16 | 27.20 | 0.68 | 0.73 | 0.84 | 1.07 |
Durability Examination Indicators | Macrostemonoside T | Macrostemonoside U | |
---|---|---|---|
Chromatographic columns | Hypersil ODS | 2.55 | 1.73 |
Agilent TC-C18 | 2.56 | 1.74 | |
COSMOSIL 5C18-MS-II | 2.57 | 1.74 | |
RSD, % | 0.47 | 0.37 | |
Flow rates (mL·min−1) | 0.6 | 2.55 | 1.74 |
0.8 | 2.58 | 1.76 | |
1.0 | 2.56 | 1.72 | |
RSD, % | 0.43 | 1.21 | |
Column temperatures (°C) | 25 | 2.56 | 1.73 |
30 | 2.56 | 1.74 | |
35 | 2.57 | 1.73 | |
RSD, % | 0.2 | 0.33 | |
Injection volumes (μL) | 10 | 2.57 | 1.78 |
15 | 2.53 | 1.73 | |
20 | 2.58 | 1.72 | |
RSD, % | 1.13 | 1.79 |
No. | Macrostemonoside A | Macrostemonoside T | Macrostemonoside U | ||||
---|---|---|---|---|---|---|---|
ESM, μg·g−1 | ESM, μg·g−1 | QAMS, μg·g−1 | RD, % | ESM, μg·g−1 | QAMS, μg·g−1 | RD, % | |
S1 | 66.33 | 102.20 | 101.73 | −0.46 | 77.98 | 77.15 | −1.06 |
S2 | 168.46 | 346.97 | 345.51 | −0.42 | 98.59 | 97.94 | −0.66 |
S3 | 95.77 | 101.75 | 101.78 | 0.03 | 198.86 | 197.75 | −0.56 |
S4 | 89.38 | 101.75 | 101.31 | −0.43 | 84.27 | 84.07 | −0.24 |
S5 | 180.09 | 344.05 | 344.87 | 0.24 | 98.09 | 97.90 | −0.19 |
S6 | 96.92 | 102.25 | 102.10 | −0.15 | 191.63 | 191.15 | −0.25 |
S7 | 75.26 | 108.41 | 108.12 | −0.27 | 92.24 | 91.92 | −0.35 |
S8 | 162.42 | 352.36 | 351.77 | −0.17 | 97.51 | 96.54 | −0.99 |
S9 | 76.65 | 137.22 | 136.67 | −0.40 | 79.35 | 80.11 | 0.96 |
S10 | 72.07 | 104.73 | 103.82 | −0.87 | 135.57 | 134.61 | −0.71 |
S11 | 154.23 | 309.27 | 308.73 | −0.17 | 102.24 | 101.81 | −0.42 |
S12 | 63.67 | 98.22 | 98.12 | −0.10 | 116.00 | 115.63 | −0.32 |
S13 | 63.02 | 97.46 | 97.08 | −0.39 | 114.26 | 114.95 | 0.60 |
S14 | 82.52 | 234.76 | 234.73 | −0.01 | 261.21 | 261.09 | −0.05 |
S15 | 66.13 | 104.19 | 104.18 | −0.01 | 111.98 | 112.00 | 0.02 |
S16 | 68.12 | 98.34 | 98.79 | 0.46 | 69.06 | 69.84 | 1.13 |
S17 | 78.46 | 250.43 | 250.31 | −0.05 | 70.26 | 70.39 | 0.19 |
S18 | 63.51 | 99.26 | 99.17 | −0.09 | 79.52 | 79.87 | 0.44 |
Time (min) | A (%) | B (%) |
---|---|---|
0 | 5 | 95 |
5 | 10 | 90 |
10 | 15 | 85 |
13 | 18 | 82 |
25 | 21 | 79 |
40 | 25.5 | 74.5 |
43 | 26.5 | 73.5 |
45 | 27 | 73 |
52 | 27.5 | 72.5 |
55 | 28 | 72 |
58 | 28 | 72 |
60 | 29 | 71 |
63 | 29 | 71 |
70 | 30 | 70 |
78 | 75 | 25 |
85 | 85 | 15 |
90 | 90 | 10 |
110 | 90 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Wang, L.; Cui, Y.; Liu, C.; Ding, W.; Ren, S.; Dong, R.; Zhang, J. Development of a Quality Evaluation Method for Allii Macrostemonis Bulbus Based on Solid-Phase Extraction–High-Performance Liquid Chromatography–Evaporative Light Scattering Detection Chromatographic Fingerprinting, Chemometrics, and Quantitative Analysis of Multi-Components via a Single-Marker Method. Molecules 2024, 29, 4600. https://doi.org/10.3390/molecules29194600
Wu J, Wang L, Cui Y, Liu C, Ding W, Ren S, Dong R, Zhang J. Development of a Quality Evaluation Method for Allii Macrostemonis Bulbus Based on Solid-Phase Extraction–High-Performance Liquid Chromatography–Evaporative Light Scattering Detection Chromatographic Fingerprinting, Chemometrics, and Quantitative Analysis of Multi-Components via a Single-Marker Method. Molecules. 2024; 29(19):4600. https://doi.org/10.3390/molecules29194600
Chicago/Turabian StyleWu, Jianfa, Lulu Wang, Ying Cui, Chang Liu, Weixing Ding, Shen Ren, Rui Dong, and Jing Zhang. 2024. "Development of a Quality Evaluation Method for Allii Macrostemonis Bulbus Based on Solid-Phase Extraction–High-Performance Liquid Chromatography–Evaporative Light Scattering Detection Chromatographic Fingerprinting, Chemometrics, and Quantitative Analysis of Multi-Components via a Single-Marker Method" Molecules 29, no. 19: 4600. https://doi.org/10.3390/molecules29194600
APA StyleWu, J., Wang, L., Cui, Y., Liu, C., Ding, W., Ren, S., Dong, R., & Zhang, J. (2024). Development of a Quality Evaluation Method for Allii Macrostemonis Bulbus Based on Solid-Phase Extraction–High-Performance Liquid Chromatography–Evaporative Light Scattering Detection Chromatographic Fingerprinting, Chemometrics, and Quantitative Analysis of Multi-Components via a Single-Marker Method. Molecules, 29(19), 4600. https://doi.org/10.3390/molecules29194600