Negative Effects of Occurrence of Mycotoxins in Animal Feed and Biological Methods of Their Detoxification: A Review
Abstract
:1. Introduction
2. Effects of Mycotoxins on Animals Health and Their Characteristics
3. Contamination of Animal Feed with Mycotoxins
4. Biological Detoxification of Animal Feeds
4.1. Reducing Deoxynivalenol by Microorganisms
Microorganisms | The Source of the Microorganism | Degradation Product | Initial DON Concentration | DON Degradation Rate % | Experimental Medium/Buffer | Incubation Time | Source |
---|---|---|---|---|---|---|---|
Microbial culture C133 (Ameiurus nebulosus) | Fish intestines | DOM-1 | 50 μg/mL | 100 | FM medium | 96 h | [83] |
Devosia nanyangense DDB001 | Soil (Nanyang, China) | No -determined | 200 μg/mL | 100 | _ | Three days | [96] |
Microbial culture C20 (Hyphomicrobium genera et al.) | Wheat field (Jangsu, China) | 3-keto-DON | 70 μg/mL | 100 | MM medium | Five days | [85] |
Devosia insulae A16 | Soil (Nanyang, China) | 3-keto-DON | 20 mg/L | 88 | MM medium | 48 h | [97] |
Pelagibacterium halotolerans ANSP101 | Seawater from the Bohai Sea | 3-keto-DON | 50 μg/mL | 80 | MMB2216 solid medium | 12 h | [98] |
4.2. Zearalenone Inactivation by Bacteria
4.2.1. Zearalenone Binding by Bacteria
4.2.2. Zearalenone Biodegradation Effects
4.3. Efficiency of Ochratoxin A Eliminating by Bacteria
4.3.1. Ochratoxin A Binding by Bacteria
4.3.2. Ochratoxin A Biodegradation
Microorganisms | The Source of the Microorganism | Degradation Product | Initial Mycotoxin Concentration | Degradation Rate % | Experimental Medium/Buffer | Incubation Time | Source |
---|---|---|---|---|---|---|---|
Lactobacillus acidophilus K1 | Collection of cultures | Undefined | 40 μg/mL | 79 | PBS medium | 24 h | [111] |
Bacillus licheniformis SI-1 | Animal excrements | Undefined | Undefined | 35 | _ | _ | [112] |
Cupriavidus basilensis Or16 | Soil | OTα | 20 μg/mL | 100 | LB medium | Five days | [113] |
Acinetobacter calcoaceticus 396.1; Acinetobacter sp. Strain neg1 | Soil taken from vineyards | OTα | 10 μg/mL | 82 91 | MMS medium | 6 days | [114] |
Stenotrophomonas sp. CW117 | Soil and food | Undefined | 0.02 μg/mL | 71 | Corn and soybean feed | 72 h | [115] |
Alcaligenes faecalis ASAGF OD-1 | Soil | OTα | 1 μg/mL | 92 | LB medium | 48 h | [116] |
Eubacterium biforme MM11 | Pig intestinal microflora | Undefined | 1 ppm | 100 | Ground corn grains | 24 h | [117] |
4.4. Aflatoxins Binding or Degradation by Bacteria
Microorganism | Source of Origin the Microorganism | Degraded Mycotoxin | Initial Mycotoxin Concentration | Kind of Study | Degree of Degradation/Binding | Experimental Medium/Buffer | Incubation Time | Source |
---|---|---|---|---|---|---|---|---|
Rhodococcus erythropolis | Soil | AFB1 | 1.75 ppm | Degradation | 66.8% | Liquid substrate | 72 h | [118] |
Stenotrophomonas NMO-3 | Undefined | AFB1 | 100 μg/kg | Degradation | 85.7% | _ | _ | [127] |
Streptococcus thermophilus Lactobacillus bulgaricus | Yogurts | AFM1 | 50 μg/L | Binding | 70% 87.6% | PBS liquid medium | 14 h | [128] |
Pseudomonas putida MTCC1274, 2445 | Undefined | AFB1 | 0.2 μg/mL | Degradation | 100% | MSG medium | 24 h | [119] |
Bacillus pumilus Enterobacter cloace | Soil | AFB1 | 200 ppb | Degradation | 88% 51% | Medium NB or MRS | 10 days | [120] |
4.5. Reduction in Mycotoxins with Saccharomyces cerevisiae
4.6. Degrade Mycotoxins with Fungi
4.7. Biodegradation of Mycotoxins with Enzymes
4.7.1. Mycotoxins Biodetoxification by Peroxidases
4.7.2. Enzymatic Biodetoxification of Fumonisins
4.7.3. Enzymatic Biodetoxification of Ochratoxins
4.7.4. Enzymes Obtaining by Genetic Engineering Techniques
4.7.5. Other Enzymatic Methods of Mycotoxins Biodetoxification
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Awuchi, C.G.; Ondari, E.N.; Ogbonna, C.U.; Upadhyay, A.K.; Baran, K.; Okpala, C.O.R.; Korzeniowska, M.; Guiné, R.P.F. Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification Strategies-A Revisit. Foods 2021, 10, 1279. [Google Scholar] [CrossRef] [PubMed]
- Niermans, K.; Meyer, A.M.; den Hil, E.F.H.; van Loon, J.J.A.; van der Fels-Klerx, H.J. A systematic literature review on the effects of mycotoxin exposure on insects and on mycotoxin accumulation and biotransformation. Mycotoxin Res. 2021, 37, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahhab, M.A.; Kholif, A.M. Mycotoxins in Animal Feeds and Prevention Strategies: A Review. Asian J. Anim. Sci. 2008, 2, 7–25. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.M. Contamination of aflatoxins in different kinds of foods in China. Biomed. Environ. Sci. 2007, 20, 483–487. [Google Scholar]
- dos Santos, I.D.; Pizzutti, I.R.; Dias, J.V.; Fontana, M.E.Z.; Souza, D.M.; Cardoso, C.D. Mycotoxins in wheat flour: Occurrence and co-occurrence assessment in samples from Southern Brazil. Food Addit. Contam. Part B 2021, 14, 151–161. [Google Scholar] [CrossRef]
- Palumbo, R.; Crisci, A.; Venâncio, A.; Cortiñas Abrahantes, J.; Dorne, J.L.; Battilani, P.; Toscano, P. Occurrence and Co-Occurrence of Mycotoxins in Cereal-Based Feed and Food. Microorganisms 2020, 8, 74. [Google Scholar] [CrossRef]
- Dada, T.A.; Ekwomadu, T.I.; Mwanza, M. Multi Mycotoxin Determination in Dried Beef Using Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry (LC-MS/MS). Toxins 2020, 12, 357. [Google Scholar] [CrossRef]
- Becker-Algeri, T.A.; Castagnaro, D.; de Bortoli, K.; de Souza, C.; Drunkler, D.A.; Badiale-Furlong, E. Mycotoxins in Bovine Milk and Dairy Products: A Review. J. Food Sci. 2016, 81, R544–R552. [Google Scholar] [CrossRef]
- Muaz, K.; Riaz, M.; Fernandes de Oliveira, A.C.; Akhtar, S.; Ali, W.S.; Nadeem, H.; Park, S.; Balasubramanian, B. Aflatoxin M1 in milk and dairy products: Global occurrence and potential decontamination strategies. Toxin Rev. 2021, 41, 588–605. [Google Scholar] [CrossRef]
- Wróbel, B. Zagrożenia zwierząt i ludzi toksynami grzybów pleśniowych zawartych w paszach i żywności. Woda-Sr.-Obsz. Wiej. 2014, 14, 159–176. [Google Scholar]
- Muñoz-Solano, B.; González-Peñas, E. Co-Occurrence of Mycotoxins in Feed for Cattle, Pigs, Poultry, and Sheep in Navarra, a Region of Northern Spain. Toxins 2023, 15, 172. [Google Scholar] [CrossRef] [PubMed]
- Agriopulou, S.; Stamatelopoulou, E.; Varzakasa, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxificationin Foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Ismaiel, A.A.; Papenbrock, J. Mycotoxins: Producing Fungi and Mechanisms of Phytotoxicity. Agriculture 2015, 5, 492–537. [Google Scholar] [CrossRef]
- Chróst, A. Grzyby pleśniowe w środowisku człowieka- zagrożenie i skutki zdrowotne. Med. Dośw. Mikrobiol. 2016, 68, 135–150. [Google Scholar]
- Milani, J.M. Ecological conditions affecting mycotoxin production in cereals: A review. Vet. Med. 2013, 58, 405–411. [Google Scholar] [CrossRef]
- Piotrowska, M. Wykorzystanie mikroorganizmów do usuwania mikroroganizmów z żywności i pasz. Post. Mikrobiol. 2012, 51, 109–119. [Google Scholar]
- Fokunang, C.N.; Tembr-Fokunang, E.A.; Tomkins, P.; Barkwan, S. Global Impact of Mycotoxins on Human and Animal Health Management. Outlook Agric. 2006, 35, 247–253. [Google Scholar] [CrossRef]
- Magnoli, A.P.; Poloni, V.L.; Cavaglieri, L. Impact of mycotoxin contamination in the animal feed industry. Curr. Opin. Food Sci. 2019, 29, 99–108. [Google Scholar] [CrossRef]
- Tola, M.; Kebede, B. Occurrence, importance and control of mycotoxins: A review. Cogent Food Agric. 2016, 2, 1191103. [Google Scholar] [CrossRef]
- Peng, W.-X.; Marchalb, J.L.M.; van der Poel, A.F.B. Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Anim. Feed. Sci. Technol. 2018, 237, 129–153. [Google Scholar] [CrossRef]
- Pickova, D.; Ostry, V.; Malir, J.; Toman, J.; Malir, F. A Review on Mycotoxins and Microfungi in Spices in the Light of the Last Five Years. Toxins 2020, 12, 789. [Google Scholar] [CrossRef] [PubMed]
- Chulze, S.N. Strategies to reduce mycotoxin levels in maize during storage: A review. Food Addit. Contam. Part A 2010, 27, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Mannaa, M.; Kim, K.D. Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage. Mycobiology 2017, 45, 240–254. [Google Scholar] [CrossRef]
- Čolović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Đuragić, O.; Kos, J.; Pinotti, L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins 2019, 11, 617. [Google Scholar] [CrossRef]
- Tai, B.; Chang, J.; Liu, Y.; Xing, F. Recent progress of the effect of environmental factors on Aspergillus flavus growth and aflatoxins production on foods. Food Qual. Saf. 2020, 4, 21–28. [Google Scholar] [CrossRef]
- Smigic, N.; Tomic, N.; Udovicki, B.; Djekic, I.; Rajkovic, A. Prevention and practical strategies to control mycotoxins in the wheat and maize chain. Food Control 2022, 136, 108855. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Shi, H.; Keener, K.M. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci. Technol. 2018, 71, 73–83. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Hajeb, P.; Ehsan, J.R. Application of ozone for degradation of mycotoxins in food: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1777–1808. [Google Scholar] [CrossRef]
- Conte, G.; Fontanelli, M.; Galli, F.; Cotrozzi, L.; Pagni, L.; Pellegrini, E. Mycotoxins in Feed and Food and the Role of Ozonein Their Detoxification and Degradation: An Update. Toxins 2020, 12, 486. [Google Scholar] [CrossRef]
- Pukkasorn, P.; Ratphitagsanti, W.; Haruthaitanasan, V. Effect of ultra-superheated steam on aflatoxin reduction and roasted peanut properties. J. Sci. Food Agric. 2018, 98, 2935–2941. [Google Scholar] [CrossRef]
- Tibola, C.S.; Fernandes, J.M.C.; Guarienti, E.M. Effect of cleaning, sorting and milling processes in wheat mycotoxin content. Food Control 2016, 60, 174–179. [Google Scholar] [CrossRef]
- Mgbeahuruike, A.C.; Ejioffor, E.T.; Christian, C.O.; Shoyinka, C.V.; Karlsson, M.; Nordkvist, E. Detoxification of Aflatoxin Contaminated Poultry Feeds by 3 Adsorbents, Bentonite, Activated Charcoal, and Fuller’s Earth. J. Appl. Poult. Res. 2018, 27, 461–471. [Google Scholar] [CrossRef]
- Shi, H.; Li, S.; Bai, Y.; Prates, L.L.; Lei, Y.; Yu, P. Mycotoxin contamination of food and feed in China: Occurrence, detection techniques, toxicological effects and advances in mitigation technologies. Food Control 2018, 91, 202–215. [Google Scholar] [CrossRef]
- Szostak, B. Mikotoksyny w Paszach—Sposoby na Minimalizację ich Toksyczności. Available online: https://www.agrofakt.pl/mikotoksyny-paszach-sposoby-minimalizacje-toksycznosci/2017 (accessed on 18 September 2020).
- Humer, E.; Lucke, A.; Harder, H.; Metzler-Zebeli, B.U.; Böhm, J.; Zebeli, Q. Effects of Citric and Lactic Acid on the Reduction of Deoxynivalenol and Its Derivatives in Feeds. Toxins 2016, 8, 285. [Google Scholar] [CrossRef] [PubMed]
- Reinholds, I.; Juodeikjene, G.; Bartkjene, E.; Zadeike, D.; Bartkevics, V.; Krungleviciute, V.; Cernauskas, D.; Cižeikiene, D. Evaluation of ozonation as a method for mycotoxins degradation in malting wheat grains. World Mycotoxin J. 2016, 9, 409–417. [Google Scholar] [CrossRef]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef]
- Daou, R.; Joubrane, K.; Maroun, G.R.; Khabbaz, R.L.; Ismail, A.; El Khoury, A. Mycotoxins: Factors influencing production and control strategies. AIMS Agric. Food 2021, 6, 416–447. [Google Scholar] [CrossRef]
- Abraham, N.; Chan, E.T.S.; Zhou, T.; Seah, S.Y.K. Microbial detoxification of mycotoxins in food. Front. Microbiol. 2022, 13, 957148. [Google Scholar] [CrossRef]
- Ndiaye, S.; Zhang, M.; Fall, M.; Ayessou, N.M.; Zhang, Q.; Li, P. Current Review of Mycotoxin Biodegradation and Bioadsorption: Microorganisms, Mechanisms, and Main Important Applications. Toxins 2022, 14, 729. [Google Scholar] [CrossRef]
- Liu, L.; Xie, M.; Wei, D. Biological Detoxification of Mycotoxins: Current Status and Future Advances. Int. J. Mol. Sci. 2022, 23, 1064. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Iheshiulor, O.O.M.; Esonu, B.O.; Chuwuka, O.K.; Omede, A.A.; Okoli, I.C.; Ogbuewu, I.P. Effects of Mycotoxins in Animal Nutrition: A Review. Asian J. Anim. Sci. 2011, 5, 19–33. [Google Scholar] [CrossRef]
- Omotayo, O.P.; Omotayo, A.O.; Mwanza, M.; Babalola, O.O. Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicol. Res. 2019, 35, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Adegbeye, M.J.; Reddy, P.R.K.; Chilaka, C.A.; Balogun, O.B.; Elghandour, M.M.Y.; Rivas-Caceres, R.R.; Salem, A.Z.M. Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies—A review. Toxicon 2020, 177, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Peivasteh-Roudsari, L.; Pirhadi, M.; Shahbazi, R.; Eghbaljoo-Gharehgheshlaghi, H.; Sepahi, M.; Mirza Alizadeh, A.; Tajdar-Oranj, B.; Jazaeri, S. Mycotoxins: Impact on Health and Strategies for Prevention and Detoxification in the Food Chain. Food Rev. Int. 2021, 38, 193–224. [Google Scholar] [CrossRef]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef]
- Menegat, M.B.; Goodband, R.D.; DeRouchey, J.M.; Tokach, M.D.; Woodworth, J.C.; Dritz, S.S. Kansas State University Swine Nutrition Guide. Mycotoxins Swine Diets. Available online: https://www.asi.k-state.edu/extension/swine/swinenutritionguide/pdf/KSU%20Mycotoxins%20in%20Swine%20Diets%20fact%20sheet.pdf (accessed on 15 September 2024).
- Corassin, C.H.; de Oliveira, C.A.F. Mycotoxins in the Dairy Industry. Dairy 2023, 4, 392–394. [Google Scholar] [CrossRef]
- Kemboi, D.C.; Antonissen, G.; Ochieng, P.E.; Croubels, S.; Okoth, S.; Kangethe, E.K.; Gathumbi, J.K. A review of the impact of mycotoxins on dairy cattle health: Challenges for food safety and dairy production in Sub-Saharan Africa. Toxins 2020, 12, 222. [Google Scholar] [CrossRef]
- Pierron, A.; Alassane-Kpembi, I.; Oswald, P.I. Impact of mycotoxin on immune response and consequences for pig health. Anim. Nutr. 2016, 2, 63–68. [Google Scholar] [CrossRef]
- Murugesan, G.R.; Ledoux, D.R.; Naehrer, K.; Berthiller, F.; Applegate, T.J.; Grenier, B.; Phillips, T.D.; Schatzmayr, G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult. Sci. 2015, 94, 1298–1315. [Google Scholar] [CrossRef]
- Liu, X.; Wu, P.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q.; Feng, L. Effects of Dietary Ochratoxin A on Growth Performance and Intestinal Apical Junctional Complex of Juvenile Grass Carp (Ctenopharyngodon idella). Toxins 2021, 13, 11. [Google Scholar] [CrossRef]
- Hennig-Pauka, I.; Koch, F.J.; Schaumberger, S.; Woechtl, B.; Novak, J.; Sulyok, M.; Nagl, V. Current challenges in the diagnosis of zearalenone toxicosis as illustrated by a field case of hyperestrogenism in suckling piglets. Porc. Health Manag. 2018, 4, 18. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, G. Review on Impact of Mycotoxin Contamination on Animal Health and Productivity. J. Vet. Med. Animal Sci. 2020, 3, 1039. [Google Scholar]
- Prodanov-Radulovic, J.Z.; Dosen, R.; Stojanov, I.; Pusic, I.M.; Zivkov-Balos, Z.; Ratajac, R.D. Influence of mycotoxinzearalenone on the swine reproductive failure. J. Nat. Sci. Matica Srp. Novi Sad 2013, 124, 121–129. [Google Scholar] [CrossRef]
- Filazi, A.; Yurdakok-Dikmen, B.; Ozgur, K.; Sireli, T.U. Mycotoxins in Poultry. In Poultry Science; Manafi, M., Ed.; Waveland Press: Long Grove, IL, USA, 2017; pp. 73–92. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Frisvad, J.C.; Bertuzzi, T.; Nielsen, K.F. Review on mycotoxin issues in ruminants: Occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins 2015, 7, 3057–3111. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Vasconcelos, V. Occurrence of Mycotoxins in Fish Feed and Its Effects: A Review. Toxins 2020, 12, 160. [Google Scholar] [CrossRef]
- Zychowski, K.E.; Rodrigues Hoffmann, A.; Ly, H.J.; Pohlenz, C.; Buentello, A.; Romoser, A.; Gatlin, D.M.; Phillips, T.D. The effect of aflatoxin-B1 on red drum (Sciaenops ocellatus) and assessment of dietary supplementation of NovaSil for the prevention of aflatoxicosis. Toxins 2013, 5, 1555–1573. [Google Scholar] [CrossRef]
- Santos Pereira, C.; Cunha, S.; Fernandes, J.O. Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef]
- Ulrich, S.; Gottschalk, C.; Biermaier, B.; Bahlinger, E.; Twarużek, M.; Asmussen, S.; Schollenberger, M.; Valenta, H.; Ebel, F.; Dänicke, S. Occurrence of type A, B and D trichothecenes, zearalenone and stachybotrylactam in straw. Arch. Anim. Nutr. 2021, 75, 105–120. [Google Scholar] [CrossRef]
- Labuda, R.; Parich, A.; Berthiller, F.; Tančinová, D. Incidence of trichothecenes and zearalenone in poultry feed mixtures from Slovakia. Int. J. Food Microbiol. 2005, 105, 19–25. [Google Scholar] [CrossRef]
- Sokolović, M.; Šimpraga, B. Survey of trichothecene mycotoxins in grains and animal feed in Croatia by thin layer chromatography. Food Control 2006, 17, 733–740. [Google Scholar] [CrossRef]
- Sherazi, S.T.; Shar, Z.H.; Sumbal, G.A.; Tan, E.T.; Bhanger, M.I.; Kara, H.; Nizamani, S.M. Occurrence of ochratoxin A in poultry feeds and feed ingredients from Pakistan. Mycotoxin Res. 2015, 31, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pietruszka, K.; Piątkowska, M.; Jedziniak, P. Occurrence of Ochratoxin a in Animal Tissues and Feeds in Poland in 2014–2016. J. Vet. Res. 2017, 61, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Gumus, R.; Ercan, N.; Imik, H. Determination of Ochratoxin A Levels in Mixed Feed and Feed Stuffs Used in Some Laying Hens and Ruminant Enterprises of Sivas City. Braz. J. Poult. Sci. 2018, 20, 85–89. [Google Scholar] [CrossRef]
- Nakavuma, J.L.; Kirabo, A.; Bogere, P.; Nabulime, M.M.; Kaaya, A.N.; Gnonlonfin, B. Awareness of mycotoxins and occurrence of aflatoxins in poultry feeds and feed ingredients in selected regions of Uganda. Food Contam. 2020, 7, 1–10. [Google Scholar] [CrossRef]
- Kiš, M.; Vulić, A.; Kudumija, N.; Šarkanj, B.; Jaki Tkalec, V.; Aladić, K.; Škrivanko, M.; Furmeg, S.; Pleadin, J. A Two-Year Occurrence of Fusarium T-2 and HT-2 Toxin in Croatian Cereals Relative of the Regional Weather. Toxins 2021, 13, 39. [Google Scholar] [CrossRef]
- DSM-Firmenich. World Mycotoxin Survey. The Global Threat January–December 2023. Available online: https://www.dsm.com/content/dam/dsm/anh/en/documents/REP_MTXsurvey_Q4_2023_EN_0124_AUE_doublePage.pdf (accessed on 15 September 2024).
- DSM-Firmenich. World Mycotoxin Survey. The Global Threat January–December 2022. Available online: https://www.dsm.com/anh/news/downloads/whitepapers-and-reports/dsm-world-mycotoxin-survey-2022-report.html# (accessed on 15 September 2024).
- Nešić, K.; Habschied, K.; Mastanjević, K. Possibilities for the Biological Control of Mycotoxins in Food and Feed. Toxins 2021, 13, 198. [Google Scholar] [CrossRef]
- Ji, C.; Fan, Y.; Zhao, L. Review on biological degradation of mycotoxins. Anim. Nutr. 2016, 2, 127–133. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Milinčić, D.D.; Petrović, T.S.; Krnjaja, V.S.; Stanojević, S.P.; Barać, M.B.; Tešić, Ž.L.; Pešić, M.B. Mycotoxins and Mycotoxin Producing Fungi in Pollen: Review. Toxins 2019, 11, 64. [Google Scholar] [CrossRef]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Gorniak, L.; Stela, M.; Bijak, M. The Existing Methods and Novel Approaches in Mycotoxins’ Detection. Molecules 2021, 26, 3981. [Google Scholar] [CrossRef]
- Kolawole, O.; Siri-Anusornsak, W.; Petchkongkaew, A.; Elliott, C. A systematic review of global occurrence of emerging mycotoxins in crops and animal feeds, and their toxicity in livestock. Emerg. Contam. 2024, 10, 3. [Google Scholar] [CrossRef]
- Karsauliya, K.; Yahavi, C.; Pandey, A.; Bhateria, M.; Kumar Sonker, A.; Pandey, H.; Sharma, M.; Pratap Singh, S. Co-occurrence of mycotoxins: A review on bioanalytical methods for simultaneous analysis in human biological samples, mixture toxicity and risk assessment strategies. Toxicon 2022, 2018, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3489–3507. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, L.; Sun, J.; Wang, L.; Guo, H.; Ye, Y.; Sun, X. Microbial detoxification of mycotoxins in food and feed. Crit. Rev. Food Sci. Nutr. 2021, 62, 4951–4969. [Google Scholar] [CrossRef] [PubMed]
- Lyagin, I.; Efremenko, E. Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action. Molecules 2019, 24, 2362. [Google Scholar] [CrossRef]
- Nahle, S.; El Khoury, A.; Savvaidis, I.; Chokr, A.; Louka, N.; Atoui, A. Detoxification approaches of mycotoxins: By microorganisms, biofilms and enzymes. Food Contam. 2022, 9, 3. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Saari, N.; Meor Hussin, A.S. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules 2020, 25, 2655. [Google Scholar] [CrossRef]
- Guan, S.; He, J.W.; Young, J.C.; Zhu, H.H.; Li, X.Z.; Zhou, T. Transformation of trichothecene mycotoxins by microorganisms from fish digesta. Aquaculture 2009, 290, 290–295. [Google Scholar] [CrossRef]
- He, J.W.; Bondy, G.S.; Zhou, T.; Caldwell, D.; Boland, G.J.; Scott, P.M. Toxicology of 3-epi-deoxynivalenol, a deoxynivalenol-transformation product by Devosia mutans 17-2-E-8. Food Chem. Toxicol. 2015, 84, 250–259. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Dai, Y.; Wang, Y.; Lee, Y.W.; Shi, J.; Xu, J. Biodegradation of Deoxynivalenol by a Novel Microbial Consortium. Front. Microbiol. 2020, 10, 2964. [Google Scholar] [CrossRef]
- King, R.R.; McQueen, R.E.; Levesque, D.; Greenhalgh, R. Transformation of deoxynivalenol (vomitoxin) by rumen microorganisms. J. Agric. Food Chem. 1984, 32, 1181–1183. [Google Scholar] [CrossRef]
- Schatzmayr, G.; Zehner, F.; Täubel, M.; Schatzmayr, D.; Klimitsch, A.; Loibner, P.A.; Binder, M.E. Microbiologicals for deactivating mycotoxins. Mol. Nutr. Food Res. 2006, 50, 543–551. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Young, L.G.; Forsberg, C. Microbial transformation of deoxynivalenol (vomitoxin). Appl. Environ. Microbiol. 1992, 58, 3857–3863. [Google Scholar] [CrossRef]
- Zhou, T.; He, J.; Gong, J. Microbial transformation of trichothecene mycotoxins. World Mycotoxin J. 2008, 1, 23–30. [Google Scholar] [CrossRef]
- Yoshizawa, T.; Cote, L.-M.; Swanson, S.; Buck, W. Confirmation of DOM-1, a de-epoxidation metabolite of deoxynivalenol, in biological fluids of lactating cows. Agric. Biol. Chem. 1986, 50, 227–229. [Google Scholar] [CrossRef]
- He, J.; Zhou, T.; Young, J.C.; Boland, G.J.; Scott, P.M. Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: A review. Trends Food Sci. Technol. 2010, 21, 67–76. [Google Scholar] [CrossRef]
- Binder, E.M.; Heidler, D.; Schatzmayr, G.; Thimm, N.; Fuchs, E.; Schuh, M.; Krska, R.; Binder, J. Microbial detoxification of mycotoxins in animal feed. In Proceedings of the 10th International IUPAC Symposium on Mycotoxins and Phytotoxins, Guarujá, Brasil, 21–25 May 2000. [Google Scholar]
- Gajęcki, M.; Jakimiuk, E.; Gajęcka, M.; Motyka, J.; Obremski, K.; Zielonka, Ł. Praktyczne Metody Zmniejszania Aktywności Mikotoksyn w Paszach. Available online: http://www.konferencjaswinie.pl/referaty/PRAKTYCZNE_METODY (accessed on 29 November 2010).
- Sayyari, A.; Fæste, K.C.; Hansen, U.; Uhlig, S.; Framstad, T.; Schatzmayr, D.; Sivertsen, T. Effects and biotransformation of the mycotoxin deoxynivalenol in growing pigs fed with naturally contaminated pelleted grains with and without the addition of Coriobacteriaceum DSM 11798. Food Addit. Contam. Part A 2018, 35, 1394–1409. [Google Scholar] [CrossRef]
- Young, C.J.; Zhou, T.; Yu, H.; Zhu, H.; Gong, J. Degradation of trichothecene mycotoxins by chicken intenstinal microbes. Food Chem. Toxicol. 2007, 45, 136–143. [Google Scholar] [CrossRef]
- Onyango, M.; Wang, Y.; Nickel, O.; Zhao, C.; Zhang, X.; Hartke, A.; Hemberger, J.; Cemic, F. First Genome Sequence of Potential Mycotoxin-Degrading Bacterium Devosia nanyangense DDB001. Genome Announc. 2014, 2, e00922-14. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Ji, F.; Xu, L.; Yu, M.; Shi, J.; Xu, J. Biodegradation of deoxynivalenol and its derivatives by Devosia insulae A16. Food Chem. 2019, 276, 436–442. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, X.; Guo, Y.; Zhang, Q.; Ma, Q.; Ji, C.; Zhao, L. Enzymatic degradation of deoxynivalenol by a novel bacterium, Pelagibacterium halotolerans ANSP101. Food Chem. Toxicol. 2020, 140, 111276. [Google Scholar] [CrossRef] [PubMed]
- Bzducha-Wróbel, A.; Gniewosz, M.; Chlebowska-Śmigiel, A. Wiązanie mykotoksyn przez bakterie z rodzaju Lactobacillus i Bifidobacterium in vitro oraz in vivo. Med. Weter. 2015, 71, 748–757. [Google Scholar]
- El-Nezami, H.; Kankaanpaa, P.; Salminen, S.; Ahokas, J. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem. Toxicol. 1998, 36, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Čvek, D.; Markov, K.; Frece, J.; Friganović, M.; Duraković, L.; Delaš, F. Adhesion of Zearalenone to the Surface of Lactic Acid Bacteria Cells. Croat. J. Food Technol. Biotechnol. Nutr. 2012, 7, 49–52. [Google Scholar]
- Lei, Y.P.; Zhao, L.H.; Ma, Q.G. Degradation of zearalenone in swine feed and feed ingredients by Bacillus subtilis ANSB01G. World Mycotoxin J. 2014, 7, 143–151. [Google Scholar] [CrossRef]
- Zhao, L.; Lei, Y.; Bao, Y.; Jia, R. Ameliorative effects of Bacillus subtilis ANSB01G on zearalenone toxicosis in pre-pubertal female gilts. Food Addit. Contam. Part A 2015, 32, 617–625. [Google Scholar] [CrossRef]
- Juś, K.; Gwiazdowska, D.; Waśkiewicz, A. Wykorzystanie bakterii glebowych z rodzaju Brevibacillus do dekontaminacji zearalenonu. Stud. Oecon. Posnan. 2016, 4, 27–39. [Google Scholar] [CrossRef]
- Kapturowska, A.U.; Zielińska, K.J.; Stecka, K.; Kupryś, M.P. Evaluation of fodder contamination with ochratoxin A and methods of its decontamination. J. Res. Appl. Agric. Eng. 2010, 55, 156–163. [Google Scholar]
- Śliżewska, K.; Piotrowska, M. Reduction of Ochratoxin A in Chicken Feed Using Probiotic. Ann. Agric. Environ. Med. 2014, 21, 676–680. [Google Scholar] [CrossRef]
- Fuchs, S.; Sontag, G.; Stidl, R.; Ehrlich, V.; Kundi, M.; Knasmüller, S. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem. Toxicol. 2008, 46, 1398–1407. [Google Scholar] [CrossRef]
- Luz, C.; Ferrer, J.; Mañes, J.; Meca, G. Toxicity reduction of ochratoxin A by lactic acid bacteria. Food Chem. Toxicol. 2017, 112, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Mateo, M.E.; Ángel, M.; Valle-Algarra, M.F.; Mateo, F.; Pardo, I.; Jiménez, M. Effect of ethanol on the ability of Oenococcus oeni to remove ochratoxin A in synthetic wine-like media. Food Control 2010, 21, 23–28. [Google Scholar] [CrossRef]
- Mobashar, M.; Hummel, J.; Blank, R.; Südekum, K.H. Ochratoxin A in ruminants−A review on its degradation by gut microbes and effects on animals. Toxins 2010, 2, 809–839. [Google Scholar] [CrossRef] [PubMed]
- Mazurkiewicz, J. Degradation of Ochratoxin A by Lactobacillus acidophilus K1. EJPAU 2011, 14, 16. [Google Scholar]
- Shi, L.; Liang, Z.; Xu, S.; Zheng, H.; Huang, K. Adsorption and degradation of Ochratoxin A by Bacillus licheniformis Sl-1. J. Agric. Biotechnol. 2013, 21, 1420–1425. [Google Scholar]
- Ferenczi, S.; Cserháti, M.; Krifaton, C.; Szoboszlay, S.; Kukolya, J.; Szőke, Z.; Kőszegi, B.; Albert, M.; Barna, T.; Mézes, M.; et al. A new Ochratoxin A biodegradation strategy using Cupriavidus basilensis Or16 Strain. PLoS ONE 2014, 9, e109817. [Google Scholar] [CrossRef]
- De Bellis, P.; Tristezza, M.; Haidukowski, M.; Fanelli, F.; Sisto, A.; Mulè, G.; Grieco, F. Biodegradation of Ochratoxin A by Bacterial Strains Isolated from Vineyard Soils. Toxins 2015, 7, 5079–5093. [Google Scholar] [CrossRef]
- Jiang, N.; Wang, X.; Zhang, Z.; Zhou, Y.; Wu, Y. New Stenotrophomonas Species Useful in Preparing Biodegradable Agents for Detoxification Treatment of Moldy Food Materials and Animal Feed; State Intellectual Property Office: Beijing, China, 2016. [Google Scholar]
- Zhang, H.H.; Wang, Y.; Zhao, C.; Wang, J.; Zhang, X.L. Biodegradation of Ochratoxin A by Alcaligenes faecalis isolated from soil. J. Appl. Microbiol. 2017, 123, 661–668. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Song, J.Y.; Park, M.A.; Seo, J.K.; Yang, L.; Lee, C.H.; Cho, K.J.; Ha, J.K. Isolation, screening and identification of swine gut microbiota with Ochratoxin A biodegradation ability. Asian Austral. J. Anim. 2012, 25, 114–121. [Google Scholar] [CrossRef]
- Alberts, J.F.; Engelbrecht, Y.; Steyn, P.S.; Holzapfel, W.H.; van Zyl, W.H. Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. Int. J. Food Microbiol. 2006, 109, 121–126. [Google Scholar] [CrossRef]
- Samuel, S.M.; Sivaramakrishna, A.; Mehta, A. Degradation and detoxification of aflatoxin B1 by Pseudomonas putida. Int. Biodeterior. Biodegrad. 2014, 86 Pt C, 202–209. [Google Scholar] [CrossRef]
- Sangi, F.; Mohammadi, A.; Afzali, N.; Mirabolfathy, M. Identification of New Aflatoxin B1- Degrading Bacteria from Iran. Iran. J. Toxicol. 2017, 12, 39–44. [Google Scholar] [CrossRef]
- Verheecke, C.; Liboz, T.; Mathieu, F. Microbial degradation of aflatoxin B1: Current status and future advances. Int. J. Food Microbiol. 2016, 237, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kosztik, J.; Mörtl, M.; Székács, A.; Kukolya, J.; Bata-Vidács, I. Aflatoxin B1 and Sterigmatocystin Binding Potential of Lactobacilli. Toxins 2020, 12, 756. [Google Scholar] [CrossRef] [PubMed]
- Ogunbanwo, S.T.; Enitan-Folami, A.M.; Emeya, P.; Okanlawon, B.M. Influence of lactic acid bacteria on fungal growth and aflatoxin production in Ogi, an indigenous fermented food. Adv. Food Sci. 2005, 27, 189–194. [Google Scholar]
- Zinedine, A.; Faid, M.; Benlemlih, M. In vitro reduction of aflatoxin B1 by strais of lactic acid bacteria isolated from Morocca sourdough bread. Int. J. Agric. Biol. 2005, 8530, 1–7. [Google Scholar]
- Lahtinen, S.J.; Haskard, C.A.; Ouwehand, A.C.; Salminen, S.J.; Ahokas, J.T. Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strain GG. Food Addit. Contim. 2004, 21, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, M.R.; Hajimohammadali, M.; Moshkani, A.; Samadi, N.; Jamalifar, H.; Khoshayand, M.R.; Vaghari, E.; Pouragahi, S. Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria. J. Food Prot. 2009, 72, 189–192. [Google Scholar] [CrossRef]
- Liang, Z.-H.; Li, J.-X.; He, Y.-L.; Guan, S.; Wang, N.; Cheng, J.I.; Niu, T.G. AFB1 Bio-Degradation by a New Strain-Stenotrophomonas. sp. Agric. Sci. China 2008, 7, 1433–1437. [Google Scholar] [CrossRef]
- El Khoury, A.; Atoui, A.; Yaghi, J. Analysis of aflatoxin M1 in milk and yogurt and AFM1 reduction by lactic acid bacteria used in Lebanese industry. Food Control 2011, 22, 1695–1699. [Google Scholar] [CrossRef]
- Pietras, M.; Barowicz, T. Mikotolsyny w Paszy. Biologiczne Metody Dekontaminacji. Available online: http://www.portalhodowcy.pl/czasopisma/hodowca-trzody-chlewnej/hodowca-trzody-chlewnej-archiwum/92-hodowca-trzody-chlewnej-7-8-2014/508-mikotoksyny-w-paszy-biologiczne-metody-dekontaminacji (accessed on 23 October 2014).
- Tajik, H.; Sayadi, M. Effects of probiotic bacteria of Lactobacillus acidophilus and Lactobacillus casei on aflatoxin B1 detoxification within a simulated gastrointestinal tract model. Toxin Rev. 2020, 41, 92–99. [Google Scholar] [CrossRef]
- Fochesato, A.S.; Cuello, D.; Poloni, V.; Galvagno, M.A.; Dogi, C.A.; Cavaglieri, L.R. Aflatoxin B1 adsorption/desorption dynamics in the presence of Lactobacillus rhamnosus RC007 in a gastrointestinal tract-simulated model. J. Appl. Microbiol. 2019, 26, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Broom, L. Mycotoxins and the intestine. Anim. Nutr. 2015, 1, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Juodeikiene, G.; Bartkiene, E.; Cernauskas, D.; Cizeikiene, D.; Zadeike, D.; Lele, V.; Bartkevics, V. Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT 2018, 89, 307–314. [Google Scholar] [CrossRef]
- Marie, K.P.; Ngoufack François, Z.; Edith Marius, F.K.; Ciobotaru, O.; Matei, F.; Cornea, C.P.; Israel-Roming, F. Antifungal Activity of Lactic Acid Bacteria Isolated from Peanuts, Gari, and Orange Fruit Juice against Food Aflatoxigenic Molds. Food Biotechnol. 2018, 32, 237–256. [Google Scholar] [CrossRef]
- Zuo, R.Y.; Chang, J.; Yin, Q.Q.; Wang, P.; Yang, Y.R.; Wang, X.; Wang, G.Q.; Zheng, Q.H. Effect of the combined probiotics with aflatoxin B1-degrading enzyme on aflatoxin detoxification, broiler production performance and hepatic enzyme gene expression. Food Chem. Toxicol. 2013, 59, 470–475. [Google Scholar] [CrossRef]
- Sangare, L.; Zhao, Y.; Folly, Y.M.E.; Chang, J.; Li, J.; Selvaraj, J.N.; Xing, F.; Zhou, L.; Wang, Y.; Liu, Y. Aflatoxin B1 Degradation bya Pseudomonas Strain. Toxins 2014, 6, 3028–3040. [Google Scholar] [CrossRef]
- Ali, S.; Hassan, M.; Essam, T.; Ibrahim, A.M.; Al-Amry, K. Biodegradation of aflatoxin by bacterial species isolated from poultry farms. Toxicon 2021, 195, 7–16. [Google Scholar] [CrossRef]
- Farzaneh, M.; Shi, Z.; Ghassempour, A.; Sedaghat, N.; Ahmadzadeh, M.; Mirabolfathy, M. Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control 2012, 23, 100–106. [Google Scholar] [CrossRef]
- Gao, X.; Ma, Q.; Zhao, L.; Lei, Y. Isolation of Bacillus subtilis: Screening for aflatoxins B1, M1, and G1 detoxification. Eur. Food Res. Technol. 2011, 232, 957–962. [Google Scholar] [CrossRef]
- Guan, S.; Zhao, L.; Ma, Q.; Zhou, T.; Wang, N.; Hu, X.; Ji, C. In vitro efficacy of Myxococcus fulvus ANSM068 to biotransform aflatoxin B1. Int. J. Mol. Sci. 2010, 11, 4063–4079. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Wang, Y.; Zhou, Q.; Li, M.; Hu, H.; Ma, Y.; Chen, X.; Ni, J.; Zhao, W.; Huang, S.; et al. Biological Degradation of Aflatoxin B1 by Cell-Free Extracts of Bacillus velezensis DY3108 with Broad PH Stability and Excellent Thermostability. Toxins 2018, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Chen, J.; Nepovimova, E.; Long, M.; Wu, W.; Kuca, K. Aflatoxin Detoxification Using Microorganisms and Enzymes. Toxins 2021, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Freimund, S.; Sauter, M.; Rys, P. Efficient adsorption of the mycotoxins zearalenone and T-2 toxin on a modified yeast glucan. J. Environ. Sci. Health B 2003, 38, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Shetty, P.H.; Hald, B.; Jespersen, L. Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. Int. J. Food Microbiol. 2007, 113, 41–46. [Google Scholar] [CrossRef]
- Raju, M.V.L.N.; Devegowda, G. Influence of esterified glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to invidual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin). Br. Poultry Sci. 2000, 41, 640–650. [Google Scholar] [CrossRef]
- Yiannikouris, A.; Andre, G.; Poughon, L.; Francois, J.; Dussap, C.-G.; Jeminet, G.; Bertin, G.; Jouany, J.-P. Chemical and conformational study of the interactions involved in mycotoxins complexation with ~-D-glucans. Biomacromolecules 2006, 7, 1147–1155. [Google Scholar] [CrossRef]
- Yiannikouris, A.; Apajalahti, J.; Kettunen, H.; Ojanperä, S.; Bell, A.N.W.; Keegan, J.D.; Moran, C.A. Efficient Aflatoxin B1 Sequestration by Yeast Cell Wall Extract and Hydrated Sodium Calcium Aluminosilicate Evaluated Using a Multimodal In-Vitro and Ex-Vivo Methodology. Toxins 2021, 13, 24. [Google Scholar] [CrossRef]
- Vartiainen, S.; Yiannikouris, A.; Apajalahti, J.; Moran, C.A. Comprehensive evaluation of the efficiency of yeast cell wall extract to adsorb ochratoxin A and mitigate accumulation of the toxin in broiler chickens. Toxins 2020, 12, 37. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, M.; Yang, Q.; Apaliya, M.T.; Li, J.; Zhang, X. Biodegradation of zearalenone by Saccharomyces cerevisiae: Possible involvement of ZEN responsive proteins of the yeast. J. Proteom. 2016, 143, 416–423. [Google Scholar] [CrossRef]
- Keller, L.; Abrunhosa, L.; Keller, K.; Rosa, C.A.; Cavaglieri, L.; Venâncio, A. Zearalenone and Its Derivatives α-Zearalenol and β-Zearalenol Decontamination by Saccharomyces cerevisiae Strains Isolated from Bovine Forage. Toxins 2015, 7, 3297–3308. [Google Scholar] [CrossRef]
- Klis, F.M.; Mol, P.; Hellingwerf, K.; Brul, S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2002, 26, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Rahaie, S.; Emam-Djomeh, Z.; Razavi, S.H.; Mazaheri, M. Immobilized Saccharomyces cerevisiae as a potential aflatoxin decontaminating agent in pistachio nuts. Braz. J. Microbiol. 2010, 41, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Istiqomah, L.; Damayanti, E.; Arisnandhy, D.; Setyabudi’s, F.M.C.S.; Anwar, M. Saccharomyces cerevisiae B18 as antifungal and aflatoxin binder in vitro. AIP Conf. Proc. 2019, 2099, 020009. [Google Scholar] [CrossRef]
- Chlebicz, A.; Śliżewska, K. In Vitro Detoxification of Aflatoxin B1, Deoxynivalenol, Fumonisins, T-2 Toxin and Zearalenone by Probiotic Bacteria from Genus Lactobacillus and Saccharomyces cerevisiae Yeast. Probiotics Antimicrob. Proteins 2020, 12, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Taran, F.M.P.; Silva, V.P.; Abrunhosa, L.; da Rocha Rosa, C.A.; Venâncio, A.; Almeida, F.Q. Evaluation of Saccharomyces cerevisiae as an anti-fumonisin B 1 additive in a horse digestion mode. World Mycotoxin J. 2016, 10, 121–130. [Google Scholar] [CrossRef]
- Oliveira, A.A.; Keller, K.M.; Deveza, M.V.; Keller, L.A.M.; Dias, E.O.; Martini-Santos, B.J.; Leitao, D.F.G.M.; Cavaglieri, L.R.; Rosa, C.A.R. Effect of three different anti-mycotoxin additives on broiler chickens exposed to aflatoxin B1. Arch. Med. Vet. 2015, 47, 175–183. [Google Scholar] [CrossRef]
- Arif, M.; Iram, A.; Bhutta, M.; Naiel, M.; Abd El-Hack, M.E.; Othman, S.I.; Allam, A.A.; Amer, M.S.; Taha, A. The Biodegradation Role of Saccharomyces cerevisiae against Harmful Effects of Mycotoxin Contaminated Diets on Broiler Performance, Immunity Status, and Carcass characteristics. Animals 2020, 10, 238. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, B.; Li, M.; Mu, Y.; Chen, Z.; Li, J.; Shan, A. Screening a strain of Aspergillus niger and optimization of fermentation conditions for degradation of aflatoxin B1. Toxins 2014, 6, 3157–3172. [Google Scholar] [CrossRef]
- Sun, X.; He, X.; siyu Xue, K.; Li, Y.; Xu, D.; Qian, H. Biological detoxification of zearalenone by Aspergillus niger strain FS10. Food Chem. Toxicol. 2014, 72, 76–82. [Google Scholar] [CrossRef]
- Varga, J.; Rigó, K.; Téren, J. Degradation of ochratoxin A by Aspergillus species. Int. J. Food Microbiol. 2000, 59, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.M.; Jeong, S.E.; Lee, K.R.; Sudhani, H.P.; Kim, M.; Hong, S.Y.; Chung, S.H. Biodegradation of Ochratoxin A by Aspergillus tubingensis Isolated from Meju. J. Microbiol. Biotechnol. 2016, 26, 1687–1695. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Bhattacharya, S.; Palaniswamy, M.; Angayarkanni, J. Biodegradation of aflatoxin B1 in contaminated rice straw by Pleurotus ostreatus MTCC 142 and Pleurotus ostreatus GHBBF10 in the presence of metal salts and surfactants. World J. Microbiol. Biotechnol. 2014, 30, 2315–2324. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.W.; Pryor, B.M. Degradation of aflatoxin B1 from naturally contaminated maize using the edible fungus Pleurotus ostreatus. AMB Express 2017, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Branà, M.T.; Cimmarusti, M.T.; Haidukowski, M.; Logrieco, A.F.; Altomare, C. Bioremediation of aflatoxin B1-contaminated maize by king oyster mushroom (Pleurotus eryngii). PLoS ONE 2017, 12, e0182574. [Google Scholar] [CrossRef]
- Tian, Y.; Tan, Y.; Yan, Z.; Liao, Y.; Chen, J.; De Boevre, M.; De Saeger, S.; Wu, A. Antagonistic and Detoxification Potentials of Trichoderma Isolates for Control of Zearalenone (ZEN) Producing Fusarium graminearum. Front. Microbiol. 2018, 8, 2710. [Google Scholar] [CrossRef]
- Brodehl, A.; Möller, A.; Kunte, H.J.; Koch, M.; Maul, R. Biotransformation of the mycotoxin zearalenone by fungi of the genera Rhizopus and Aspergillus. FEMS Microbiol. Lett. 2014, 359, 124–130. [Google Scholar] [CrossRef]
- Liu, D.L.; Yao, D.S.; Liang, Y.Q.; Zhou, T.H.; Song, Y.P.; Zhao, L.; Ma, L. Production, purification, and characterization of an intracellular aflatoxin-detoxifizyme from Armillariella tabescens (E-20). Food Chem. Toxicol 2001, 39, 446–461. [Google Scholar] [CrossRef]
- Wang, X.; Qin, X.; Hao, Z.; Luo, H.; Yao, B.; Su, X. Degradation of Four Major Mycotoxins by Eight Manganese Peroxidases in Presence of a Dicarboxylic Acid. Toxins 2019, 11, 566. [Google Scholar] [CrossRef]
- Wang, J.; Ogata, M.; Hirai, H.; Kawagishi, H. Detoxification of aflatoxin B1 by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol. Lett. 2011, 314, 164–169. [Google Scholar] [CrossRef]
- Sun, H.; He, Z.; Xiong, D.; Long, M. Mechanisms by which microbial enzymes degrade four mycotoxins and application in animal production: A review. Anim. Nutr. 2023, 4, 256–274. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.O.; Feltrin, A.C.P.; Garda-Buffon, J. Zearalenone reduction by commercial peroxidase enzyme and peroxidases from soybean bran and rice bran. Food Addit. Contam. Part A 2018, 35, 1819–1831. [Google Scholar] [CrossRef] [PubMed]
- Feltrin, A.C.P.; Garcia, S.O.; Caldas, S.S.; Primel, E.G.; Badiale-Furlong, E.; Garda-Buffon, J. Characterization and application of the enzyme peroxidase to the degradation of the mycotoxin DON. J. Environ. Sci. Health B 2017, 52, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Grenier, B.; Bracarense, A.P.; Schwartz, H.E.; Trumel, C.; Cossalter, A.M.; Schatzmayr, G.; Kolf-Clauw, M.; Moll, W.D.; Oswald, I.P. The low intestinal and hepatic toxicity of hydrolyzed fumonisin B₁ correlates with its inability to alter the metabolism of sphingolipids. Biochem. Pharmacol. 2012, 83, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Heinl, S.; Hartinger, D.; Thamhesl, M.; Vekiru, E.; Krska, R.; Schatzmayr, G.; Moll, W.D.; Grabherr, R. Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. J. Biotechnol. 2010, 145, 120–129. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Liu, Z.; Jin, S.; Pan, K.; Liu, H.; Liu, T.; Li, X.; Zhang, C.; Luo, X.; et al. Biological detoxification of fumonisin by a novel carboxylesterase from Sphingomonadales bacterium and its biochemical characterization. Int. J. Biol. Macromol. 2021, 169, 18–27. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (EFSA FEEDAP Panel); Rychen, G.; Aquilina, G.; Azimonti, G.; Bastos, M.D.L.; Christensen, H.; Dusemund, B.; Kos Durjava, M.; Kouba, M.; López-Alonso, M.; et al. Safety and efficacy of fumonisin esterase from Komagataella phaffii DSM 32159 as a technological feed additive for pigs and poultry. EFSA J. 2018, 16, e05269. [Google Scholar] [CrossRef]
- Abrunhosa, L.; Paterson, R.R.; Venâncio, A. Biodegradation of ochratoxin a for food and feed decontamination. Toxins 2010, 2, 1078–1099. [Google Scholar] [CrossRef]
- Abrunhosa, L.; Venâncio, A. Isolation and purification of an enzyme hydrolyzing ochratoxin A from Aspergillus niger. Biotechnol. Lett. 2007, 29, 1909–1914. [Google Scholar] [CrossRef]
- Leitão, A.L.; Enguita, F.J. Systematic Structure-Based Search for Ochratoxin-Degrading Enzymes in Proteomes from Filamentous Fungi. Biomolecules 2021, 11, 1040. [Google Scholar] [CrossRef]
- Azam, M.S.; Yu, D.; Liu, N.; Wu, A. Degrading Ochratoxin A and Zearalenone Mycotoxins Using a Multifunctional Recombinant Enzyme. Toxins 2019, 11, 301. [Google Scholar] [CrossRef] [PubMed]
- Branà, M.T.; Sergio, L.; Haidukowski, M.; Logrieco, A.F.; Altomare, C. Degradation of Aflatoxin B1 by a Sustainable Enzymatic Extract from Spent Mushroom Substrate of Pleurotus eryngii. Toxins 2020, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Motomura, M.; Toyomasu, T.; Mizuno, K.; Shinozawa, T. Purification and characterization of an aflatoxin degradation enzyme from Pleurotus ostreatus. Microbiol. Res. 2003, 158, 237–242. [Google Scholar] [CrossRef]
- Tso, K.-H.; Ju, J.-C.; Fan, Y.-K.; Chiang, H.-I. Enzyme Degradation Reagents Effectively Remove Mycotoxins Deoxynivalenol and Zearalenone from Pig and Poultry Artificial Digestive Juices. Toxins 2019, 11, 599. [Google Scholar] [CrossRef] [PubMed]
- Dellafiora, L.; Galaverna, G.; Reverberi, M.; Dall’Asta, C. Degradation of Aflatoxins by Means of Laccases from Trametes versicolor: An In Silico Insight. Toxins 2017, 9, 17. [Google Scholar] [CrossRef]
- Scarpari, M.; Bello, C.; Pietricola, C.; Zaccaria, M.; Bertocchi, L.; Angelucci, A.; Ricciardi, M.R.; Scala, V.; Parroni, A.; Fabbri, A.A.; et al. Aflatoxin control in maize by Trametes versicolor. Toxins 2014, 6, 3426–3437. [Google Scholar] [CrossRef]
Species of Animals | Clinical Symptoms | Breeding Problems |
---|---|---|
Pigs (boars, sows) | Damage to the digestive tract and kidneys, vulva swelling and redness, rectal prolapse, interfere with cell function and signaling in many tissues, immunosuppression, liver dysfunction, such as hemorrhages, jaundice, in boars, suppresses testosterone levels [48,54,55,56]. | Fertility problems, low libido, decreased productivity, fetal death, infections, reduced feed consumption, weight loss by reducing body fat, slow growth of piglets consuming mycotoxins with milk, vomiting, diarrhea, severe respiratory signs, with labored and openmouthed breathing, heart failure and fluid accumulation in the lungs, deaths [48,54,55,56]. |
Cattle (dairy cows, beef cattle) | Decreased globulin levels in serum, disturbances in protein synthesis, inhibition of DNA synthesis, inflammation and cirrhosis of the liver, inflammation of the kidneys, decreased blastogenesis of bovine lymphocytes, immunosuppression, and changes in liver cells [47,50,55]. | Decreased milk production, reproductive dysfunction, loss of appetite, anorexia, intermittent diarrhea, other digestive upsets, unthriftiness, rough hair coat, and deaths [47,50,55]. |
Poultry (laying hens, ducks, broilers, turkeys) | Decreased intestinal integrity, gastric erosions, coccidiosis, immunodeficiency, organ changes including liver enlargement and dysfunction, focal hemorrhage, biliary tract hypertrophy, nodular lymphoid infiltrates, inactivation of enzymes responsible for starch breakdown, digestion of lipids and proteins, reduction of serum protein levels, anemia [43,52,55,57]. | Decreased size, quality, and egg production increased susceptibility to infection, decreased productivity, poor pigmentation of skin, eggs, and yolk, growth retardation, abnormal feathering, and deaths [43,52,55,57]. |
Horses | Disturbances in the functioning of the nervous system (including leukoencephalomalacia), ataxia, paresis, apathy, impaired locomotor function, changes in the cerebral cortex and white matter necrosis in the brain, central nervous system dysfunction, increased heart rate [47,55]. | Reduced feed intake or refusals, general lethargy, increased susceptibility to disease, altered heat cycles, and swollen mammary glands in mares deaths [47,55]. |
Sheeps | Changes and disorders of the liver and kidneys, metabolic disorders, cardiological disorders (atrial fibrillation), necrosis of the tongue and cheeks epithelial tissues, and disorders of DNA and protein synthesis [55,58]. | Deaths, reduced fodder intake, reproductive dysfunction, and weight loss by reducing body fat [55,58]. |
Fishes | Anemia, impaired blood clotting, sensitivity to bruising, damage to the liver and other organs, and decreased immune responsiveness increase vulnerability to bacteria and viral or parasitic infections [59,60]. | Decreased body weight, growth impairment, changes in swimming behavior, higher rates of disease, and mortality [59,60]. |
Mycotoxins | The Major Species of Molds Producing Mycotoxins | The Most Important Health Effects | Main Crops Threatened with Infestation | The Major Group Endangered Species of Farm Animals | Recommended Maximum Value of Mycotoxins in Feed Materials or Compound Feed Intended for Animal Feeding * (mg/kg) |
---|---|---|---|---|---|
Aflatoxins B1, B2, G1, G2 | Aspergillus flavus, A. parasiticus, A. nominus | Carcinogenic, hepatotoxic, and teratogenic effects | Peanuts, nuts, corn, cotton seeds, wheat, barley, cocoa beans, dried fruit, spices | Poultry, pigs, fish, | Feed materials: 0.02 (AFB1) Complementary and complete feed: 0.005–0.01 (AFB1) ** |
Deoxynivalenol | Fusarium graminearum, F. culmorum, F. poae | Cytotoxic and immunosuppressive effects, digestive disorders, and reduced weight gain | Wheat, barley, corn, oats, rye, rice, grain products | Poultry, pigs, ruminants, fish | Cereals and cereal products: 8 Maize by-products: 12 Compound feed: 0.9–5 |
Fumonisins | Fusarium moniliforme, F. proliferatum, F. verticillioides, F. subglutfinans | Carcinogenic and hepatotoxic effects, pulmonary effects, encephalomalacia (brain necrosis) in horses | Corn, grapes | Pigs, horses | Maize and maize products (FB1 + FB2): 60 Compound feed (FB1 + FB2): 5–50 |
Ochratoxin A. | Penicillum verrucosum, P. commune, P. nordicum, P. purpurescens, Aspergillus ochraceus, A. alutaceus, A. melleus, A. carbonarium, A. niger | Carcinogenic, hepatotoxic, neurotoxic, nephrotoxin (kidney toxin) in pigs teratogenic, immunosuppressive effects, nephrotoxic effect | Grains, legumes, oilseeds, peanuts, cashews, dried fruit | Poultry, pigs | Cereals and cereal products: 0.25 Compound feed: 0.05–0.1 |
T-2 toxin; HT-2 toxin | F. sporotrichioides, F. langsethiae F. poae, F. solani | Digestive disorders, hematologic changes, negative influence on the immune system | Cereals | Poultry, pigs, ruminants, fish | Feed materials: 0.5 Complete feed: 0.25 |
Zearalenone | Fusarium graminearum, F. culmorum, F. solani, F. cerealia, F. equiseti | Estrogenic, potentially carcinogenic, and teratogenic activity, reproductive disorders | In all types of cereals, processed cereals, the highest levels in maize and wheat bran | Pigs, ruminants, lambs | Cereals and cereal products: 2 Maize by-products: 3 Compound feed: 0.1–0.5 |
State/Region | Type of Animal Feed | Number of Tested Samples | Mycotoxin Detected | Pollution Degree % | Mycotoxin Concentration | Recommended Maximum Mycotoxin Content * mg/kg (ppm) | Source |
---|---|---|---|---|---|---|---|
Slovakia | Compound feeds for poultry | 50 | T-2 HT-2 ZEA DON | 90 76 88 56 | 1–130 μg/kg 2–173 μg/kg 3–86 μg/kg 64–1230 μg/kg | 0.25–0.5 (T-2 + HT-2) 0.1–0.5 5 | [63] |
Croatia | Grains and animal feeds | 465 | T-2 Diacetoxyscirpenol DON | 16.8 27.6 41.2 | 0.05–3.4 mg/kg | 0.25–0.5 (T-2 + HT-2) _ 0.9–5 | [64] |
Pakistan | Fodders ingredients, ready-made poultry feed | 286 80 | OTA | 31 38 | 51 μg/kg 75 μg/kg | 0.1 | [65] |
Poland | Fodders ingredients and ready-made feed mixtures | 300 | OTA | 9 | >0.03 μg/kg | 0.05–0.1 | [66] |
Turkey (Sivas) | Compound feeds | 89 | OTA | 71.91 | 5–>40 ppb | 0.05–0.1 | [67] |
Uganda | Fodders from feed processing plants Fodders obtained from breeders | 40 27 | Aflatoxins | 100 | 7.5–393.5 ppb 19–188.5 ppb | 0.02 (AFB1) ** | [68] |
Croatia | Cereal grains (wheat, oats, corn, barley) | 240 | T-2 HT-2 | 33.8 | 82.7–96.5 μg/kg 83.6–94.1 μg/kg | 0.25–0.5 (T-2 + HT-2) | [69] |
Germany | Straw (wheat, barley, triticale, oats, rye) | 192 | ZEA DON T-2 HT-2 | 95.8 | 6.0–785 μg/kg 20–24,000 μg/kg 10–250 μg/kg 20–800 μg/kg | 2–3 5 0.25–0.5 (T-2 + HT-2) | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lach, M.; Kotarska, K. Negative Effects of Occurrence of Mycotoxins in Animal Feed and Biological Methods of Their Detoxification: A Review. Molecules 2024, 29, 4563. https://doi.org/10.3390/molecules29194563
Lach M, Kotarska K. Negative Effects of Occurrence of Mycotoxins in Animal Feed and Biological Methods of Their Detoxification: A Review. Molecules. 2024; 29(19):4563. https://doi.org/10.3390/molecules29194563
Chicago/Turabian StyleLach, Michał, and Katarzyna Kotarska. 2024. "Negative Effects of Occurrence of Mycotoxins in Animal Feed and Biological Methods of Their Detoxification: A Review" Molecules 29, no. 19: 4563. https://doi.org/10.3390/molecules29194563
APA StyleLach, M., & Kotarska, K. (2024). Negative Effects of Occurrence of Mycotoxins in Animal Feed and Biological Methods of Their Detoxification: A Review. Molecules, 29(19), 4563. https://doi.org/10.3390/molecules29194563