Antibacterial Efficacy and Characterization of Silver Nanoparticles Synthesized via Methanolic Extract of Fomes fomentarius L. Fr.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of AgNPs Synthesized via F. fomentarius L. Fr. Extract
2.2. Antibacterial Activity of AgNPs Synthesized via F. fomentarius L. Fr. Extract
3. Materials and Methods
3.1. Collection of Fomes fomentarius L. Fr.
3.2. Preparation of AgNPs
3.3. Characterization of AgNPs
3.4. Antibacterial Activity of AgNPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. Adv. Colloid. Interface Sci. 2009, 145, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Firdhouse, M.J.; Lalitha, P. Biosynthesis of Silver Nanoparticles and Its Applications. J. Nanotechnol. 2015, 2015, 829526. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef]
- Huy, T.Q.; Van, N.Q.; Anh-Tuan, L. Silver Nanoparticles: Synthesis, Properties, Toxicology, Applications and Perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 033001. [Google Scholar] [CrossRef]
- Ge, L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X.; Xing, M.M. Nanosilver Particles in Medical Applications: Synthesis, Performance, and Toxicity. Int. J. Nanomed. 2014, 9, 2399–2407. [Google Scholar] [CrossRef]
- Tian, J.; Wong, K.K.Y.; Ho, C.-M.; Lok, C.-N.; Yu, W.-Y.; Che, C.-M.; Chiu, J.-F.; Tam, P.K.H. Topical Delivery of Silver Nanoparticles Promotes Wound Healing. ChemMedChem 2007, 2, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Alabresm, A.; Chen, Y.P.; Wichter-Chandler, S.; Lead, J.; Benicewicz, B.C.; Decho, A.W. Nanoparticles as Antibiotic-Delivery Vehicles (ADVs) Overcome Resistance by MRSA and Other MDR Bacterial Pathogens: The Grenade Hypothesis. J. Glob. Antimicrob. Resist. 2020, 22, 811–817. [Google Scholar] [CrossRef]
- Huy, T.Q.; Huyen, P.T.M.; Le, A.-T.; Tonezzer, M. Recent Advances of Silver Nanoparticles in Cancer Diagnosis and Treatment. Anti-Cancer Agents Med. Chem. 2020, 20, 1276–1287. [Google Scholar] [CrossRef]
- Mansoor, S.; Zahoor, I.; Baba, T.R.; Padder, S.A.; Bhat, Z.A.; Koul, A.M.; Jiang, L. Fabrication of Silver Nanoparticles Against Fungal Pathogens. Front. Nanotechnol. 2021, 3, 679358. [Google Scholar] [CrossRef]
- Shanmugasundaram, T.; Balagurunathan, R. Mosquito Larvicidal Activity of Silver Nanoparticles Synthesised Using Actinobacterium, Streptomyces Sp. M25 against Anopheles Subpictus, Culex Quinquefasciatus and Aedes Aegypti. J. Parasit. Dis. 2015, 39, 677–684. [Google Scholar] [CrossRef]
- dos Santos, O.A.L.; dos Santos, M.S.; Antunes Filho, S.; Backx, B.P. Nanotechnology for the Control of Plant Pathogens and Pests. Plant Nano Biol. 2024, 8, 100080. [Google Scholar] [CrossRef]
- Khan, S.; Zahoor, M.; Khan, R.S.; Ikram, M.; Islam, N.U. The Impact of Silver Nanoparticles on the Growth of Plants: The Agriculture Applications. Heliyon 2023, 9, e16928. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Zhang, Y.; Farghali, M.; Rashwan, A.K.; Eltaweil, A.S.; Abd El-Monaem, E.M.; Mohamed, I.M.A.; Badr, M.M.; Ihara, I.; Rooney, D.W.; et al. Synthesis of Green Nanoparticles for Energy, Biomedical, Environmental, Agricultural, and Food Applications: A Review. Environ. Chem. Lett. 2024, 22, 841–887. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.-H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ Synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
- Nguyen, N.P.U.; Dang, N.T.; Doan, L.; Nguyen, T.T.H. Synthesis of Silver Nanoparticles: From Conventional to ‘Modern’ Methods—A Review. Processes 2023, 11, 2617. [Google Scholar] [CrossRef]
- Wardencki, W.; Curyło, J.; Namieśnik, J. Green Chemistry—Current and Future Issues. Pol. J. Environ. Stud. 2005, 14, 389–395. [Google Scholar]
- Rozhin, A.; Batasheva, S.; Kruychkova, M.; Cherednichenko, Y.; Rozhina, E.; Fakhrullin, R. Biogenic Silver Nanoparticles: Synthesis and Application as Antibacterial and Antifungal Agents. Micromachines 2021, 12, 1480. [Google Scholar] [CrossRef]
- Alex, A.M.; Subburaman, S.; Chauhan, S.; Ahuja, V.; Abdi, G.; Tarighat, M.A. Green Synthesis of Silver Nanoparticle Prepared with Ocimum Species and Assessment of Anticancer Potential. Sci. Rep. 2024, 14, 11707. [Google Scholar] [CrossRef]
- Ahmadi, F.; Lackner, M. Green Synthesis of Silver Nanoparticles from Cannabis Sativa: Properties, Synthesis, Mechanistic Aspects, and Applications. ChemEngineering 2024, 8, 64. [Google Scholar] [CrossRef]
- Khan, A.; Ahmad, N.; Fazal, H.; Ali, M.; Akbar, F.; Khan, I.; Tayyab, M.; Uddin, M.N.; Ahmad, N.; Abdel-Maksoud, M.A.; et al. Biogenic Synthesis of Silver Nanoparticles Using Rubus Fruticosus Extract and Their Antibacterial Efficacy against Erwinia Caratovora and Ralstonia Solanacearum Phytopathogens. RSC Adv. 2024, 14, 5754–5763. [Google Scholar] [CrossRef]
- Korkmaz, N.; Ceylan, Y.; İmamoğlu, R.; Kısa, D.; Şen, F.; Karadağ, A. Eco-Friendly Biogenic Silver Nanoparticles: Synthesis, Characterization and Biological Applications. Int. J. Environ. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Jayaprakash, N.; Vijaya, J.J.; Kaviyarasu, K.; Kombaiah, K.; Kennedy, L.J.; Ramalingam, R.J.; Munusamy, M.A.; Al-Lohedan, H.A. Green Synthesis of Ag Nanoparticles Using Tamarind Fruit Extract for the Antibacterial Studies. J. Photochem. Photobiol. B 2017, 169, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Konishi, Y.; Ohno, K.; Saitoh, N.; Nomura, T.; Nagamine, S.; Hishida, H.; Takahashi, Y.; Uruga, T. Bioreductive Deposition of Platinum Nanoparticles on the Bacterium Shewanella Algae. J. Biotechnol. 2007, 128, 648–653. [Google Scholar] [CrossRef]
- Yadav, A.; Kon, K.; Kratosova, G.; Duran, N.; Ingle, A.P.; Rai, M. Fungi as an Efficient Mycosystem for the Synthesis of Metal Nanoparticles: Progress and Key Aspects of Research. Biotechnol. Lett. 2015, 37, 2099–2120. [Google Scholar] [CrossRef]
- Bahari, N.; Hashim, N.; Abdan, K.; Md Akim, A.; Maringgal, B.; Al-Shdifat, L. Role of Honey as a Bifunctional Reducing and Capping/Stabilizing Agent: Application for Silver and Zinc Oxide Nanoparticles. Nanomaterials 2023, 13, 1244. [Google Scholar] [CrossRef]
- Srikar, S.K.; Giri, D.D.; Pal, D.B.; Mishra, P.K.; Upadhyay, S.N. Green Synthesis of Silver Nanoparticles: A Review. Green Sustain. Chem. 2016, 6, 34–56. [Google Scholar] [CrossRef]
- Al-Zaban, M.I.; Mahmoud, M.A.; AlHarbi, M.A. Catalytic Degradation of Methylene Blue Using Silver Nanoparticles Synthesized by Honey. Saudi J. Biol. Sci. 2021, 28, 2007–2013. [Google Scholar] [CrossRef]
- Santhosh, A.S.; Sandeep, S.; Manukumar, H.M.; Mahesh, B.; Kumara Swamy, N. Green Synthesis of Silver Nanoparticles Using Cow Urine: Antimicrobial and Blood Biocompatibility Studies. JCIS Open 2021, 3, 100023. [Google Scholar] [CrossRef]
- Raghavendra, S.N.; Raghu, H.S.; Chaithra, C.; Rajeshwara, A.N. Potency of Mancozeb Conjugated Silver Nanoparticles Synthesized from Goat, Cow and Buffalo Urine Against Colletotrichum Gloeosporioides Causing Anthracnose Disease. NEPT 2020, 19, 969–979. [Google Scholar] [CrossRef]
- Rattan, R.; Shukla, S.; Sharma, B.; Bhat, M. A Mini-Review on Lichen-Based Nanoparticles and Their Applications as Antimicrobial Agents. Front. Microbiol. 2021, 12, 633090. [Google Scholar] [CrossRef]
- Sidhu, A.K.; Verma, N.; Kaushal, P. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their Therapeutic Potential. Front. Nanotechnol. 2022, 3, 801620. [Google Scholar] [CrossRef]
- Zuhrotun, A.; Oktaviani, D.J.; Hasanah, A.N. Biosynthesis of Gold and Silver Nanoparticles Using Phytochemical Compounds. Molecules 2023, 28, 3240. [Google Scholar] [CrossRef]
- Siakavella, I.K.; Lamari, F.; Papoulis, D.; Orkoula, M.; Gkolfi, P.; Lykouras, M.; Avgoustakis, K.; Hatziantoniou, S. Effect of Plant Extracts on the Characteristics of Silver Nanoparticles for Topical Application. Pharmaceutics 2020, 12, 1244. [Google Scholar] [CrossRef] [PubMed]
- Bérdy, J. Bioactive Microbial Metabolites. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef]
- Suvorov, P.A. Biological Characteristics of Fomes fomentarius, Found on Spruce and Birch. Can. J. Bot. 1967, 45, 1853–1857. [Google Scholar] [CrossRef]
- Lira Dyson, B.; Herpel, R.; Karasch, P.; Müller, J.; Thom, D.; Bässler, C. Effects of Forest Management on the Key Fungal Decomposer Fomes fomentarius in European Beech Forests—Lessons from a Large-Scale Experiment. For. Ecol. Manag. 2024, 552, 121580. [Google Scholar] [CrossRef]
- Grienke, U.; Zöll, M.; Peintner, U.; Rollinger, J.M. European Medicinal Polypores--a Modern View on Traditional Uses. J. Ethnopharmacol. 2014, 154, 564–583. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, Z.; Chen, S.-F.; Li, Y.-Q. Optimization for the Production of Exopolysaccharide from Fomes fomentarius in Submerged Culture and Its Antitumor Effect In Vitro. Bioresour. Technol. 2008, 99, 3187–3194. [Google Scholar] [CrossRef]
- Wasser, S.P. Medicinal Mushroom Science: History, Current Status, Future Trends, and Unsolved Problems. IJM 2010, 12, 1–16. [Google Scholar] [CrossRef]
- Kim, S.H.; Jakhar, R.; Kang, S.C. Apoptotic Properties of Polysaccharide Isolated from Fruiting Bodies of Medicinal Mushroom Fomes fomentarius in Human Lung Carcinoma Cell Line. Saudi J. Biol. Sci. 2015, 22, 484–490. [Google Scholar] [CrossRef]
- Lee, S.-O.; Lee, M.-H.; Lee, K.-R.; Lee, E.-O.; Lee, H.-J. Fomes fomentarius Ethanol Extract Exerts Inhibition of Cell Growth and Motility Induction of Apoptosis via Targeting AKT in Human Breast Cancer MDA-MB-231 Cells. Int. J. Mol. Sci. 2019, 20, 1147. [Google Scholar] [CrossRef]
- Park, Y.-M.; Kim, I.-T.; Park, H.-J.; Choi, J.-W.; Park, K.-Y.; Lee, J.-D.; Nam, B.-H.; Kim, D.-G.; Lee, J.-Y.; Lee, K.-T. Anti-Inflammatory and Anti-Nociceptive Effects of the Methanol Extract of Fomes fomentarius. Biol. Pharm. Bull. 2004, 27, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Seniuk, O.F.; Gorovoj, L.F.; Beketova, G.V.; Savichuk, H.O.; Rytik, P.G.; Kucherov, I.I.; Prilutskay, A.B.; Prilutsky, A.I. Anti-Infective Properties of the Melanin-Glucan Complex Obtained from Medicinal Tinder Bracket Mushroom, Fomes fomentarius (L.: Fr.) Fr. (Aphyllophoromycetideae). Int. J. Med. Mushrooms 2011, 13, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Ravnikar, M.; Štrukelj, B.; Otašević, B.; Sirše, M. Fomentariol, a Fomes fomentarius Compound, Exhibits Anti-Diabetic Effects in Fungal Material: An In Vitro Analysis. Nutraceuticals 2024, 4, 273–282. [Google Scholar] [CrossRef]
- Seo, D.-W.; Yi, Y.-J.; Lee, M.-S.; Yun, B.-S.; Lee, S.-M. Differential Modulation of Lipopolysaccharide-Induced Inflammatory Cytokine Production by and Antioxidant Activity of Fomentariol in RAW264.7 Cells. Mycobiology 2015, 43, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Karadeniz, M.; Bakır, T.K.; Ünal, S. Investigation of the Antioxidant and Total Phenolic Substance of Fomes fomentarius and Ganoderma Applanatum Mushrooms Showing Therapeutic Properties. Bilge Int. J. Sci. Technol. Res. 2024, 8, 14–18. [Google Scholar] [CrossRef]
- Lee, J.-S. Effects of Fomes fomentarius Supplementation on Antioxidant Enzyme Activities, Blood Glucose, and Lipid Profile in Streptozotocin-Induced Diabetic Rats. Nutr. Res. 2005, 25, 187–195. [Google Scholar] [CrossRef]
- Doğan, H.H.; Karagöz, S.; Duman, R. In Vitro Evaluation of the Antiviral Activity of Some Mushrooms from Turkey. IJM 2018, 20, 201–212. [Google Scholar] [CrossRef]
- Aoki, M.; Tan, M.; Fukushima, A.; Hieda, T.; Kubo, S.; Takabayashi, M.; Ono, K.; Mikami, Y. Antiviral Substances with Systemic Effects Produced by Basidiomycetes Such as Fomes fomentarius. Biosci. Biotechnol. Biochem. 1993, 57, 278–282. [Google Scholar] [CrossRef]
- Kolundžić, M.; Grozdanić, N.Đ.; Dodevska, M.; Milenković, M.; Sisto, F.; Miani, A.; Farronato, G.; Kundaković, T. Antibacterial and Cytotoxic Activities of Wild Mushroom Fomes fomentarius (L.) Fr., Polyporaceae. Ind. Crops Prod. 2016, 79, 110–115. [Google Scholar] [CrossRef]
- Rösecke, J.; König, W.A. Constituents of Various Wood-Rotting Basidiomycetes. Phytochemistry 2000, 54, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Munro, H.D.; Musgrave, O.C. Extractives from Sporophores of Some Fomes Species. J. Chem. Soc. C 1971, 685–688. [Google Scholar] [CrossRef]
- Zang, Y.; Xiong, J.; Zhai, W.-Z.; Cao, L.; Zhang, S.-P.; Tang, Y.; Wang, J.; Su, J.-J.; Yang, G.-X.; Zhao, Y.; et al. Fomentarols A–D, Sterols from the Polypore Macrofungus Fomes fomentarius. Phytochemistry 2013, 92, 137–145. [Google Scholar] [CrossRef]
- Feng, W.; Yang, J.-S. Studies on Chemical Constituents of Fomes fomentarius (L. Ex. Fr.). Chin. Pharm. J. 2010, 45, 1528–1530. [Google Scholar]
- Feng, W.; Yang, J.-S. Chemical Constituents of Fomes fomentarius (L.Ex.Fr.): Part (II). Chin. Pharm. J. 2015, 50, 1090–1092. [Google Scholar] [CrossRef]
- Zhang, F.-L.; Shi, C.; Sun, L.-T.; Yang, H.-X.; He, J.; Li, Z.-H.; Feng, T.; Liu, J.-K. Chemical Constituents and Their Biological Activities from the Mushroom Pyropolyporus Fomentarius. Phytochemistry 2021, 183, 112625. [Google Scholar] [CrossRef]
- Guilger-Casagrande, M.; Lima, R. de Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 2019, 7, 287. [Google Scholar] [CrossRef]
- Velusamy, P.; Kumar, G.V.; Jeyanthi, V.; Das, J.; Pachaiappan, R. Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application. Toxicol. Res. 2016, 32, 95–102. [Google Scholar] [CrossRef]
- Robaszkiewicz, A.; Bartosz, G.; Ławrynowicz, M.; Soszyński, M. The Role of Polyphenols, β-Carotene, and Lycopene in the Antioxidative Action of the Extracts of Dried, Edible Mushrooms. J. Nutr. Metab. 2010, 2010, 173274. [Google Scholar] [CrossRef]
- Harhaji, L.; Mijatović, S.; Maksimović-Ivanić, D.; Stojanović, I.; Momčilović, M.; Maksimović, V.; Tufegdžić, S.; Marjanović, Ž.; Mostarica-Stojković, M.; Vučinić, Ž.; et al. Anti-Tumor Effect of Coriolus Versicolor Methanol Extract against Mouse B16 Melanoma Cells: In Vitro and in Vivo Study. Food Chem. Toxicol. 2008, 46, 1825–1833. [Google Scholar] [CrossRef]
- Zengin, G.; Aktumsek, A. Investigation Of Antioxidant Potentials Of Solvent Extracts From Different Anatomical Parts Of Asphodeline Anatolica E. Tuzlaci: An Endemic Plant To Turkey. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 481–488. [Google Scholar] [CrossRef]
- Morris, S.C. Biomimetic Materials Chemistry. Xvi. In Geological Magazine; VCH Publishers: Weinheim, Germany; Cambridge, UK; New York, NY, USA, 1996; Volume 134, pp. 877–883. ISBN 1 56081 669 4. [Google Scholar]
- Henglein, A. Physicochemical Properties of Small Metal Particles in Solution: “Microelectrode” Reactions, Chemisorption, Composite Metal Particles, and the Atom-to-Metal Transition. J. Phys. Chem. 1993, 97, 5457–5471. [Google Scholar] [CrossRef]
- Sastry, M.; Mayya, K.S.; Bandyopadhyay, K. pH Dependent Changes in the Optical Properties of Carboxylic Acid Derivatized Silver Colloidal Particles. Colloids Surf. A Physicochem. Eng. Asp. 1997, 127, 221–228. [Google Scholar] [CrossRef]
- Bindhu, M.R.; Umadevi, M. Synthesis of Monodispersed Silver Nanoparticles Using Hibiscus Cannabinus Leaf Extract and Its Antimicrobial Activity. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2013, 101, 184–190. [Google Scholar] [CrossRef]
- Amendola, V. Surface Plasmon Resonance of Silver and Gold Nanoparticles in the Proximity of Graphene Studied Using the Discrete Dipole Approximation Method. Phys. Chem. Chem. Phys. 2016, 18, 2230–2241. [Google Scholar] [CrossRef]
- Brause, R.; Möltgen, H.; Kleinermanns, K. Characterization of Laser-Ablated and Chemically Reduced Silver Colloids in Aqueous Solution by UV/VIS Spectroscopy and STM/SEM Microscopy. Appl. Phys. B Lasers Opt. 2002, 75, 711–716. [Google Scholar] [CrossRef]
- Kerker, M. The Optics of Colloidal Silver: Something Old and Something New. J. Colloid Interface Sci. 1985, 105, 297–314. [Google Scholar] [CrossRef]
- Mashwani, Z.-R.; Khan, M.A.; Khan, T.; Nadhman, A. Applications of Plant Terpenoids in the Synthesis of Colloidal Silver Nanoparticles. Adv. Colloid Interface Sci. 2016, 234, 132–141. [Google Scholar] [CrossRef]
- Mohan Kumar, K.; Sinha, M.; Mandal, B.K.; Ghosh, A.R.; Siva Kumar, K.; Sreedhara Reddy, P. Green Synthesis of Silver Nanoparticles Using Terminalia Chebula Extract at Room Temperature and Their Antimicrobial Studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 91, 228–233. [Google Scholar] [CrossRef]
- Sowmyya, T.; Vijaya Lakshmi, G. Spectroscopic Investigation on Catalytic and Bactericidal Properties of Biogenic Silver Nanoparticles Synthesized Using Soymida Febrifuga Aqueous Stem Bark Extract. J. Environ. Chem. Eng. 2018, 6, 3590–3601. [Google Scholar] [CrossRef]
- Sosa, I.O.; Noguez, C.; Barrera, R.G. Optical Properties of Metal Nanoparticles with Arbitrary Shapes. J. Phys. Chem. B 2003, 107, 6269–6275. [Google Scholar] [CrossRef]
- Wan Mat Khalir, W.K.A.; Shameli, K.; Jazayeri, S.D.; Othman, N.A.; Che Jusoh, N.W.; Hassan, N.M. Biosynthesized Silver Nanoparticles by Aqueous Stem Extract of Entada Spiralis and Screening of Their Biomedical Activity. Front. Chem. 2020, 8, 620. [Google Scholar] [CrossRef] [PubMed]
- Kalitukha, L.; Sari, M. Fascinating Vital Mushrooms. Tinder Fungus (Fomes fomentarius (L.) Fr.) as a Dietary Supplement. Int. J. Res. Stud. Sci. Eng. Technol. 2019, 6, 1–9. [Google Scholar]
- Pylkkänen, R.; Werner, D.; Bishoyi, A.; Weil, D.; Scoppola, E.; Wagermaier, W.; Safeer, A.; Bahri, S.; Baldus, M.; Paananen, A.; et al. The Complex Structure of Fomes fomentarius Represents an Architectural Design for High-Performance Ultralightweight Materials. Sci. Adv. 2023, 9, eade5417. [Google Scholar] [CrossRef]
- Maniraj, A.; Kannan, M.; Rajarathinam, K.; Vivekanandhan, S.; Muthuramkumar, S. Green Synthesis of Silver Nanoparticles and Their Effective Utilization in Fabricating Functional Surface for Antibacterial Activity Against Multi-Drug Resistant Proteus Mirabilis. J. Clust. Sci. 2019, 30, 1403–1414. [Google Scholar] [CrossRef]
- Dundar, A.; Okumus, V.; Ozdemir, S.; Celik, K.S.; Boğa, M.; Ozcagli, E. Determination of Cytotoxic, Anticholinesterase, Antioxidant and Antimicrobial Activities of Some Wild Mushroom Species. Cogent Food Agric. 2016, 2, 1178060. [Google Scholar] [CrossRef]
- İrez, E.İ.; Doğru, N.H.; Demir, N. Fomes fomentarius (L.) Fr. Extracts as Sources of an Antioxidant, Antimicrobial and Antibiofilm Agents. Biol. Nyssana 2021, 12, 55. [Google Scholar] [CrossRef]
- Debnath, G.; Das, P.; Saha, A.K. Green Synthesis of Silver Nanoparticles Using Mushroom Extract of Pleurotus Giganteus: Characterization, Antimicrobial, and α-Amylase Inhibitory Activity. BioNanoScience 2019, 9, 611–619. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Y.; Wang, H.; Wu, F.; Zhao, Y.; Liu, X.; Wu, H.; Wang, L.; Su, H. Green Synthesis of Silver Nanoparticles Using Mushroom Flammulina Velutipes Extract and Their Antibacterial Activity Against Aquatic Pathogens. Food Bioprocess Technol. 2020, 13, 1908–1917. [Google Scholar] [CrossRef]
- Aygün, A.; Özdemir, S.; Gülcan, M.; Cellat, K.; Şen, F. Synthesis and Characterization of Reishi Mushroom-Mediated Green Synthesis of Silver Nanoparticles for the Biochemical Applications. J. Pharm. Biomed. Anal. 2020, 178, 112970. [Google Scholar] [CrossRef]
- Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Kumar, R.; et al. Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Lett. 2001, 1, 515–519. [Google Scholar] [CrossRef]
- Basavaraja, S.; Balaji, S.D.; Lagashetty, A.; Rajasab, A.H.; Venkataraman, A. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Fusarium Semitectum. Mater. Res. Bull. 2008, 43, 1164–1170. [Google Scholar] [CrossRef]
- Sangappa, M.; Thiagarajan, P. Mycobiosynthesis and Characterization of Silver Nanoparticles from Aspergillus Niger: A Soil Fungal Isolate. Int. J. Life Sci. Biotechnol. Pharma Res. 2012, 1, 282–289. [Google Scholar]
- Lotfy, W.A.; Alkersh, B.M.; Sabry, S.A.; Ghozlan, H.A. Biosynthesis of Silver Nanoparticles by Aspergillus Terreus: Characterization, Optimization, and Biological Activities. Front. Bioeng. Biotechnol. 2021, 9, 633468. [Google Scholar] [CrossRef] [PubMed]
- Yassin, M.A.; Elgorban, A.M.; El-Samawaty, A.E.-R.M.A.; Almunqedhi, B.M.A. Biosynthesis of Silver Nanoparticles Using Penicillium Verrucosum and Analysis of Their Antifungal Activity. Saudi J. Biol. Sci. 2021, 28, 2123–2127. [Google Scholar] [CrossRef] [PubMed]
- Devanesan, S.; AlSalhi, M.S. Green Synthesis of Silver Nanoparticles Using the Flower Extract of Abelmoschus Esculentus for Cytotoxicity and Antimicrobial Studies. Int. J. Nanomed. 2021, 16, 3343–3356. [Google Scholar] [CrossRef]
- Nedelcu, I.-A.; Ficai, A.; Sonmez, M.; Ficai, D.; Oprea, O.; Andronescu, E. Silver Based Materials for Biomedical Applications. Curr. Org. Chem. 2014, 18, 173–184. [Google Scholar] [CrossRef]
- Misra, S.K.; Dybowska, A.; Berhanu, D.; Luoma, S.N.; Valsami-Jones, E. The Complexity of Nanoparticle Dissolution and Its Importance in Nanotoxicological Studies. Sci. Total Environ. 2012, 438, 225–232. [Google Scholar] [CrossRef]
- Al-Hamadani, A.H.; Kareem, A.A. Combination Effect of Edible Mushroom €“ Sliver Nanoparticles and Antibiotics against Selected Multidrug Biofilm Pathogens. Iraq Med. J. 2017, 1, 68–74. [Google Scholar]
- Wu, H.; Lin, J.; Liu, P.; Huang, Z.; Zhao, P.; Jin, H.; Ma, J.; Wen, L.; Gu, N. Reactive Oxygen Species Acts as Executor in Radiation Enhancement and Autophagy Inducing by AgNPs. Biomaterials 2016, 101, 1–9. [Google Scholar] [CrossRef]
- Markowska, K.; Grudniak, A.; Wolska, K. Silver Nanoparticles as an Alternative Strategy against Bacterial Biofilms. Acta Biochim. Pol. 2013, 60, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.S.; Singh, P.; Mijakovic, I. Interactions of Gold and Silver Nanoparticles with Bacterial Biofilms: Molecular Interactions behind Inhibition and Resistance. Int. J. Mol. Sci. 2020, 21, 7658. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Wei, Y.; Syed, F.; Tahir, K.; Rehman, A.U.; Khan, A.; Ullah, S.; Yuan, Q. The Effects of Bacteria-Nanoparticles Interface on the Antibacterial Activity of Green Synthesized Silver Nanoparticles. Microb. Pathog. 2017, 102, 133–142. [Google Scholar] [CrossRef] [PubMed]
- El Messaoudi, N.; Ciğeroğlu, Z.; Şenol, Z.M.; Bouich, A.; Kazan-Kaya, E.S.; Noureen, L.; Américo-Pinheiro, J.H.P. Chapter Fourteen—Green Synthesis of Nanoparticles for Remediation Organic Pollutants in Wastewater by Adsorption. In Advances in Chemical Pollution, Environmental Management and Protection; Kumar, A., Bilal, M., Ferreira, L.F.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 10, pp. 305–345. ISBN 2468-9289. [Google Scholar]
- Shah, Z.; Gul, T.; Ali Khan, S.; Shaheen, K.; Anwar, Y.; Suo, H.; Ismail, M.; Alghamdi, K.M.; Salman, S.M. Synthesis of High Surface Area AgNPs from Dodonaea Viscosa Plant for the Removal of Pathogenic Microbes and Persistent Organic Pollutants. Mater. Sci. Eng. B 2021, 263, 114770. [Google Scholar] [CrossRef]
- Wypij, M.; Jędrzejewski, T.; Trzcińska-Wencel, J.; Ostrowski, M.; Rai, M.; Golińska, P. Green Synthesized Silver Nanoparticles: Antibacterial and Anticancer Activities, Biocompatibility, and Analyses of Surface-Attached Proteins. Front. Microbiol. 2021, 12, 632505. [Google Scholar] [CrossRef]
- Zhao, L.-J.; Yu, R.-J.; Ma, W.; Han, H.-X.; Tian, H.; Qian, R.-C.; Long, Y.-T. Sensitive Detection of Protein Biomarkers Using Silver Nanoparticles Enhanced Immunofluorescence Assay. Theranostics 2017, 7, 876–883. [Google Scholar] [CrossRef]
- Hussein, H.A.; Abdullah, M.A. Novel Drug Delivery Systems Based on Silver Nanoparticles, Hyaluronic Acid, Lipid Nanoparticles and Liposomes for Cancer Treatment. Appl. Nanosci. 2022, 12, 3071–3096. [Google Scholar] [CrossRef]
- Weinstein, M.P.; Patel, J.B. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: M07-A11, 11th ed.; Documents/Clinical and Laboratory Standards Institute; Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2018; ISBN 978-1-56238-836-2. [Google Scholar]
MIC (µg mL−1) | ||||
---|---|---|---|---|
B. subtilis | S. aureus | E. coli | P. aeruginosa | |
Fomes fomentarius MetOH extract * | 20.83 | 10.41 | 2.63 | 20.83 |
AgNPs | 12.69 | 6.34 | 12.69 | 12.69 |
Ciprofloxacin | 1.56 | 3.13 | 3.13 | 7.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavić, V.; Kovač-Andrić, E.; Ćorić, I.; Rebić, S.; Užarević, Z.; Gvozdić, V. Antibacterial Efficacy and Characterization of Silver Nanoparticles Synthesized via Methanolic Extract of Fomes fomentarius L. Fr. Molecules 2024, 29, 3961. https://doi.org/10.3390/molecules29163961
Pavić V, Kovač-Andrić E, Ćorić I, Rebić S, Užarević Z, Gvozdić V. Antibacterial Efficacy and Characterization of Silver Nanoparticles Synthesized via Methanolic Extract of Fomes fomentarius L. Fr. Molecules. 2024; 29(16):3961. https://doi.org/10.3390/molecules29163961
Chicago/Turabian StylePavić, Valentina, Elvira Kovač-Andrić, Ivan Ćorić, Stella Rebić, Zvonimir Užarević, and Vlatka Gvozdić. 2024. "Antibacterial Efficacy and Characterization of Silver Nanoparticles Synthesized via Methanolic Extract of Fomes fomentarius L. Fr." Molecules 29, no. 16: 3961. https://doi.org/10.3390/molecules29163961
APA StylePavić, V., Kovač-Andrić, E., Ćorić, I., Rebić, S., Užarević, Z., & Gvozdić, V. (2024). Antibacterial Efficacy and Characterization of Silver Nanoparticles Synthesized via Methanolic Extract of Fomes fomentarius L. Fr. Molecules, 29(16), 3961. https://doi.org/10.3390/molecules29163961