The Influence of 2′-Deoxyguanosine Lesions on the Electronic Properties of OXOG:::C Base Pairs in Ds-DNA: A Comparative Analysis of Theoretical Studies
Abstract
:1. Introduction
2. Results and Discussion
Name | Sequence | Abundance | VIPNE | VIPEQ | AIP |
---|---|---|---|---|---|
oligo-N | AGAGA [57] | 0.64 × 109 nt [36] | 6.72 | 6.08 | 5.65 |
oligo-OG | AGAOXOGA [57] | 14.6 per 106 nt [68] | 6.27 | 5.79 | 5.38 |
oligo-OGOG | AOXOGAOGA [57] | 6.54 | 6.02 | 5.39 | |
oligo-FapyG | AFapyGAOGA [58] | ~8.0 per 106 nt [68,69] | 6.32 | 5.80 | 5.38 |
oligo-Oz | AOzAOGA [59] | 2–6 per 107 Gua [38] | 6.36 | 5.82 | 5.40 |
oligo-Iz | AIzAOGA [59] | (a) 2–6 per 107 Gua [38] | 6.25 | 5.78 | 5.37 |
oligo-OXIa | AOXIaAOGA [60] | Gh (OXIa precursor) 1–7 per 108 nt [70,71] | 6.30 | 5.80 | 5.39 |
oligo-(R)2Ih | AR2IhAOGA [61] | 14.6 per 106 nt. Similar to OXOG [70,71] | 6.56 | 5.94 | 5.57 |
oligo-(S)2Ih | AS2IhAOGA [61] | 6.53 | 5.90 | 5.50 | |
oligo-(R)cdG | ARcdGAOGA [62] | 0.05 per 106 nt [72] | 6.32 | 5.82 | 5.40 |
oligo-(S)cdG | AScdGAOGA [63] | 0.11 per 106 nt [72] | 6.37 | 5.86 | 5.39 |
oligo-(R)SpANTI | ARSpAOGA [63] | 200 per 106 Gua [73] | 6.39 | 5.81 | 5.38 |
oligo-(R)SpSYN | ARSpAOGA [63] | 6.64 | 5.88 | 5.43 | |
oligo-(S)SpANTI | ASSpAOGA [63] | 6.35 | 5.88 | 5.37 | |
oligo-(S)SpSYN | dASSpAOGA [63] | 6.66 | 5.90 | 5.48 | |
Average | 6.42 | 5.86 | 5.42 | ||
Standard Deviation | 0.14 | 0.07 | 0.06 |
3. Materials and Methods—Applied Computational Strategy
4. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Belmont, P.; Constant, J.F.; Demeunynck, M. Nucleic acid conformation diversity: From structure to function and regulation. Chem. Soc. Rev. 2001, 30, 70–81. [Google Scholar] [CrossRef]
- Watson, J.; Crick, F. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Castaing, B.; Fourrey, J.L.; Hervouet, N.; Thomas, M.; Boiteux, S.; Zelwer, C. AP site structural determinants for Fpg specific recognition. Nucleic Acids Res. 1999, 27, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, S.; Horton, W. Chapter 2.4—Effects of Environmental Factors on DNA: Damage and Mutations. In Green Chemistry an Inclusive Approach; Török, B., Dransfield, T., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 109–128. [Google Scholar] [CrossRef]
- Olinski, R.; Siomek, A.; Rozalski, R.; Gackowski, D.; Foksinski, M.; Guz, J.; Dziaman, T.; Szpila, A.; Tudek, B. Oxidative damage to DNA and antioxidant status in aging and age-related diseases. Acta Biochim. Pol. 2007, 54, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.I.; Maurya, P.K. Markers of oxidative stress in erythrocytes during aging in humans. Ann. N. Y. Acad Sci. 2007, 1100, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Cadet, J.; Douki, T.; Gasparutto, D.; Ravanat, J. Oxidative damage to DNA: Formation, measurement and biochemical features. Mutat. Res. 2003, 531, 5–23. [Google Scholar] [CrossRef]
- Dizdaroglu, M. Oxidatively induced DNA damage and its repair in cancer. Mutat. Res. Rev. Mutat. Res. 2015, 763, 212–245. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Yang, F.; Shao, C.; Wei, K.; Xie, M.; Shen, H.; Shu, Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 2019, 18, 157. [Google Scholar] [CrossRef]
- Venkatesh, G.H.; Bravo, P.; Elsayed, W.S.M.; Amirtharaj, F.; Wojtas, B.; Khouzam, A.R.; Nawafleh, H.H.; Mallya, S.; Satyamoorthy, K.; Dessen, P.; et al. Hypoxia increases mutational load of breast cancer cells through frameshift mutations. Oncoimmunology 2020, 9, 1750750. [Google Scholar] [CrossRef]
- Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. 2003, 17, 1195–1214. [Google Scholar] [CrossRef]
- Bauer, N.C.; Corbett, A.H.; Doetsch, P.W. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res. 2015, 43, 10083–10101. [Google Scholar] [CrossRef]
- Sancar, A.; Lindsey-Boltz, L.A.; Unsal-Kaҫmaz, K.; Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 2004, 73, 39–85. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.J.; Parsons, J.L. Base excision repair, a pathway regulated by posttranslational modifications. Mol. Cell Biol. 2016, 36, 1426–1437. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, D.K.; Bohr, V.A.; Stevnsner, T. DNA repair deficiency in neurodegeneration. Prog. Neurobiol. 2011, 94, 166–200. [Google Scholar] [CrossRef] [PubMed]
- Rawtani, D.; Kuntmal, B.; Agrawal, Y. Charge transfer in DNA and its diverse modelling approaches. Front. Life Sci. 2016, 9, 214–225. [Google Scholar] [CrossRef]
- Khanduri, D.; Adhikary, A.; Sevilla, M.D. Highly oxidizing excited states of one-electron-oxidized guanine in DNA: Wavelength and pH dependence. J. Am. Chem. Soc. 2011, 133, 4527–4537. [Google Scholar] [CrossRef]
- Cadet, J.; Sage, E.; Douki, T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat. Res. 2005, 571, 3–17. [Google Scholar] [CrossRef]
- Adam, W.; Saha-Möller, C.R.; Schönberger, A. Type I and type II photosensitized oxidative modification of 2’-deoxyguanosine (dGuo) by triplet-exicted ketones generated thermally from the 1,2-dioxetane HTMD. J. Am. Chem. Soc. 1997, 119, 719–723. [Google Scholar] [CrossRef]
- Eberhart, M.K. Reactive Oxygen Metabolites: Chemistry and Medical Consequences, 1st ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2001; ISBN 0849308917. [Google Scholar]
- Llano, J.; Raber, J.; Eriksson, L.A. Theoretical study of phototoxic reactions of psoralens. J. Photochem. Photobiol. A Chem. 2003, 154, 235–243. [Google Scholar] [CrossRef]
- Kehrer, J.P. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 2000, 149, 43–50. [Google Scholar] [CrossRef]
- Khan, A.U. Singlet molecular oxygen in the Haber-Weiss reaction. Proc. Natl. Acad. Sci. USA 1994, 91, 12365–12367. [Google Scholar] [CrossRef] [PubMed]
- Dizdaroglu, M.; Jaruga, P. Mechanisms of free radical-induced damage to DNA. Free Radic. Res. 2012, 46, 382–419. [Google Scholar] [CrossRef] [PubMed]
- Poater, J.; Swart, M.; Bickelhaupt, F.M.; Fonseca Guerra, C. B-DNA structure and stability: The role of hydrogen bonding, π-π stacking interactions, twist-angle, and solvation. Org. Biomol. Chem 2014, 12, 4691–4700. [Google Scholar] [CrossRef]
- Genereux, J.C.; Barton, J.K. Mechanisms for DNA charge transport. Chem. Rev. 2010, 110, 1642–1662. [Google Scholar] [CrossRef]
- Kim, H.J.; Ro, Y.; Hong, B.; Ji, H.G. Formation of Au nanowires by DNA molecules as a template. J. Korean Phys. Soc. 2009, 55, 1892–1895. [Google Scholar] [CrossRef]
- Kanvah, S.; Schuster, G.B. Oxidative damage to DNA: Inhibition of guanine damage. Pure Appl. Chem. 2006, 78, 2297–2304. [Google Scholar] [CrossRef]
- Wagenknecht, H.A. Principles and Mechanisms of Photoinduced Charge Injection, Transport, and Trapping in DNA. In Charge Transfer in DNA; Wagenknecht, H.-A., Ed.; Wiley-VCH: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Sugiyama, H.; Saito, I. Theoretical studies of GG-specific photocleavage of DNA via electron transfer: Significant lowering of ionization potential and 5’-localization of HOMO of stacked GG bases in B-form DNA. J. Am. Chem. Soc. 1996, 118, 7063–7068. [Google Scholar] [CrossRef]
- Berlin, Y.A.; Ratner, M.A. Variable-Range Charge Hopping in DNA. In Charge Migration in DNA; NanoScience and Technology; Chakraborty, T., Ed.; Springer: Berlin, Germany, 2007; pp. 45–61. [Google Scholar] [CrossRef]
- Fujitsuka, M.; Majima, T. Hole and excess electron transfer dynamics in DNA. Phys. Chem. Chem. Phys. 2012, 14, 11234–11244. [Google Scholar] [CrossRef]
- Kumar, A.; Adhikary, A.; Sevilla, M.D.; Close, D.M. One-electron oxidation of ds (5′-GGG-3′) and ds (5′-G(8OG)G-3′) and the nature of hole distribution: A density functional theory (DFT) study. Phys. Chem. Chem. Phys. 2020, 22, 5078–5089. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, A.A.; Knorre, D.G.; Fedorova, O.S. Oxidation of DNA and its components with reactive oxygen species. Russ. Chem. Rev. 2009, 78, 659–678. [Google Scholar] [CrossRef]
- Shukla, L.I.; Adhikary, A.; Pazdro, R.; Becker, D.; Sevilla, M.D. Formation of 8-oxo-7,8-dihydroguanine-radicals in γ-irradiated DNA by multiple one-electron oxidations. Nucleic Acids Res. 2004, 32, 6565–6574. [Google Scholar] [CrossRef]
- Minchin, S.; Lodge, J. Understanding biochemistry: Structure and function of nucleic acids. Essays Biochem. 2019, 63, 433–456. [Google Scholar] [CrossRef]
- Steenken, S.; Jovanovic, S.V. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J. Am. Chem. Soc. 1997, 119, 617–618. [Google Scholar] [CrossRef]
- Matter, B.; Malejka-Giganti, D.; Csallany, A.S.; Tretyakova, N. Quantitative analysis of the oxidative DNA lesion, 2,2-diamino-4-(2-deoxy-b-D-erythro-pentofuranosyl)amino]-5(2H)-oxazolone (oxazolone) in vitro and in vivo by isotope dilution-capillary HPLC-ESI-MS/MS. Nucleic Acids Ress 2006, 34, 5449–5460. [Google Scholar] [CrossRef]
- Henderson, P.T.; Delaney, J.C.; Muller, J.G.; Neeley, W.L.; Tannenbaum, S.R.; Burrows, C.J.; Essigmann, J.M. The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo. Biochemistry 2003, 42, 9257–9262. [Google Scholar] [CrossRef] [PubMed]
- Markkanen, E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair. 2017, 59, 82–105. [Google Scholar] [CrossRef]
- Taggart, D.J.; Fredrickson, S.W.; Gadkari, V.V.; Suo, Z. Mutagenic potential of 8-oxo-7,8-dihydro-2′-deoxyguanosine bypass catalyzed by human Y-family DNA polymerases. Chem. Res. Toxicol. 2014, 27, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Kairupan, C.; Scott, R.J. Base excision repair and the role of MUTYH. Hered. Cancer Clin. Pract. 2007, 5, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Boal, A.K.; Yavin, E.; Barton, J.K. DNA repair glycosylases with a [4Fe-4S] cluster: A redox cofactor for DNA-mediated charge transport? J. Inorg. Biochem. 2007, 101, 1913–1921. [Google Scholar] [CrossRef]
- Sontz, P.A.; Mui, T.P.; Fuss, J.O.; Tainer, J.A.; Barton, J.K. DNA charge transport as a first step in coordinating the detection of lesions by repair proteins. Proc. Nat. Acad. Sci. USA 2012, 109, 1856–1861. [Google Scholar] [CrossRef]
- Arnold, A.R.; Grodick, M.A.; Barton, J.K. DNA Charge Transport: From Chemical Principles to the Cell. Cell Chem. Biol. 2016, 23, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Boon, E.M.; Livingston, A.L.; Chmiel, N.H.; David, S.S.; Barton, J.K. DNA-mediated charge transport for DNA repair. Proc. Natl. Acad. Sci. USA 2003, 100, 12543–12547. [Google Scholar] [CrossRef] [PubMed]
- Porello, S.L.; Cannon, M.J.; David, S.S. A Substrate Recognition Role for the [4Fe-4S]2+ Cluster of the DNA Repair Glycosylase MutY. Biochemistry 1998, 37, 6465–6475. [Google Scholar] [CrossRef] [PubMed]
- Francis, A.W.; Helquist, S.A.; Kool, E.T.; David, S.S. Probing the Requirements for Recognition and Catalysis in Fpg and MutY with Nonpolar Adenine Isosteres. J. Am. Chem. Soc. 2003, 125, 16235–16242. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.K.; Silva, R.M.B.; O’Brien, E. Redox Chemistry in the Genome: Emergence of the [4Fe4S] Cofactor in Repair and Replication. Annu. Rev. Biochem. 2019, 88, 163–190. [Google Scholar] [CrossRef] [PubMed]
- Merino, E.J.; Boal, A.K.; Barton, J.K. Biological contexts for DNA charge transport chemistry. Curr. Opin. Chem. Biol. 2008, 12, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Wallace, S.S. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases? Free Radic. Biol. Med. 2017, 107, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Romano, C.A.; Sontz, P.A.; Barton, J.K. Mutants of the base excision repair glycosylase, endonuclease III: DNA charge transport as a first step in lesion detection. Biochemistry. 2011, 50, 6133–6145. [Google Scholar] [CrossRef]
- Lomax, M.E.; Folkes, L.K.; Neill, P.O. Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy. Clin. Oncol. 2013, 25, 578–585. [Google Scholar] [CrossRef]
- Magnander, K.; Hultborn, R.; Claesson, K.; Elmroth, K. Clustered DNA damage in irradiated human diploid fibroblasts: Influence of chromatin organization. Radiat. Res. 2010, 282, 272–282. [Google Scholar] [CrossRef]
- Georgakilas, A.G.; O’Neill, P.; Stewart, R.D. Induction and repair of clustered DNA lesions: What do we know so far? Radiat. Res. 2013, 180, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.C.; Singh, R.R.P.; Cox, D.L. Theoretical study of DNA damage recognition via electron transfer from the [4Fe-4S]c complex of MutY. Biophys. J. 2008, 95, 3259–3268. [Google Scholar] [CrossRef] [PubMed]
- Karwowski, B. How clustered DNA damage can change the electronic properties of ds-DNA, differences between GAG, GAOXOG, OXOGAOXOG. Biomolecules 2023, 13, 517. [Google Scholar] [CrossRef] [PubMed]
- Karwowski, B.T. Fapy dG in theshadow of OXOdG—A theoretical study of clustered DNA lesions. Int. J. Mol. Sci. 2023, 24, 5361. [Google Scholar] [CrossRef] [PubMed]
- Karwowski, B.T. The influence of clustered DNA damage containing Iz/Oz and OXOdG on charge transfer through the double helix: A theoretical study. Molecules 2024, 29, 2754. [Google Scholar] [CrossRef]
- Karwowski, B.T. The influence of oxidized imino-allantoin, in the presence of OXOG, on double helix charge transfer: A theoretical approach. Int. J. Mol. Sci. 2024, 25, 5962. [Google Scholar] [CrossRef]
- Karwowski, B.T. The 2Ih and OXOG Proximity Consequences on Charge Transfer through ds -DNA: Theoretical Studies of Clustered DNA Damage. Molecules 2023, 28, 2180. [Google Scholar] [CrossRef]
- Karwowski, B.T. The Influence of 5’,8-Cyclo-2’-Deoxyguanosine on ds-DNA charge transfer depends on its diastereomeric form: A Theoretical Study. Antioxidants 2023, 12, 881. [Google Scholar] [CrossRef]
- Karwowski, B.T. The influence of spirodi (Iminohydantoin) on charge transfer through ds-DNA containing 8-OXO-dG: A Theoretical Approach. Int. J. Mol. Sci. 2023, 24, 8570. [Google Scholar] [CrossRef]
- Fleming, A.M.; Burrows, C.J. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radic. Biol. Med. 2017, 107, 35–52. [Google Scholar] [CrossRef]
- Rajski, S.R.; Jackson, B.A.; Barton, J.K. DNA repair: Models for damage and mismatch recognition. Mutat. Res. 2000, 447, 49–72. [Google Scholar] [CrossRef] [PubMed]
- Eot-Houllier, G.; Eon-Marchais, S.; Gasparutto, D.; Sage, E. Processing of a complex multiply damaged DNA site by human cell extracts and purified repair proteins. Nucleic Acids Res. 2005, 33, 260–271. [Google Scholar] [CrossRef] [PubMed]
- David-Cordonnier, M.H.; Boiteux, S.; O’Neill, P. Efficiency of excision of 8-oxo-guanine within DNA clustered damage by XRS5 nuclear extracts and purified human OGG1 protein. Biochemistry 2001, 40, 11811–11818. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, L.D.; Coskun, S.H.; Jaruga, P.; Hanna, S.K.; Sims, C.M.; Almeida, J.L.; Catoe, D.; Coskun, E.; Golan, R.; Dizdaroglu, M.; et al. Measurement of Oxidatively Induced DNA Damage in Caenorhabditis elegans with High-Salt DNA Extraction and Isotope-Dilution Mass Spectrometry. Anal. Chem. 2019, 91, 12149–12155. [Google Scholar] [CrossRef] [PubMed]
- Arczewska, K.D.; Tomazella, G.G.; Lindvall, J.M.; Kassahun, H.; Maglioni, S.; Torgovnick, A.; Henriksson, J.; Matilainen, O.; Marquis, B.J.; Nelson, B.C.; et al. Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1. Nucleic Acids Res. 2013, 41, 5368–5381. [Google Scholar] [CrossRef] [PubMed]
- Alshykhly, O.R.; Fleming, A.M.; Burrows, C.J. 5-Carboxamido-5-formamido-2-iminohydantoin, in addition to 8-oxo-7,8-Dihydroguanine, is the major product of the Iron-Fenton or X-ray radiation-induced oxidation of guanine under aerobic reducing conditions in nucleoside and DNA contexts. J. Org. Chem. 2015, 80, 6996–7007. [Google Scholar] [CrossRef] [PubMed]
- Fleming, A.M.; Muller, J.G.; Ji, I.; Burrows, C.J. Characterization of 2′-deoxyguanosine oxidation products observed in the Fenton-like system Cu(II)/H2O2/reductant in nucleoside and oligodeoxynucleotide contexts. Org. Biomol. Chem. 2011, 9, 3338–3348. [Google Scholar] [CrossRef] [PubMed]
- Krokidis, M.G.; Terzidis, M.A.; Efthimiadou, E.; Zervou, S.K.; Kordas, G.; Papadopoulos, K.; Hiskia, A.; Kletsas, D.; Chatgilialoglu, C. Purine 5′,8-cyclo-2′-deoxynucleoside lesions: Formation by radical stress and repair in human breast epithelial cancer cells. Free Radic. Res. 2017, 51, 470–482. [Google Scholar] [CrossRef]
- Hailer, M.K.; Slade, P.G.; Martin, B.D.; Sugden, K.D. Nei deficient escherichia coli are sensitive to chromate and accumulate the oxidized guanine lesion spiroiminodihydantoin. Chem. Res. Toxicol. 2005, 18, 1378–1383. [Google Scholar] [CrossRef]
- Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Obodovskiy, I. Ionization and Excitation of Atoms and Molecules. In Radiation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 87–101. [Google Scholar] [CrossRef]
- Coolidge, A.S.; James, H.M.; Present, R.D. A study of the franck-condon principle. J. Chem. Phys. 1936, 4, 193–211. [Google Scholar] [CrossRef]
- Epe, B. DNA damage spectra induced by photosensitization. Photochem. Photobiol. Sci. 2012, 11, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Baptista, S.; Cadet, J.; Mascio, P.D.; Ghogare, A.A.; Greer, A.; Hamblin, M.R.; Lorente, C.; Nunez, S.C.; Simões, M.; Simões Ribeiro, M.; et al. Type I and type II photosensitized oxidation reactions: Guidelines and mechanistic pathways. Photochem. Photobiol. 2017, 93, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Tse, E.C.M.; Zwang, T.J.; Bedoya, S.; Barton, J.K. Effective distance for DNA-mediated charge transport between repair proteins. ACS Cent. Sci. 2019, 5, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Syed, A.; Tainer, J.A. Charge Transport Communication through DNA by Protein Fe−S Clusters: How Far Is Not Too Far? ACS Cent. Sci. 2019, 5, 9–11. [Google Scholar] [CrossRef]
- Rösch, N.; Voityuk, A.A. Quantum Chemical Calculation of Donor–Acceptor Coupling for Charge Transfer in DNA. In Long-Range Charge Transfer in DNA II; Topics in Current Chemistry; Schuster, G., Ed.; Springer: Berlin, Germany, 2004; Volume 237. [Google Scholar] [CrossRef]
- Fujitsuka, M.; Majima, T. Charge transfer in DNA. Pure Appl. Chem. 2013, 85, 1367–1377. [Google Scholar] [CrossRef]
- Grampp, G. The Marcus Inverted Region from Theory to Experiment. Angew. Chem. Int. Ed. Engl. 1993, 32, 691–693. [Google Scholar] [CrossRef]
- Wang, J.; Ding, T.; Gao, K.; Wang, L.; Zhou, P.; Wu, K. Marcus inverted region of charge transfer from low-dimensional semiconductor materials. Nat. Commun. 2021, 12, 6333. [Google Scholar] [CrossRef]
- Parada, G.A.; Goldsmith, Z.K.; Kolmar, S.; Rimgard, B.P.; Mercado, B.Q.; Hammarström, L.; Hammes-schiffer, S.; James, M. Concerted proton-electron transfer reactions in the Marcus inverted region. Science 2020, 364, 471–475. [Google Scholar] [CrossRef]
- Suppan, P. The marcus inverted region. In Photoinduced Electron Transfer IV; Topics in Current Chemistry; Mattay, J., Ed.; Springer: Berlin, Germany, 1992; Volume 163, pp. 95–130. [Google Scholar] [CrossRef]
- Dassault Systems BIOVIA. Discovery Studio Visualizer; v16.1.0.15350; Dassault Systems: San Diego, CA, USA, 2015. [Google Scholar]
- Dapprich, S.; Komáromi, I.; Byun, K.S.; Morokuma, K.; Frisch, M.J. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struct. THEOCHEM 1999, 461–462, 1–21. [Google Scholar] [CrossRef]
- Zhao, Y.; Pu, J.; Lynch, B.J.; Truhlar, D.G. Tests of second-generation and third-generation density functionals for thermochemical kinetics. Phys. Chem. Chem. Phys. 2004, 6, 673–676. [Google Scholar] [CrossRef]
- Lin, H.; Truhlar, D.G. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations. J. Phys. Chem. A 2005, 109, 3991–4004. [Google Scholar] [CrossRef]
- Lin, H.; Truhlar, D.G. QM/MM: What have we learned, where are we, and where do we go from here? Theor. Chem. Acc. 2007, 117, 185–199. [Google Scholar] [CrossRef]
- Mayhall, N.J.; Raghavachari, K. Charge transfer across ONIOM QM:QM boundaries: The impact of model system preparation. J. Chem. Theory Comput. 2010, 6, 3131–3136. [Google Scholar] [CrossRef] [PubMed]
- Close, D.M.; Øhman, K.T. Ionization Energies of the Nucleotides. J. Phys. Chem. A 2008, 112, 11207–11212. [Google Scholar] [CrossRef]
- Rooman, M.; Wintjens, R. Sequence and conformation effects on ionization potential and charge distribution of homo-nucleobase stacks using M06-2X hybrid density functional theory calculations. J. Biomol. Struct. Dynam. 2013, 32, 532–545. [Google Scholar] [CrossRef]
- Miertus, S.; Tomasi, J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 1982, 65, 239–245. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Diamantis, P.; Tavernelli, I.; Rothlisberger, U. Redox properties of native and damaged DNA from mixed quantum mechanical/molecular mechanics molecular dynamics simulations. J. Chem. Theory Comput. 2020, 16, 6690–6701. [Google Scholar] [CrossRef]
ds-Oligo | Radical Cation Mode of Ds-Oligo | Ref. | ||
---|---|---|---|---|
VerticalNE | VerticalEQ | Adiabatic | ||
Charge/Spin | Charge/Spin | Charge/Spin | ||
oligo-OG | 0.80/89 | 0.85/91 | 0.83/93 | [57] |
oligo-OGOG | 0.38/39 | 0.39/41 | 0.73/83 | |
oligo-(R)cdG | 0.82/90 | 0.87/87 | 0.87/84 | [62] |
oligo-(S)cdG | 0.88/91 | 0.92/93 | 0.86/92 | |
oligo-(R)SpANTI | 0.76/87 | 0.80/80 | 0.80/90 | [64] |
oligo-(R)SpSYN | 0.90/82 | 0.91/85 | 0.93/85 | |
oligo-(S)SpANTI | 0.85/90 | 0.89/91 | 0.80/90 | |
oligo-(S)SpSYN | 0.93/86 | 0.94/89 | 0.94/86 | |
oligo-Iz | 0.75/87 | 0.79/90 | 0.83/93 | [45] |
oligo-Oz | 0.81/98 | 0.89/92 | 0.83/92 | |
oligo-oxIa | 0.76/88 | 0.81/90 | 0.83/93 | [60] |
oligo-FapyG | 0.79/86 | 0.84/90 | 0.84/90 | [58] |
oligo-(R)2Ih | 0.85/95 | 0.88/96 | 0.88/96 | [61] |
soligo-(S)2Ih | 0.85/96 | 0.88/96 | 0.89/96 | |
Av. | 0.79/86 | 0.83/87 | 0.85/90 | |
SD | 0.14/14 | 0.14/14 | 0.05/4.0 |
Ds-Oligo | d[A1X2A3OXOG4A5]*d[T1C2T3C4T5] | |||||
---|---|---|---|---|---|---|
X | X2:::C4 | OXOdG4:::C2 | ||||
VIPEQ | AIP | VIPEQ | AIP | Ref. | ||
oligo-OG | G | 6.17 | 6.16 | 5.91 | 5.56 | [57] |
oligo-OG OG | OXOG | 5.93 | 5.93 | 5.91 | 5.56 | |
oligo-FapyG | FapyG | 6.17 | 6.16 | 5.90 | 5.56 | [58] |
oligo-Iz | Iz | 7.04 | 7.03 | 5.94 | 5.51 | [59] |
oligo-Oz | Oz | 7.01 | 7.03 | 5.91 | 5.56 | |
oligo-OXIa | OXIa | 7.07 | 7.06 | 5.94 | 5.52 | [60] |
oligo-(R)2Ih | (R)2Ih | 7.03 | 7.02 | 5.94 | 5.54 | [61] |
oligo-(S)2Ih | (S)2Ih | 6.93 | 6.94 | 5.93 | 5.53 | |
oligo-(R)cdG | (R)cdG | 6.15 | 6.19 | 5.93 | 5.56 | [62] |
oligo-(S)cdG | (S)cdG | 6.14 | 6.18 | 5.93 | 5.57 | |
oligo-(R)SpANTI | (R)SpANTI | 7.66 | 7.64 | 5.93 | 5.53 | [63] |
oligo-(R)SpSYN | (R)SpSYN | 6.93 | 6.91 | 5.91 | 5.54 | |
oligo-(S)SpANTI | (S)SpANTI | 6.90 | 6.91 | 5.90 | 5.56 | |
oligo-(S)SpSYN | (S)SpSYN | 7.69 | 7.72 | 5.90 | 5.56 | |
Av. | 6.77 | 6.78 | 5.92 | 5.55 | ||
SD | 0.57 | 0.60 | 0.06 | 0.15 | ||
oligo-N | X2, OXOG4 = G | 6.13 | 5.83 | 6.13 | 6.11 | [47] |
Ds-Oligo | d[A1X2A3OXOG4A5]*d[T1C2T3C4T5] | Ref. | |||||
---|---|---|---|---|---|---|---|
A3T3→OXOG4C2 | OXOG4C2←A5T5 | ||||||
ΔG | Ea | λ | ΔG | Ea | λ | ||
oligo-OG | −1.09 | 0.40 | 0.35 | −1.12 | 0.30 | 0.41 | [57] |
oligo-OG OG | −1.09 | 0.39 | 0.35 | −1.12 | 0.32 | 0.40 | |
oligo-FapyG | −1.07 | 0.40 | 0.34 | −1.13 | 0.34 | 0.39 | [58] |
oligo-Iz | −1.15 | 0.28 | 0.37 | −1.18 | 0.52 | 0.36 | [59] |
oligo-Oz | −1.07 | 0.33 | 0.44 | −1.12 | 0.39 | 0.34 | |
oligo-OXIa | −1.10 | 0.27 | 0.42 | −1.16 | 0.46 | 0.35 | [60] |
oligo-(R)2Ih | −1.10 | 0.32 | 0.38 | −1.08 | 0.35 | 0.37 | [61] |
oligo-(S)2Ih | −1.09 | 0.32 | 0.39 | −1.09 | 0.35 | 0.36 | |
oligo-(R)cdG | −0.99 | 0.22 | 0.40 | −1.11 | 0.36 | 0.38 | [62] |
oligo-(S)cdG | −1.11 | 0.33 | 0.39 | −1.11 | 0.29 | 0.41 | |
oligo-(R)SpANTI | −1.09 | 0.29 | 0.41 | −1.15 | 0.34 | 0.41 | [53] |
oligo-(R)SpSYN | −1.02 | 0.47 | 0.29 | −1.13 | 0.38 | 0.37 | |
oligo-(S)SpANTI | −0.94 | 0.26 | 0.34 | −1.12 | 0.36 | 0.38 | |
oligo-(S)SpSYN | −1.05 | 0.40 | 0.33 | −1.11 | 0.44 | 0.34 | |
Av. | −1.07 | 0.33 | 0.37 | −1.12 | 0.37 | 0.38 | |
SD | 0.05 | 0.07 | 0.04 | 0.03 | 0.06 | 0.02 | |
oligo-N | −0.77 | 0.18 | 0.30 | −0.77 | 0.18 | 0.30 | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karwowski, B.T. The Influence of 2′-Deoxyguanosine Lesions on the Electronic Properties of OXOG:::C Base Pairs in Ds-DNA: A Comparative Analysis of Theoretical Studies. Molecules 2024, 29, 3756. https://doi.org/10.3390/molecules29163756
Karwowski BT. The Influence of 2′-Deoxyguanosine Lesions on the Electronic Properties of OXOG:::C Base Pairs in Ds-DNA: A Comparative Analysis of Theoretical Studies. Molecules. 2024; 29(16):3756. https://doi.org/10.3390/molecules29163756
Chicago/Turabian StyleKarwowski, Boleslaw T. 2024. "The Influence of 2′-Deoxyguanosine Lesions on the Electronic Properties of OXOG:::C Base Pairs in Ds-DNA: A Comparative Analysis of Theoretical Studies" Molecules 29, no. 16: 3756. https://doi.org/10.3390/molecules29163756
APA StyleKarwowski, B. T. (2024). The Influence of 2′-Deoxyguanosine Lesions on the Electronic Properties of OXOG:::C Base Pairs in Ds-DNA: A Comparative Analysis of Theoretical Studies. Molecules, 29(16), 3756. https://doi.org/10.3390/molecules29163756