Investigation into the Sonodynamic Activity of Three Newly Synthesized Derivatives of Ciprofloxacin
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV–Vis Absorption Spectra of the Sonodynamic Effects of CIP Derivatives on BSA
2.2. Fluorescence Spectroscopy of BSA in Different Solutions
2.2.1. The Effect of Various Concentrations of CIP and Its Three Derivatives
2.2.2. The Effect of Different Ultrasound Irradiation Durations on BSA
2.3. Sonodynamic Antibacterial Activity CIP Derivatives against E. coli
2.3.1. Comparison of the Sonodynamic Antibacterial Activity of CIP and Its Derivatives
2.3.2. Sonodynamic Antibacterial Activity of CIP Derivatives at Different Concentrations
2.3.3. Sonodynamic Antibacterial Activities of CIP Derivatives at Different Ultrasound Irradiation Times
2.4. Exploration of the Sonodynamic Action Mechanism of CIP Derivatives
2.4.1. ROS Production Induced by CIP and Its Different Derivatives under Ultrasonic Irradiation
2.4.2. ROS Production Induced by Different Concentrations of CIPD1 and Varying Ultrasonic Times
2.4.3. Analysis of ROS in Different Solutions
3. Materials and Methods
3.1. Experimental Strains and Reagents
3.2. Synthesis and Structural Characterization of Ciprofloxacin Derivatives
- CIPD1: 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-[(1-(4-carbethoxy)piperazinyl]quinoline-3-[N-(3-methoxyphenyl)]formamide
- CIPD2: 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-[(1-(4-carbethoxy)piperazinyl]quinoline-3-(N-Benzyl)formamid
- CIPD3: 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-[(1-(4-carbethoxy)piperazinyl]quinoline-3-[N-(1-Naphthyl)]formamide
3.3. Sonodynamic Damage to BSA in the Presence of CIP Derivatives
3.4. Sonodynamic Antibacterial Activities of CIP Derivatives against E. coli
3.5. Investigation of the ROS in Various Solutions with or without Ultrasound Irradiation
3.5.1. ROS Production of CIP and its Three Derivatives
3.5.2. ROS Production of Varying Concentrations of Derivatives and Ultrasonic Irradiation Durations
3.5.3. Identification of ROS Species
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Araújo Martins, Y.; Zeferino Pavan, T.; Fonseca Vianna Lopez, R. Sonodynamic therapy: Ultrasound parameters and in vitro experimental configurations. Int. J. Pharm. 2021, 610, 121243. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Li, M.; Liu, Q.; Zhao, J.; Lu, X.; Wang, J. Inorganic Sonosensitizers for Sonodynamic Therapy in Cancer Treatment. Small 2023, 19, e2303195. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Dai, Z. Design and Challenges of Sonodynamic Therapy System for Cancer Theranostics: From Equipment to Sensitizers. Adv. Sci. 2021, 8, 2002178. [Google Scholar] [CrossRef]
- Liu, K.; Jiang, Z.; Zhao, F.; Wang, W.; Jäkle, F.; Wang, N.; Tang, X.; Yin, X.; Chen, P. Triarylboron-Doped Acenethiophenes as Organic Sonosensitizers for Highly Efficient Sonodynamic Therapy with Low Phototoxicity. Adv. Mater. 2022, 34, e2206594. [Google Scholar] [CrossRef]
- Lin, X.; Song, J.; Chen, X.; Yang, H. Ultrasound-Activated Sensitizers and Applications. Angew. Chem. Int. Ed. Engl. 2020, 59, 14212–14233. [Google Scholar] [CrossRef]
- Pan, X.; Wang, W.; Huang, Z.; Liu, S.; Guo, J.; Zhang, F.; Yuan, H.; Li, X.; Liu, F.; Liu, H. MOF-Derived Double-Layer Hollow Nanoparticles with Oxygen Generation Ability for Multimodal Imaging-Guided Sonodynamic Therapy. Angew. Chem. Int. Ed. Engl. 2020, 59, 13557–13561. [Google Scholar] [CrossRef]
- Fan, L.; Idris Muhammad, A.; Bilyaminu Ismail, B.; Liu, D. Sonodynamic antimicrobial chemotherapy: An emerging alternative strategy for microbial inactivation. Ultrason. Sonochem. 2021, 75, 105591. [Google Scholar] [CrossRef]
- Deng, X.; Shao, Z.; Zhao, Y. Development of porphyrin and titanium dioxide sonosensitizers for sonodynamic cancer therapy. Biomater. Transl. 2021, 2, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Kim, J.H.; Wang, X.; Zhang, C.; Yoon, S.A.; Shin, J.; Sharma, A.; Lee, M.H.; Cheng, L.; Wu, J.; et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 2020, 49, 3244–3261. [Google Scholar] [CrossRef]
- Chen, H.J.; Zhou, X.B.; Wang, A.L.; Zheng, B.Y.; Yeh, C.K.; Huang, J.D. Synthesis and biological characterization of novel rose bengal derivatives with improved amphiphilicity for sono-photodynamic therapy. Eur. J. Med. Chem. 2018, 145, 86–95. [Google Scholar] [CrossRef]
- Li, Y.; Sun, M.; Yu, J.; Jiang, W.; Tian, W.; Chen, X.; Zhang, S.; He, H. Design of Sonosensitizers Integrated with Resveratrol Motif for Synergetic Sonodynamic Therapy and Nuclear Factor Kappa B Transcription Suppression of Breast Cancer. J. Med. Chem. 2023, 66, 6149–6159. [Google Scholar] [CrossRef]
- Bhatt, S.; Chatterjee, S. Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation—A comprehensive review. Environ. Pollut. 2022, 315, 120440. [Google Scholar] [CrossRef]
- Liu, B.; Wang, D.J.; Wang, X.; Liu, B.M.; Kong, Y.M.; He, L.L.; Wang, J.; Xu, S.K. Spectroscopic investigation on protein damage by ciprofloxacin under ultrasonic irradiation. Spectrochim Acta. A Mol. Biomol. Spectrosc. 2011, 78, 712–717. [Google Scholar] [CrossRef]
- Peter, S.; Aderibigbe, B.A. Ciprofloxacin and Norfloxacin Hybrid Compounds: Potential Anticancer Agents. Curr. Top. Med. Chem. 2024, 24, 644–665. [Google Scholar] [CrossRef]
- Nejman, D.; Livyatan, I.; Fuks, G.; Gavert, N.; Zwang, Y.; Geller, L.T.; Rotter-Maskowitz, A.; Weiser, R.; Mallel, G.; Gigi, E.; et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 2020, 368, 973–980. [Google Scholar] [CrossRef]
- Fu, A.; Yao, B.; Dong, T.; Chen, Y.; Yao, J.; Liu, Y.; Li, H.; Bai, H.; Liu, X.; Zhang, Y.; et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 2022, 185, 1356–1372. [Google Scholar] [CrossRef]
- LaCourse, K.D.; Zepeda-Rivera, M.; Kempchinsky, A.G.; Baryiames, A.; Minot, S.S.; Johnston, C.D.; Bullman, S. The cancer chemotherapeutic 5-fluorouracil is a potent Fusobacterium nucleatum inhibitor and its activity is modified by intratumoral microbiota. Cell Rep. 2022, 41, 111625. [Google Scholar] [CrossRef]
- Gao, G.; Jiang, Y.W.; Chen, J.; Xu, X.; Sun, X.; Xu, H.; Liang, G.; Liu, X.; Zhan, W.; Wang, M.; et al. Three-in-One Peptide Prodrug with Targeting, Assembly and Release Properties for Overcoming Bacterium-Induced Drug Resistance and Potentiating Anti-Cancer Immune Response. Adv. Mater. 2024, 36, e2312153. [Google Scholar] [CrossRef]
- Hashemi, S.; Karami, K.; Saberi Dehkordi, Z.; Momtazi-Borojeni, A.A.; Esmaeili, S.A. Novel P,C-orthopalladated complexes containing histidine and phenylalanine amino acids: Synthesis, DNA and BSA interactions, in vitro antitumoral activity and molecular docking approach. J. Biomol. Struct. Dyn. 2022, 40, 5000–5015. [Google Scholar] [CrossRef]
- Zhu, R.; Liang, Y.; Luo, H.; Cao, H.; Liu, Y.; Huang, S.; Xiao, Q. Investigations of interaction mechanism and conformational variation of serum albumin affected by artemisinin and dihydroartemisinin. J. Mol. Recognit. 2023, 36, e3000. [Google Scholar] [CrossRef]
- Hwang, E.; Yun, M.; Jung, H.S. Mitochondria-targeted organic sonodynamic therapy agents: Concept, benefits, and future directions. Front. Chem. 2023, 11, 1212193. [Google Scholar] [CrossRef]
- Sahoo, B.M.; Banik, B.K.; Borah, P.; Jain, A. Reactive Oxygen Species (ROS): Key Components in Cancer Therapies. Anti-Cancer Agents Med. Chem. 2022, 22, 215–222. [Google Scholar] [CrossRef]
- Zhu, L.; Chung, J.D.; Oh, W.C. Rapid sonochemical synthesis of novel PbSe-graphene-TiO2 composite sonocatalysts with enhanced on decolorization performance and generation of ROS. Ultrason. Sonochem. 2015, 27, 252–261. [Google Scholar] [CrossRef]
- Sarmiento-Salinas, F.L.; Perez-Gonzalez, A.; Acosta-Casique, A.; Ix-Ballote, A.; Diaz, A.; Treviño, S.; Rosas-Murrieta, N.H.; Millán-Perez-Peña, L.; Maycotte, P. Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression. Life Sci. 2021, 284, 119942. [Google Scholar] [CrossRef]
- Wu, K.; El Zowalaty, A.E.; Sayin, V.I.; Papagiannakopoulos, T. The pleiotropic functions of reactive oxygen species in cancer. Nat. Cancer 2024, 5, 384–399. [Google Scholar] [CrossRef]
- Vatansever, F.; de Melo, W.C.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.A.; Yin, R.; et al. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 2013, 37, 955–989. [Google Scholar] [CrossRef]
- Pang, X.; Xiao, Q.; Cheng, Y.; Ren, E.; Lian, L.; Zhang, Y.; Gao, H.; Wang, X.; Leung, W.; Chen, X.; et al. Bacteria-Responsive Nanoliposomes as Smart Sonotheranostics for Multidrug Resistant Bacterial Infections. ACS Nano 2019, 13, 2427–2438. [Google Scholar] [CrossRef]
- Chen, D.; Xie, J.; Wu, Q.; Fan, P.; Wang, J. Interaction and sonodynamic damage activity of acridine red (AD-R) to bovine serum albumin (BSA). J. Lumin. 2015, 160, 245–253. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Lv, J.; Zhang, J.; Liu, Y.; Wang, X.; Liu, B. Investigation into the Sonodynamic Activity of Three Newly Synthesized Derivatives of Ciprofloxacin. Molecules 2024, 29, 3735. https://doi.org/10.3390/molecules29163735
Zheng Y, Lv J, Zhang J, Liu Y, Wang X, Liu B. Investigation into the Sonodynamic Activity of Three Newly Synthesized Derivatives of Ciprofloxacin. Molecules. 2024; 29(16):3735. https://doi.org/10.3390/molecules29163735
Chicago/Turabian StyleZheng, Ying, Jing Lv, Jun Zhang, Yu Liu, Xiaofang Wang, and Bin Liu. 2024. "Investigation into the Sonodynamic Activity of Three Newly Synthesized Derivatives of Ciprofloxacin" Molecules 29, no. 16: 3735. https://doi.org/10.3390/molecules29163735
APA StyleZheng, Y., Lv, J., Zhang, J., Liu, Y., Wang, X., & Liu, B. (2024). Investigation into the Sonodynamic Activity of Three Newly Synthesized Derivatives of Ciprofloxacin. Molecules, 29(16), 3735. https://doi.org/10.3390/molecules29163735