Antioxidant Properties of Green Plants with Different Vitamin K Contents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction and Determination of Vitamin K1 Content in Tested Plant Materials
2.2. Determination of Antioxidant Properties of Plant Extract by Using Different Spectrophotometric Methods
2.2.1. Assessment of Extract Activity Using the DPPH Method
2.2.2. Evaluation of the Activity of Extracts Using the FRAP and CUPRAC Methods
2.2.3. Assessment of Antioxidant Activity by β-Carotene Bleaching Method
2.3. Comparison of the Antioxidant Properties of Extracts with the Antioxidant Properties of Vitamin K1 Solutions Using the β-Carotene Bleaching Test
3. Materials and Methods
3.1. Plant Materials and Chemicals
3.2. Ultrasound-Assisted Solvent Extraction
3.3. Chromatographic Analysis of Vitamin K1
3.4. Antioxidant Activity Measurements
3.4.1. DPPH Method
3.4.2. FRAP Method
3.4.3. CUPRAC Method
3.4.4. β-Carotene Bleaching Assay
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, N.; Verma, K.; Nalla, S.; Kulshreshtha, A.; Lall, R.; Prasad, S. Free radicals as a double-edged sword: The cancer preventive and therapeutic roles of curcumin. Molecules 2020, 25, 5390. [Google Scholar] [CrossRef] [PubMed]
- Vadgama, P. Oxidative free radicals and other species: Selective messengers with a reactive capacity for unselective tissue damage. Chemosensors 2021, 9, 89. [Google Scholar] [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, A.J.P.O.; de Oliveira, J.C.P.L.; da Silva Pontes, L.V.; de Souza Júnior, J.F.; Gonçalves, T.A.F.; Dantas, S.H.; de Almeida Feitosa, M.S.; Silva, A.O.; de Medeiros, I.A. ROS: Basic concepts, sources, cellular signaling, and its implications in aging pathways. Oxidative Med. Cell. Longev. 2022, 2022, 1225578. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Neha, K.; Haider, M.R.; Pathak, A.; Ya, M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem. 2019, 15, 687–704. [Google Scholar] [CrossRef] [PubMed]
- Kaźmierczak-Barańska, J.; Karwowski, B.T. Vitamin K contribution to DNA damage—Advantage or disadvantage? A human health response. Nutrients 2022, 14, 4219. [Google Scholar] [CrossRef] [PubMed]
- Vora Axita, P.; Mistry Parth, R.; Patel Prachi, K.; Gohel Payal, K.; Rathod Zalak, R.; Saraf Meenu, S. Analysis of antioxidants and its properties of vitamins as a key source for human health. Act. Sci. Nutr. Health 2022, 6, 104–114. [Google Scholar] [CrossRef]
- Wianowska, D.; Bryshten, I. New insights into vitamin K-From its natural sources through biological properties and chemical methods of quantitative determination. Crit. Rev. Anal. Chem. 2022, 9, 1–23. [Google Scholar] [CrossRef]
- Asensi-Fabado, M.A.; Munne’-Bosch, S. Vitamins in plants: Occurrence, biosynthesis and antioxidant function. Trends Plant Sci. 2010, 15, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Vervoort, L.M.T.; Ronden, J.E.; Thijssen, H.H.W. The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation. Biochem. Pharmacol. 1997, 54, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Muszyńska, M.; Ambrożewicz, E.; Gęgotek, A.; Grynkiewicz, G.; Skrzydlewska, E. Protective effects of vitamin K compounds on the proteomic profile of osteoblasts under oxidative stress conditions. Molecules 2020, 25, 1990. [Google Scholar] [CrossRef] [PubMed]
- Mishima, E.; Ito, J.; Wu, Z.; Nakamura, T.; Wahida, A.; Doll, S.; Tonnus, W.; Nepachalovich, P.; Eggenhofer, E.; Aldrovandi, M.; et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 2022, 608, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, L.; Yang, R.; Yu, X.; Yu, L.; Ma, F.; Hui, L.; Wang, X.; Li, P. Extraction and determination of vitamin K1 in foods by ultrasound-assisted extraction, SPE, and LC-MS/MS. Molecules 2020, 25, 839. [Google Scholar] [CrossRef] [PubMed]
- Paprotny, L.; Szewczak, D.; Bryshten, I.; Wianowska, D. Development, validation, and two-year application of rapid and simple LC-MS/MS-based method for the determination of K2MK-7 in blood samples. Molecules 2023, 28, 6523. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, A.L.; Olszowy-Tomczyk, M.; Typek, R. CBG, CBD, Δ9-THC, CBN, CBGA, CBDA and Δ9-THCA as antioxidant agents and their intervention abilities in antioxidant action. Fitoterapia 2021, 152, 104915. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, M.C.; Palacios, J.C.O.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric methods for measurement of antioxidant activity in food and pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef]
- Yasin, M.; Butt, M.S.; Ysamin, A.; Bashir, S. Chemical, antioxidant and sensory profiling of vitamin K-rich dietary sources. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 153–160. [Google Scholar] [CrossRef]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Ivanova, D.; Zheleva, Z.; Getsov, P.; Nikolova, B.; Aokid, I.; Higashid, T.; Bakalova, R. Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effect. Redox Biol. 2018, 16, 352–358. [Google Scholar] [CrossRef]
- Sadeer, N.B.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety—Chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M.; Wianowska, D. Antioxidant properties of selected in binary mixtures—Considerations on myricetin, kaempferol and quercetin. Int. J. Mol. Sci. 2023, 24, 10070. [Google Scholar] [CrossRef]
- Garcia, E.J.; Oldoni, T.; de Alencar, S.M.; Reis, A.; Loguercio, A.D.; Grande, R.H.M. Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Braz. Dent. J. 2012, 23, 22–27. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Tütem, E.; Başkan, K.S.; Erçağ, E.; Çelik, S.E.; Baki, S.; Yildis, L.; Karaman, S.; Apak, R. A comprehensive review of CUPRAC methodology. Anal. Methods 2011, 3, 2439. [Google Scholar] [CrossRef]
- Gulluc, M.; Sahin, F.; Sokmen, M.; Ozer, H.; Daferera, D.; Sokmen, A.; Polissiou, M.; Adiguzel, A.; Ozkan, H. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longfolia L. ssp. Longifolia. Food Chem. 2007, 103, 1449–1456. [Google Scholar] [CrossRef]
- Prieto, M.A.; Rodríguez-Amado, I.; Vázquez, J.A.; Murado, M.A. β-Carotene assay revisited. Application to characterize and quantify antioxidant and prooxidant activities in a microplate. J. Agric. Food Chem. 2012, 60, 8983–8993. [Google Scholar] [CrossRef]
Sample No | Vegetable Name | The Content of Vitamin K1 | |
---|---|---|---|
μg/g | μg/mL | ||
1 | Avocado | 0.67 ± 0.07 | 0.07 ± 0.01 |
2 | Broad bean | 1.56 ± 0.05 | 0.16 ± 0.02 |
3 | Broccoli | 36.54 ± 1.10 | 3.82 ± 0.11 |
4 | Brussel sprouts | 30.25 ± 0.91 | 3.28 ± 0.10 |
5 | Kale | 51.71 ± 1.55 | 5.05 ± 0.16 |
6 | Dill | 55.86 ± 1.68 | 6.06 ± 0.18 |
7 | Cucumber | 11.26 ± 0.34 | 1.21 ± 0.04 |
8 | Pepper | 5.93 ± 0.18 | 0.62 ± 0.03 |
9 | Parsley | 69.70 ± 2.09 | 7.14 ± 0.21 |
10 | Arugula | 76.39 ± 2.29 | 8.13 ± 0.24 |
11 | Iceberg salad | 14.82 ± 0.45 | 0.66 ± 0.02 |
12 | Chives | 56.65 ± 1.70 | 6.03 ± 0.18 |
13 | Spinach | 111.70 ± 3.35 | 11.78 ± 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryshten, I.; Paprotny, Ł.; Olszowy-Tomczyk, M.; Wianowska, D. Antioxidant Properties of Green Plants with Different Vitamin K Contents. Molecules 2024, 29, 3655. https://doi.org/10.3390/molecules29153655
Bryshten I, Paprotny Ł, Olszowy-Tomczyk M, Wianowska D. Antioxidant Properties of Green Plants with Different Vitamin K Contents. Molecules. 2024; 29(15):3655. https://doi.org/10.3390/molecules29153655
Chicago/Turabian StyleBryshten, Iryna, Łukasz Paprotny, Małgorzata Olszowy-Tomczyk, and Dorota Wianowska. 2024. "Antioxidant Properties of Green Plants with Different Vitamin K Contents" Molecules 29, no. 15: 3655. https://doi.org/10.3390/molecules29153655
APA StyleBryshten, I., Paprotny, Ł., Olszowy-Tomczyk, M., & Wianowska, D. (2024). Antioxidant Properties of Green Plants with Different Vitamin K Contents. Molecules, 29(15), 3655. https://doi.org/10.3390/molecules29153655