Characterization of Ancient Cereals Cultivated by Intensive and Organic Procedures for Element Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Cultivation
2.2. Elements’ Determination
Methodology Optimization for the Element Determination
2.3. Data Elaboration and Statistical Analysis
3. Results and Discussion
3.1. Commercial Samples
3.2. Samples Grown in Open Field by Conventional and Organic Techniques
3.3. Evaluation of Element Content by Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- FAO. Agrifood Solutions to Climate Change; FAO: Rome, Italy, 2023. [Google Scholar]
- FAO. Crop Prospects and Food Situation—Triannual Global Report; FAO: Rome, Italy, 2024; ISBN 978-92-5-138352-0. [Google Scholar]
- FAO. FAOSTAT. Available online: http://www.fao.org/faostat (accessed on 21 May 2024).
- Biel, W.; Jaroszewska, A.; Stankowski, S.; Sobolewska, M.; Kępińska-Pacelik, J. Comparison of yield, chemical composition and farinograph properties of common and ancient wheat grains. Eur. Food Res. Technol. 2021, 247, 1525–1538. [Google Scholar] [CrossRef]
- Gregory, P.J.; George, T.S. Feeding nine billion: The challenge to sustainable crop production. J. Exp. Bot. 2011, 62, 5233–5239. [Google Scholar] [CrossRef] [PubMed]
- Woldeyohannes, A.B.; Iohannes, S.D.; Miculan, M.; Caproni, L.; Ahmed, J.S.; de Sousa, K.; Desta, E.A.; Fadda, C.; Pè, M.E.; Dell’acqua, M. Data-driven, participatory characterization of farmer varieties discloses teff breeding potential under current and future climates. eLife 2022, 11, e80009. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, G. The Role of Amaranth, Quinoa, and Millets for the Development of Healthy, Sustainable Food. Foods 2022, 11, 2442. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, C. Assessing influences of climate change on highland barley productivity in the Qinghai-Tibet Plateau during 1978–2017. Sci. Rep. 2022, 12, 7625. [Google Scholar] [CrossRef] [PubMed]
- Colombo, F.; Franguelli, N.; Licheri, G.; Ghidoli, M.; Cassani, E.; Castelli, L.; Pasquali, M.; Bresciani, A.; Marti, A.; Dell’Anno, M.; et al. Agriculture in Marginal Areas: Reintroduction of Rye and Wheat Varieties for Breadmaking in the Antrona Valley. Agronomy 2022, 12, 1695. [Google Scholar] [CrossRef]
- Numan, M.; Khan, A.L.; Asaf, S.; Salehin, M.; Beyene, G.; Tadele, Z.; Ligaba-Osena, A. From traditional breeding to genome editing for boosting productivity of the ancient grain tef [Eragrostis tef (Zucc.) trotter]. Plants 2021, 10, 628. [Google Scholar] [CrossRef] [PubMed]
- Radzikowska, D.; Sulewska, H.; Bandurska, H.; Ratajczak, K.; Szymańska, G.; Kowalczewski, P.Ł.; Głowicka-Wołoszyn, R. Analysis of Physiological Status in Response to Water Deficit of Spelt (Triticum aestivum ssp. spelta) Cultivars in Reference to Common Wheat (Triticum aestivum ssp. vulgare). Agronomy 2022, 12, 1822. [Google Scholar] [CrossRef]
- Zamaratskaia, G.; Gerhardt, K.; Wendin, K. Biochemical characteristics and potential applications of ancient cereals—An underexploited opportunity for sustainable production and consumption. Trends Food Sci. Technol. 2021, 107, 114–123. [Google Scholar] [CrossRef]
- Yao, G.; Zhang, J.; Yang, L.; Xu, H.; Jiang, Y.; Xiong, L.; Zhang, C.; Zhang, Z.; Ma, Z.; Sorrells, M.E. Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor. Appl. Genet. 2007, 114, 351–358. [Google Scholar] [CrossRef]
- Leoncini, E.; Prata, C.; Malaguti, M.; Marotti, I.; Segura-Carretero, A.; Catizone, P.; Dinelli, G.; Hrelia, S. Phytochemical Profile and Nutraceutical Value of Old and Modern Common Wheat Cultivars. PLoS ONE 2012, 7, e45997. [Google Scholar] [CrossRef] [PubMed]
- Valli, V.; Taccari, A.; Di Nunzio, M.; Danesi, F.; Bordoni, A. Health benefits of ancient grains. Comparison among bread made with ancient, heritage and modern grain flours in human cultured cells. Food Res. Int. 2018, 107, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Brandolini, A. Nutritional properties of einkorn wheat (Triticum monococcum L.). J. Sci. Food Agric. 2014, 94, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Arzani, A.; Ashraf, M. Cultivated Ancient Wheats (Triticum spp.): A Potential Source of Health-Beneficial Food Products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; Torun, A.; Özkan, H.; Millet, E.; Feldman, M.; Fahima, T.; Korol, A.; Nevo, E.; Braun, H.J. Triticum dicoccoides: An important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci. Plant Nutr. 2004, 50, 1047–1054. [Google Scholar] [CrossRef]
- Golea, C.M.; Stroe, S.G.; Gâtlan, A.M.; Codină, G.G. Physicochemical Characteristics and Microstructure of Ancient and Common Wheat Grains Cultivated in Romania. Plants 2023, 12, 2138. [Google Scholar] [CrossRef] [PubMed]
- Noulas, C.; Torabian, S.; Qin, R. Crop Nutrient Requirements and Advanced Fertilizer Management Strategies. Agronomy 2023, 13, 2017. [Google Scholar] [CrossRef]
- Kaur, H.; Kaur, H.; Kaur, H.; Srivastava, S. The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regul. 2023, 100, 219–236. [Google Scholar] [CrossRef]
- Bjornsson, R.; Neese, F.; Schrock, R.R.; Einsle, O.; Debeer, S. The discovery of Mo(III) in FeMoco: Reuniting enzyme and model chemistry. J. Biol. Inorg. Chem. 2015, 20, 447–460. [Google Scholar] [CrossRef]
- Van Stappen, C.; Davydov, R.; Yang, Z.Y.; Fan, R.; Guo, Y.; Bill, E.; Seefeldt, L.C.; Hoffman, B.M.; Debeer, S. Spectroscopic Description of the E1 State of Mo Nitrogenase Based on Mo and Fe X-ray Absorption and Mössbauer Studies. Inorg. Chem. 2019, 58, 12365–12376. [Google Scholar] [CrossRef]
- Subramanian, D.; Subha, R.; Murugesan, A.K. Accumulation and translocation of trace elements and macronutrients in different plant species across five study sites. Ecol. Indic. 2022, 135, 108522. [Google Scholar] [CrossRef]
- Shtangeeva, I. Accumulation of scandium, cerium, europium, hafnium, and tantalum in oats and barley grown in soils that differ in their characteristics and level of contamination. Environ. Sci. Pollut. Res. 2022, 29, 40839–40853. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Imran, M.; Jing, G.; Wang, W.; Huang, B.; Li, Y.; Zhang, Y.; Yang, Y.; Lu, Q.; Zhang, Z.; et al. Toxic elements pollution risk as affected by various input sources in soils of greenhouses, kiwifruit orchards, cereal fields, and forest/grassland. Environ. Pollut. 2023, 338, 122639. [Google Scholar] [CrossRef] [PubMed]
- Fieve, R.R.; Meltzer, H.L.; Taylor, R.M. Rubidium chloride ingestion by volunteer subjects: Initial experience. Psychopharmacologia 1971, 20, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Ranaldo, M.; Toscano, G.; Radaelli, M.; Scalabrin, E.; Capodaglio, G. Nicotiana langsdorffii wild type and genetically modified exposed to chemical and physical stress: Changes in element content. Int. J. Environ. Anal. Chem. 2015, 95, 349–365. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; De Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Zencirci, N.; Karakas, F.P.; Ordu, B. Macro-Micro Element Variation in Traditionally Grown Einkorn (Triticum monococcum L. subsp. monococcum) and Emmer Wheat (Triticum dicoccon Schrank). Int. J. Second. Metab. 2021, 8, 227–245. [Google Scholar] [CrossRef]
- Van Boxstael, F.; Aerts, H.; Linssen, S.; Latré, J.; Christiaens, A.; Haesaert, G.; Dierickx, I.; Brusselle, J.; De Keyzer, W. A comparison of the nutritional value of Einkorn, Emmer, Khorasan and modern wheat: Whole grains, processed in bread, and population-level intake implications. J. Sci. Food Agric. 2020, 100, 4108–4118. [Google Scholar] [CrossRef] [PubMed]
- McKevith, B. Nutritional aspects of cereals. Nutr. Bull. 2004, 29, 111–142. [Google Scholar] [CrossRef]
- Nowak, V.; Du, J.; Charrondière, U.R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 2016, 193, 47–54. [Google Scholar] [CrossRef]
- Sushree Shyamli, P.; Rana, S.; Suranjika, S.; Muthamilarasan, M.; Parida, A.; Prasad, M. Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger. Theor. Appl. Genet. 2021, 134, 3147–3165. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Pintado, M.; Lopes da Silva, J.A. Potential nutritional and functional improvement of extruded breakfast cereals based on incorporation of fruit and vegetable by-products—A review. Trends Food Sci. Technol. 2022, 125, 136–153. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, J.F.; Meharg, A.A.; McGrath, S.P. Arsenic uptake and metabolism in plants. New Phytol. 2009, 181, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Kerketta, A.; Kumar, H.; Powell, M.A.; Sahoo, P.K.; Kapoor, H.S.; Mittal, S. Trace Element Occurrence in Vegetable and Cereal Crops from Parts of Asia: A Meta-data Analysis of Crop-Wise Differences. Curr. Pollut. Rep. 2023, 9, 1–21. [Google Scholar] [CrossRef]
- Shewry, P.R.; Brouns, F.; Dunn, J.; Hood, J.; Burridge, A.J.; America, A.H.P.; Gilissen, L.; Proos-Huijsmans, Z.A.M.; van Straaten, J.P.; Jonkers, D.; et al. Comparative compositions of grain of tritordeum, durum wheat and bread wheat grown in multi-environment trials. Food Chem. 2023, 423, 136312. [Google Scholar] [CrossRef] [PubMed]
- USDA. US Department of agriculture, agricultural research service. In FoodData Central, Oat; USDA: Washington, DC, USA.
- Ciołek, A.; Makarska, E.; Wesołowski, M.; Cierpiała, R. Content of selected nutrients in wheat, barley and oat grain from organic and conventional farming. J. Elem. 2012, 17, 181–189. [Google Scholar] [CrossRef]
- Stroud, J.L.; Zhao, F.J.; Buchner, P.; Shinmachi, F.; McGrath, S.P.; Abecassis, J.; Hawkesford, M.J.; Shewry, P.R. Impacts of sulphur nutrition on selenium and molybdenum concentrations in wheat grain. J. Cereal Sci. 2010, 52, 111–113. [Google Scholar] [CrossRef]
Element | Cert Conc ± TI | ICP-OES Conc ± CI | R% | ICP-MS Conc ± CI | R% |
---|---|---|---|---|---|
Al | 284.5 ± 5.8 | 216.3 ± 4.7 | 76 | 182 ± 13 | 64 |
B | 27.6 ± 2.8 | --- | 27.9 ± 1.9 | 101 | |
Ba | 48.8 ± 2.3 | 62.7 ± 0.8 | 128 | 47.4 ± 0.6 | 97 |
Ca * | 15.250 ± 0.100 | 16.08 ± 0.05 | 105 | --- | |
Cu | 5.69 ± 0.13 | 6.3 ± 0.2 | 112 | 6.0 ± 0.1 | 105 |
Fe | 82.7 ± 2.6 | 74.7 ± 0.7 | 90 | 81.5 ± 8.2 | 99 |
K * | 16.080 ± 0.210 | 17.1 ± 0.2 | 106 | 11.7 ± 0.8 | 73 |
Mg * | 2.710 ± 0.120 | 3.00 ± 0.04 | 111 | 2.71 ± 0.12 | 100 |
Mn | 54.1 ± 1.1 | 58.7 ± 0.2 | 108 | 56.2 ± 2.4 | 104 |
Na | 24.4 ± 2.1 | 22.5 ± 2.0 | 92 | --- | |
P * | 1.593 ± 0.068 | 1.65 ± 0.19 | 107 | --- | |
Rb | 10.2 ± 1.6 | --- | 9.8 ± 0.2 | 96 | |
Sr | 25.1 ± 1.1 | 28.9 ± 0.2 | 115 | 26.2 ± 0.5 | 105 |
Zn | 12.45 ± 0.43 | 12.2 ± 0.1 | 98 | 10.5 ± 0.4 | 84 |
Spelt | Wheat | Oats | ||||
---|---|---|---|---|---|---|
Element | Mean | SD | Mean | SD | Mean | SD |
Al | -- | -- | -- | -- | -- | -- |
B | -- | -- | -- | -- | -- | -- |
Ba | 4.88 | 0.08 | 2.19 | 0.14 | 2.67 | 0.20 |
Ca * | 0.505 | 0.008 | 0.345 | 0.009 | 0.764 | 0.049 |
Cu | 8.83 | 0.13 | 4.11 | 0.19 | 5.01 | 0.46 |
Fe | 41.2 | 0.8 | 38.8 | 1.9 | 38.0 | 2.6 |
K * | 4.71 | 0.07 | 4.44 | 0.21 | 3.63 | 0.20 |
Li | -- | -- | -- | -- | -- | -- |
Mg * | 1.35 | 0.03 | 1.50 | 0.09 | 1.42 | 0.08 |
Mn | 39.6 | 0.8 | 43.6 | 1.6 | 51.6 | 2.8 |
Na | 5.2 | 1.9 | 9.5 | 1.6 | 11.0 | 1.9 |
P * | 4.08 | 0.10 | 4.25 | 0.21 | 4.29 | 0.21 |
Rb | -- | -- | -- | -- | -- | -- |
S * | 1.75 | 0.03 | 1.26 | 0.02 | 1.60 | 0.09 |
Se | -- | -- | -- | -- | -- | -- |
Sr | 12.35 | 0.23 | 2.30 | 0.10 | 4.28 | 0.29 |
Zn | 54.84 | 0.91 | 29.26 | 0.75 | 32.3 | 2.0 |
Spelt | Wheat | Oats | ||||
---|---|---|---|---|---|---|
Element | Mean | SD | Mean | SD | Mean | SD |
Al | 2.01 | 0.33 | 1.4 | 0.9 | 4.19 | 0.24 |
B | 4.3 | 1.6 | udl | 3.78 | 0.47 | |
Ba | 3.66 | 0.12 | 1.26 | 0.08 | 0.93 | 0.07 |
Ca | -- | -- | -- | -- | -- | -- |
Cu | 7.49 | 0.20 | 2.62 | 0.44 | 3.52 | 0.64 |
Fe | 42.2 | 1.9 | 23.7 | 1.8 | 25.2 | 4.3 |
K * | 4.90 | 0.06 | 3.33 | 0.64 | 2.97 | 0.45 |
Li | 0.13 | 0.03 | 0.04 | 0.01 | 0.21 | 0.04 |
Mg * | 1.25 | 0.03 | 0.94 | 0.17 | 1.02 | 0.15 |
Mn | 35.7 | 0.8 | 27.4 | 5.1 | 35.1 | 5.8 |
Na | -- | -- | -- | -- | -- | -- |
P | -- | -- | -- | -- | -- | -- |
Rb | 3.84 | 0.09 | 1.08 | 0.10 | 1.65 | 0.09 |
S | -- | -- | -- | -- | -- | -- |
Se ** | 9 | 6 | 11 | 3 | 21 | 7 |
Sr | 10.89 | 0.26 | 1.59 | 0.15 | 2.79 | 0.40 |
Zn | 48.79 | 0.89 | 17.9 | 3.2 | 25.2 | 1.8 |
Triticum | Avena | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Element | Monococ. | Monococ. Organic | Dicoccum | Dicoccum Organic | Durum (Claudio) | Durum (S. cappelli) | Durum Org. (S. cappelli) | Aestivum (Verna) | Aestivum Org. (Verna) | Strigosa |
Al | 2 (1) | 1.2 (0.6) | 3.5 (0.9) | 1.8 (0.4) | 8.6 (0.5) | 2.5 (0.4) | 5.2 (0.3) | 4 (3) | 3.9 (0.6) | 8.2 (0.9) |
B | 10 (7) | 7.5 (3.5) | 6.8 (2.3) | 7.1 (2.2) | 13 (6) | 11 (3) | 12.7 (1.4) | 5.2 (2.0) | 8.88 (3.5) | 16 (3) |
Ba | 7.8 (0.3) | 2.5 (0.02) | 3.0 (0.2) | 1.3 (0.1) | 1.81 (0.03) | 1.58 (0.08) | 1.1 (0.1) | 1.87 (0.03) | 1.73 (0.05) | 1.13 (0.02) |
Ca | 550 (9) | 495 (9) | 384 (9) | 343 (3) | 340 (5) | 426 (9) | 504 (17) | 275 (9) | 364 (3) | 785 (40) |
Cd * | 12 (2) | 9 (1) | 28 (1) | 30 (1) | 45 (4) | 92 (2) | 75 (10) | 57 (8) | 62 (3) | 21 (4) |
Cr | 0.8 (0.2) | 0.9 (0.2) | 0.7 (0.1) | 0.7 (0.1) | 1.0 (0.3) | 0.93 (0.07) | 1.13 (0.09) | 0.93 (0.09) | 0.98 (0.09) | 1.1 (0.1) |
Cu | 9.2 (0.2) | 9.1 (0.1) | 4.9 (0.2) | 6.3 (0.3) | 5.3 (0.2) | 5.0 (0.1) | 7.55 (0.5) | 5.93 (0.05) | 5.74 (0.08) | 10.2 (0.2) |
Fe | 55 (3) | 41.7 (1.5) | 37 (2) | 39.7 (1.5) | 35.2 (1.0) | 41 (2) | 59.3 (2.4) | 54.0 (1.8) | 50.8 (1.3) | 53.1 (0.9) |
K ** | 6.9 (0.1) | 6.6 (0.2) | 5.6 (0.2) | 5.1 (0.2) | 5.00 (0.06) | 5.16 (0.07) | 5.09 (0.050) | 4.85 (0.08) | 5.63 (0.04) | 5.34 (0.15) |
Mg ** | 2.09 (0.07) | 1.76 (0.06) | 1.62 (0.07) | 1.76 (0.08) | 1.30 (0.02) | 1.58 (0.02) | 1.66 (0.01) | 1.85 (0.04) | 1.65 (0.01) | 1.74 (0.07) |
Mn | 50.1 (0.3) | 40.1 (0.5) | 28 (3) | 37.4 (2.7) | 20.3 (0.9) | 31.6 (0.9) | 57.4 (4.1) | 34.2 (0.6) | 33.1 (0.5) | 48.7 (0.4) |
Mo | 2.84 (0.09) | 1.83 (0.03) | 0.6 (0.2) | 0.69 (0.02) | 1.00 (0.06) | 0.93 (0.01) | 0.86 (0.03) | 1.6 (0.3) | 0.855 (0.008) | 3.69 (0.07) |
Na | 9 (4) | 11.0 (3.7) | 21 (1) | 13.7 (2.6) | 9.4 (0.4) | 10.4 (0.7) | 12.9 (1.6) | 5.7(0.7) | 14.6 (2.6) | 9 (2) |
P ** | 7.2 (0.2) | 6.0 (0.2) | 5.2 (0.2) | 5.4 (0.2) | 4.20 (0.07) | 5.01 (0.06) | 5.28 (0.04) | 5.56 (0.09) | 5.39 (0.05) | 6.2 (0.3) |
Rb | 1.12 (0.06) | 7.4 (0.1 | 0.78 (0.05) | 3.4 (0.2 | 0.63 (0.02) | 0.74 (0.06) | 2.84 (0.07 | 0.69 (0.04) | 4.4 (0.2) | 1.00 (0.03) |
S ** | 2.9 (0.6) | 2.2 (0.5) | 1.57 (0.02) | 1.58 (0.06) | 1.36 (0.02) | 1.62 (0.01) | 1.81 (0.02) | 2.06 (0.04) | 1.90 (0.01) | 2.0 (0.1) |
Sc | 4.9 (1.6) | 6.3 (1.6) | 5.8 (0.8) | 6.8 (0.9) | 8.1 (2.2) | 8.3 (0.9) | 9.0 (0.2) | 6.6 (0.9) | 8.0 (0.6) | 9.4 (0.7) |
Se | 0.15 (0.05) | 0.2 (0.1) | 0.13 (0.05) | 0.18 (0.05) | 0.24 (0.13) | 0.29 (0.04) | 0.33 (0.02) | 0.21 (0.03) | 0.25 (0.03) | 0.34 (0.03) |
Sr | 3.5 (0.1) | 2.19 (0.01) | 0.68 (0.03) | 0.77 (0.04) | 0.43 (0.02) | 0.71 (0.02) | 1.12 (0.07) | 0.603 (0.004) | 0.82 (0.04) | 0.95 (0.01) |
Zn | 60 (2) | 58.8 (0.3) | 36 (2) | 56.3 (3.8) | 48.3 (2.1) | 49 (1) | 77.8 (5.2) | 49.5 (0.8) | 61.2 (0.6) | 53.3 (0.4) |
Genus | Triticum | Avena | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | Wheat a | Durum b | Wheat c | Aestivum d | Wheat e | Turgidum | Monocc g | Aestivum | Aestivum h | Durum h | Tritordeum h | Sativa a | Sativa i | ||
Variety | Durum f | Durum g | Dicocc g | Spelta g | |||||||||||
Al | |||||||||||||||
B | 2.85 | ||||||||||||||
Ba | |||||||||||||||
Ca | 380 | 350 | 477 | 415 | 454 | 446 | 434 | 520 | 540 | ||||||
Cd * | 420 | ||||||||||||||
Cr | 2.46 | ||||||||||||||
Cu | 4.0 | 5.63 | 5.10 | 6.00 | |||||||||||
Fe | 39 | 50.4 | 19.6 | 0.0 | 37.0 | 46 | 33.0 | 34.1 | 45.9 | 41.8 | 38.0 | 47.0 | |||
K ** | 3.40 | 4.78 | 3.33 | 4.20 | 3.50 | 4.29 | |||||||||
Mg ** | 1.20 | 1.03 | 0.87 | 1.35 | 1.34 | 1.19 | 1.12 | 1.31 | 1.10 | 1.77 | |||||
Mn | 19.7 | 81.6 | 35.0 | 49.0 | |||||||||||
Mo | |||||||||||||||
Na | 30.0 | 20.0 | 35.0 | 90.0 | 20.0 | ||||||||||
P ** | 3.93 | 3.06 | 3.65 | 5.23 | |||||||||||
Rb | |||||||||||||||
S ** | 0.84 | 1.08 | |||||||||||||
Sc | |||||||||||||||
Se * | 20 | 160 | 80.8 | 229.3 | 278.9 | 209.0 | 30 | ||||||||
Sr | |||||||||||||||
Zn | 29 | 36.8 | 28.8 | 25.7 | 38.0 | 61 | 21.2 | 22.8 | 22.4 | 22.9 | 31.6 | 34.3 | 36.5 | 33.0 | 40.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radaelli, M.; Scalabrin, E.; Roman, M.; Buffa, G.; Griffante, I.; Capodaglio, G. Characterization of Ancient Cereals Cultivated by Intensive and Organic Procedures for Element Content. Molecules 2024, 29, 3645. https://doi.org/10.3390/molecules29153645
Radaelli M, Scalabrin E, Roman M, Buffa G, Griffante I, Capodaglio G. Characterization of Ancient Cereals Cultivated by Intensive and Organic Procedures for Element Content. Molecules. 2024; 29(15):3645. https://doi.org/10.3390/molecules29153645
Chicago/Turabian StyleRadaelli, Marta, Elisa Scalabrin, Marco Roman, Gabriella Buffa, Irene Griffante, and Gabriele Capodaglio. 2024. "Characterization of Ancient Cereals Cultivated by Intensive and Organic Procedures for Element Content" Molecules 29, no. 15: 3645. https://doi.org/10.3390/molecules29153645