Fusion of Laser-Induced Breakdown Spectroscopy and Raman Spectroscopy for Mineral Identification Based on Machine Learning
Abstract
:1. Introduction
2. Results and Discussion
2.1. LIBS and RS Spectra
2.2. Mineral Classification
2.3. Mineral Identification
3. Experiment Methods
3.1. Mineral Samples
3.2. Integrated LIBS-RS System
3.3. Spectral Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahrous, E.; Chen, R.; Zhao, C.; Farag, M.A. Lipidomics in food quality and authentication: A comprehensive review of novel trends and applications using chromatographic and spectroscopic techniques. Crit. Rev. Food Sci. Nutr. 2023, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.; Velasquez, M.; Myakalwar, A.K.; Sandoval, C.; Fuentes, R.; Castillo, R.; Sbarbaro, D. Determination of copper-based mineral species by laser induced breakdown spectroscopy and chemometric methods. J. Anal. At. Spectrom. 2019, 34, 2459–2468. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Chervonnyi, A.D. Infrared Spectroscopy of Minerals and Related Compounds; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Schmidt, F.; Legendre, M.; Mouëlic, S.L. Minerals detection for hyperspectral images using adapted linear unmixing: LinMin. Icarus 2014, 237, 61–74. [Google Scholar] [CrossRef]
- Krohn, M.D.; Altaner, S.P. Near infrared detection of ammonium minerals. Geophysics 1987, 52, 924–930. [Google Scholar] [CrossRef]
- Zhao, S.; Song, W.; Zhao, Y.; Hou, Z.; Wang, Z. In-situ measurement method of material ratio and chemical uniformity in sintering–pelleting operation using laser-induced breakdown spectroscopy and partial least squares regression. Microchem. J. 2022, 183, 107986. [Google Scholar] [CrossRef]
- Harmon, R.S.; Lawley, C.J.M.; Watts, J.; Harraden, C.L.; Somers, A.M.; Hark, R.R. Laser-Induced Breakdown Spectroscopy—An Emerging Analytical Tool for Mineral Exploration. Minerals 2019, 9, 718. [Google Scholar] [CrossRef]
- Sharma, S.K.; Lucey, P.G.; Ghosh, M.; Hubble, H.W.; Horton, K.A. Stand-off Raman spectroscopic detection of minerals on planetary surfaces. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 59, 2391–2407. [Google Scholar] [CrossRef] [PubMed]
- Winefordner, J.D.; Gornushkin, I.B.; Correll, T.; Gibb, E.; Smith, B.W.; Omenetto, N. Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future super star. J. Anal. At. Spectrom. 2004, 19, 1061–1083. [Google Scholar] [CrossRef]
- Wang, W.; Kong, W.; Shen, T.; Man, Z.; Zhu, W.; He, Y.; Liu, F.; Liu, Y. Application of laser-induced breakdown spectroscopy in detection of cadmium content in rice stems. Front. Plant Sci. 2020, 11, 599616. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Shen, T.; Kong, W.; Peng, J.; Zhang, C.; Song, K.; Wang, W.; Zhang, C.; He, Y. Quantitative analysis of cadmium in tobacco roots using laser-induced breakdown spectroscopy with variable index and chemometrics. Front. Plant Sci. 2018, 9, 1316. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Liu, F.; Zhang, C.; Wang, W.; Yang, R.; Zhao, Y.; Peng, J.; Kong, W.; Huang, J. Trends in digital detection for the quality and safety of herbs using infrared and Raman spectroscopy. Front. Plant Sci. 2023, 14, 1128300. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Vo-Dinh, K.C.; Yan, F.; Wabuyele, M.B.; Vo-Dinh, T. Direct identification of alizarin and lac dye on painting fragments using surface-enhanced RS scattering. Anal. Chim. Acta 2006, 569, 234–237. [Google Scholar] [CrossRef]
- Ishikawa, S.T.; Gulick, V.C. An automated mineral classifier using Raman spectra. Comput. Geosci. 2013, 54, 259–268. [Google Scholar] [CrossRef]
- Downs, R.T. The RRUFF project: An integrated study of the chemistry, crystallography, RS and infrared spectroscopy of minerals. In Proceedings of the 19th General Meeting of the International Mineralogical Association, Kobe, Japan, 23–28 July 2006; pp. 3–13. [Google Scholar]
- Liu, J.; Osadchy, M.; Ashton, L.; Solomon, C.J.; Gibson, S.J.; Foster, M. Deep convolutional neural networks for Raman spectra recognition: A unified solution. Analyst 2017, 142, 4067–4074. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Liu, Z.; Zhang, T.; Zhao, S.; Gao, X.; Sun, T.; Dai, Y. Multielement simultaneous quantitative analysis of trace elements in stainless steel via full spectrum laser-induced breakdown spectroscopy. Talanta 2024, 272, 125745. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Hou, Z.; Sheta, S.; Dong, J.; Han, W.; Lu, T.; Wang, Z. Provenance classification of nephrite jades using multivariate LIBS: A comparative study. Anal. Methods 2018, 10, 281–289. [Google Scholar] [CrossRef]
- Ma, Q.; Liu, Z.; Zhang, T.; Sun, T.; Gao, X.; Dai, Y. Small-sample stacking model for qualitative analysis of aluminum alloys based on femtosecond laser-induced breakdown spectroscopy. Opt. Express 2023, 31, 27633–27653. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.; Williams, M.R.; Sigman, M.E. Application of likelihood ratios and optimal decision thresholds in fire debris analysis based on a partial least squares discriminant analysis (PLS-DA) model. Forensic Chem. 2019, 16, 100188. [Google Scholar] [CrossRef]
- Chen, J.; Pisonero, J.; Chen, S.; Wang, X.; Fan, Q.; Duan, Y. Convolutional neural network as a novel classi fi cation approach for laser- induced breakdown spectroscopy applications in lithological recognition. Spectrochim. Acta Part B 2020, 166, 105801. [Google Scholar] [CrossRef]
- Khajehzadeh, N.; Haavisto, O.; Koresaar, L. On-stream mineral identification of tailing slurries of an iron ore concentrator using data fusion of LIBS, reflectance spectroscopy and XRF measurement techniques. Miner. Eng. 2017, 113, 83–94. [Google Scholar] [CrossRef]
- Jahoda, P.; Drozdovskiy, I.; Payler, S.J.; Turchi, L. Machine learning for recognizing minerals from multispectral data. Analyst 2020, 146, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Zhang, Y.; Yan, J.; Wu, Z.; Li, Y. Classification and discrimination of minerals using laser induced breakdown spectroscopy and RS spectroscopy. Plasma Sci. Technol. 2015, 17, 923–927. [Google Scholar] [CrossRef]
- Gibbons, E.; Léveillé, R.; Berlo, K. Data fusion of laser-induced breakdown and RS spectroscopies: Enhancing clay mineral identification. Spectrochim. Acta Part B 2020, 170, 105905. [Google Scholar] [CrossRef]
- Kristin, R.; Susanne, S.; Simon, K.; Sven, F.; Peder, B.H.; Ute, B.; Franziska, H.; Heinz-Wilhelm, H. Low-level LIBS and Raman data fusion in the context of in situ Mars exploration. J. Raman Spectrosc. 2019, 51, 1682–1701. [Google Scholar]
- Sun, H.; Song, C.; Lin, X.; Gao, X. Identification of meat species by combined laser-induced breakdown and Raman spectroscopies. Spectrochim. Acta Part B At. Spectrosc. 2022, 194, 106456. [Google Scholar] [CrossRef]
- Choi, S.J.; Choi, J.J.; Yoh, J.J. Advancing the experimental design for simultaneous acquisition of laser induced plasma and RS signals using a single pulse. Spectrochim. Acta Part B At. Spectrosc. 2016, 123, 1–5. [Google Scholar] [CrossRef]
- Shameem, K.M.M.; Dhanada, V.S.; Harikrishnan, S.; George, S.D.; Kartha, V.B.; Santhosh, C.; Unnikrishnan, V.K. Echelle LIBS-RS system: A versatile tool for mineralogical and archaeological applications. Talanta 2020, 208, 120482. [Google Scholar] [CrossRef] [PubMed]
- Buzgar, N.; Andrei, I.A. The Raman study of certain carbonates. Geol. Tomul L 2009, 2, 97–112. [Google Scholar]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. A J. Chemom. Soc. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Huang, G.B.; Siew, C.K. Extreme learning machine with randomly assigned RBF kernels. Int. J. Inf. Technol. 2005, 11, 16–24. [Google Scholar]
- Zheng, W.; Shu, H.; Tang, H.; Zhang, H. Spectra data classification with kernel extreme learning machine. Chemom. Intell. Lab. Syst. 2019, 192, 103815. [Google Scholar] [CrossRef]
- Song, W.; Hou, Z.; Gu, W.; Wang, H.; Cui, J.; Zhou, Z.; Yan, G.; Ye, Q.; Li, Z.; Wang, Z. Industrial at-line analysis of coal properties using laser-induced breakdown spectroscopy combined with machine learning. Fuel 2021, 306, 121667. [Google Scholar] [CrossRef]
- Devassy, B.M.; George, S. Dimensionality reduction and visualisation of hyperspectral ink data using t-SNE. Forensic Sci. Int. 2020, 311, 110194. [Google Scholar] [CrossRef] [PubMed]
Data Sets | Raw Data | Pre-Processed Data | |
---|---|---|---|
LIBS | Training | 92.63% ± 3.78% ±3.78 | 94.10% ± 3.66% ±3.66 |
Test | 94.42% ± 4.70% ±4.70 | 95.61% ± 2.45% ±2.45 | |
RS | Training | 90.36% ± 4.39% ±4.39 | 93.34% ± 3.49% ±3.49 |
Test | 94.74% ± 5.47% ±5.47 | 95.61% ± 4.33% ±4.33 |
Method | LIBS | Raman | Fusion | |
---|---|---|---|---|
Training | PLS-DA | 94.10 ±3.66 | 93.34 ± 3.49 | 96.12 ± 3.49 |
K-ELM | 97.12 ± 3.37 | 96.98 ± 3.19 | 97.67 ± 3.25 | |
Test | PLS-DA | 95.61 ± 2.45 | 95.61 ± 4.33 | 97.24 ± 1.44 |
K-ELM | 97.78 ± 1.53 | 97.73 ± 1.48 | 98.39 ± 1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Liu, Z.; Zhao, S. Fusion of Laser-Induced Breakdown Spectroscopy and Raman Spectroscopy for Mineral Identification Based on Machine Learning. Molecules 2024, 29, 3317. https://doi.org/10.3390/molecules29143317
Dai Y, Liu Z, Zhao S. Fusion of Laser-Induced Breakdown Spectroscopy and Raman Spectroscopy for Mineral Identification Based on Machine Learning. Molecules. 2024; 29(14):3317. https://doi.org/10.3390/molecules29143317
Chicago/Turabian StyleDai, Yujia, Ziyuan Liu, and Shangyong Zhao. 2024. "Fusion of Laser-Induced Breakdown Spectroscopy and Raman Spectroscopy for Mineral Identification Based on Machine Learning" Molecules 29, no. 14: 3317. https://doi.org/10.3390/molecules29143317
APA StyleDai, Y., Liu, Z., & Zhao, S. (2024). Fusion of Laser-Induced Breakdown Spectroscopy and Raman Spectroscopy for Mineral Identification Based on Machine Learning. Molecules, 29(14), 3317. https://doi.org/10.3390/molecules29143317