Accessible New Non-Quantum Dot Cs2PbI2Cl2-Based Photocatalysts for Efficient Hole-Driven Photocatalytic Applications
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pastor, E.; Sachs, M.; Selim, S.; Durrant, J.R.; Bakulin, A.A.; Walsh, A. Electronic Defects in Metal Oxide Photocatalysts. Nat. Rev. Mater. 2022, 7, 503–521. [Google Scholar] [CrossRef]
- Gautam, S.; Agrawal, H.; Thakur, M.; Akbari, A.; Sharda, H.; Kaur, R.; Amini, M. Metal Oxides and Metal Organic Frameworks for the Photocatalytic Degradation: A Review. J. Environ. Chem. Eng. 2020, 8, 103726. [Google Scholar] [CrossRef]
- Krishnan, A.; Swarnalal, A.; Das, D.; Krishnan, M.; Saji, V.S.; Shibli, S.M.A. A Review on Transition Metal Oxides Based Photocatalysts for Degradation of Synthetic Organic Pollutants. J. Environ. Sci. 2024, 139, 389–417. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Park, D.; Hahn, B.; Choi, J.; Yoon, W.; Kim, K.; Yun, H. Photocatalytic TiO2 Thin Films by Aerosol-Deposition: From Micron-Sized Particles to Nano-Grained Thin Film at Room Temperature. Appl. Catal. B-Environ. 2008, 83, 1–7. [Google Scholar] [CrossRef]
- Parrino, F.; Livraghi, S.; Giamello, E.; Ceccato, R.; Palmisano, L. Role of Hydroxyl Superoxide and Nitrate Radicals on the Fate of Bromide Ions in Photocatalytic TiO2 Suspensions. ACS Catal. 2020, 10, 7922–7931. [Google Scholar] [CrossRef]
- Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Construction of 2D S-Scheme Heterojunction Photocatalyst. Adv. Mater. 2023, 36, 2310600. [Google Scholar] [CrossRef]
- NREL. Best Research Cell Efficiency Records. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 1 April 2024).
- Feng, J.; Mak, C.H.; Yu, L.; Han, B.; Shen, H.; Santoso, S.P.; Yuan, M.; Li, F.; Song, H.; Colmenares, J.C.; et al. Structural Modification Strategies Interfacial Charge-Carrier Dynamics and Solar Energy Conversion Applications of Organic-Inorganic Halide Perovskite Photocatalysts. Small Methods 2024, 8, 2300429. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, J.; Wu, Z.; Li, B.; Li, M. All-Inorganic Lead Halide Perovskites for Photocatalysis: A Review. RSC Adv. 2024, 14, 4946–4965. [Google Scholar] [CrossRef]
- Mathuri, A.; Pal, B.; Pramanik, M.; Manna, A.; Mal, P. Enhancing the Photocatalytic Efficiency and Stability of CsPbBr3 Nanocrystals for Visible-Light Driven Aerobic Diaryl Thio/Seleno Etherification. Catal. Sci. Technol. 2024, 14, 183–189. [Google Scholar] [CrossRef]
- Song, W.; Chong, K.C.; Qi, G.; Xiao, Y.; Chen, G.; Li, B.; Tang, Y.; Zhang, X.; Yao, Y.; Lin, Z.; et al. Unraveling the Transformation from Type-II to Z-Scheme in Perovskite-Based Heterostructures for Enhanced Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2024, 146, 3303–3314. [Google Scholar] [CrossRef]
- Gao, S.; Wang, B.; Chen, F.; He, G.; Zhang, T.; Li, L.; Li, J.; Zhou, Y.; Feng, B.; Mei, D.; et al. Confinement of CsPbBr3 Perovskite Nanocrystals into Extra-Large-Pore Zeolite for Efficient and Stable Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2024, 63, e202319996. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Luo, Q.; Jiang, Q.; Liu, X.; Chen, X.; Liu, J.; Mao, X.; Qi, J.; Liang, R.; Qiu, J. Hydrogen-Bonded Cocrystals Encapsulating CsPbBr3 Perovskite Nanocrystals with Enhancement of Charge Transport for Photocatalytic Reduction of Uranium. Small 2024, 20, 2310672. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, Y.; San Martin, J.; Sun, Y.; Zhu, D.; Yan, Y. Lead Halide Perovskites for Photocatalytic Organic Synthesis. Nat. Commun. 2019, 10, 2843. [Google Scholar] [CrossRef] [PubMed]
- Cardenas Morcoso, D.; Gualdron Reyes, A.F.; Ferreira Vitoreti, A.B.; Garcia Tecedor, M.; Yoon, S.J.; De La Fuente, M.S.; Mora Sero, I.; Gimenez, S. Photocatalytic and Photoelectrochemical Degradation of Organic Compounds with All-Inorganic Metal Halide Perovskite Quantum Dots. J. Phys. Chem. Lett. 2019, 10, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chen, H.; Li, J.; Liao, J.; Zhang, H.; Wang, X.; Kuang, D. Z-Scheme 2D/2D Heterojunction of CsPbBr3/Bi2WO6 for Improved Photocatalytic Co2 Reduction. Adv. Funct. Mater. 2020, 30, 2004293. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Wang, X.; He, J.; Li, Y.; Liu, Y. Synthesis of Asymmetrical CsPbBr3/TiO2 Nanocrystals with Enhanced Stability and Photocatalytic Properties. Catalysts 2023, 13, 1048. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, M.; Chen, B.; Wang, X.; Chen, H.; Kuang, D.; Su, C. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663. [Google Scholar] [CrossRef]
- Sanjayan, C.G.; Jyothi, M.S.; Balakrishna, R.G. Stabilization of Cspbbr3 Quantum Dots for Photocatalysis Imaging and Optical Sensing in Water And Biological Medium: A Review. J. Mater. Chem. C 2022, 10, 6935–6956. [Google Scholar]
- Rasool, R.T.; Ashraf, G.A.; Pasha, M.; Saleem, M.F.; Ghernaout, D.; Fadhali, M.M.; Guo, H. Nanoscaled MnSnO2@CsPbBr3 Quantum Dots Heterostructure Photocatalyst as Efficient Organic Pollutants Degradation by Peroxymonosulfate; DFT Calculation. J. Mater. Sci. Technol. 2023, 153, 41–55. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, M.; Lian, X.; Zhu, M.; Zhang, F. CsPbBr3 Quantum Dots Promoted Depolymerization of Oxidized Lignin via Photocatalytic Semi-Hydrogenation/Reduction Strategy. Angew. Chem. Int. Ed. 2024, 63, e202318850. [Google Scholar] [CrossRef]
- Zhong, F.; Sheng, J.; Du, C.; He, Y.; Sun, Y.; Dong, F. Ligand-Mediated Exciton Dissociation and Interparticle Energy Transfer on Cspbbr3 Perovskite Quantum Dots for Efficient CO2-To-CO Photoreduction. Sci. Bull. 2024, 69, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.D.; Shi, T.C.; Zang, Z.G.; Zhou, T.W.; Liu, Z.Z.; Zhang, Z.Y.; Du, J.; Leng, Y.X.; Tang, X.S. Ultrastable Cspbbr3 Perovskite Quantum Dot and Their Enhanced Amplified Spontaneous Emission by Surface Ligand Modification. Small 2019, 15, 1901173. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Tien, C.H.; Tseng, Z.L.; Dong, Y.S.; Yang, S.Y. Influence of Pmma on All-Inorganic Halide Perovskite CsPbBr3 Quantum Dots Combined with Polymer Matrix. Materials 2019, 12, 985. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.L.; Hu, X.D.; Wei, C.T.; Xu, B.; Leng, J.; Miao, H.B.; Zeng, H.B.; Li, X.M. Ligands for CsPbBr3 Perovskite Quantum Dots: The Stronger the Better? Chem. Eng. J. 2023, 453, 139904. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Niu, P.J.; Zhang, L.; Wen, Z.Y.; Cheng, S.; Lyu, M.; Zhu, J. Tailoring Multifunctional Anions to Inhibit Methanol Absorption on A CsPbBr3 Quantum Dot Surface for Highly Efficient Semi-Transparent Photovoltaics. Nanoscale 2023, 15, 9691–9699. [Google Scholar] [CrossRef] [PubMed]
- Mathews, N.R.; Morales, E.R.; Cortés-Jacome, M.A.; Antonio, J.A.T. TiO2 Thin Films—Influence of Annealing Temperature on Structural Optical and Photocatalytic Properties. Sol. Energy 2009, 83, 1499–1508. [Google Scholar] [CrossRef]
- Landes, C.; Burda, C.; Braun, M.; El-Sayed, M.A. Photoluminescence of CdSe Nanoparticles in the Presence of a Hole Acceptor: N-Butylamine. J. Phys. Chem. B 2001, 105, 2981–2986. [Google Scholar] [CrossRef]
- Akasheh, F.; Karim, M.R.; Shao, S. Dislocation Structure of Cu/Nu (100) Semi-Coherent Interface and Its Role in Lattice Dislocation Nucleation. In Proceedings of the TMS 2015 144th Annual Meeting & Exhibition, Orlando, FL, USA, 15–19 March 2015. [Google Scholar]
- Wang, X.; Zhong, Y.; Wang, D.; Sun, L.; Jiang, B.; Wang, J. Effect of interfacial energy on microstructure of a directionally solidified Al2O3/YAG eutectic ceramic. J. Am. Ceram. Soc. 2018, 101, 1029–1035. [Google Scholar] [CrossRef]
- Zhu, Y.; Xue, J.; Xu, T.; He, G.; Chen, H. Enhanced Photocatalytic Activity of Magnetic Core–shell Fe3O4@Bi2O3–RGO Heterojunctions for Quinolone Antibiotics Degradation under Visible Light. J. Mater. Sci. Mater. Electron. 2017, 28, 8519–8528. [Google Scholar] [CrossRef]
- Ye, L.; Liu, J.; Gong, C.; Tian, L.; Peng, T.; Zan, L. Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X = Cl, Br) Visible Light Photocatalysts: Surface Plasmon Resonance and Z-Scheme Bridge. ACS Catal. 2012, 2, 1677–1683. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Lv, K.; Zhu, W.; Li, Z.; Zhao, H. Accessible New Non-Quantum Dot Cs2PbI2Cl2-Based Photocatalysts for Efficient Hole-Driven Photocatalytic Applications. Molecules 2024, 29, 3249. https://doi.org/10.3390/molecules29143249
Huang X, Lv K, Zhu W, Li Z, Zhao H. Accessible New Non-Quantum Dot Cs2PbI2Cl2-Based Photocatalysts for Efficient Hole-Driven Photocatalytic Applications. Molecules. 2024; 29(14):3249. https://doi.org/10.3390/molecules29143249
Chicago/Turabian StyleHuang, Xing, Kuanxin Lv, Wenqiang Zhu, Zhenzhen Li, and Hang Zhao. 2024. "Accessible New Non-Quantum Dot Cs2PbI2Cl2-Based Photocatalysts for Efficient Hole-Driven Photocatalytic Applications" Molecules 29, no. 14: 3249. https://doi.org/10.3390/molecules29143249
APA StyleHuang, X., Lv, K., Zhu, W., Li, Z., & Zhao, H. (2024). Accessible New Non-Quantum Dot Cs2PbI2Cl2-Based Photocatalysts for Efficient Hole-Driven Photocatalytic Applications. Molecules, 29(14), 3249. https://doi.org/10.3390/molecules29143249