Liquid–Liquid and Liquid–Solid Interfacial Nanoarchitectonics
Abstract
1. Introduction
2. Molecular Assembly
3. MOF and COF
4. Living Cell
5. Frontier Research, Organic Semiconductor
6. Summary and Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Zhu, Q.; Huang, J.; Liu, J.; Tan, G.; Sun, C.; Li, T.; Liu, S.; Li, Y.; Wang, H.; et al. Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water. Appl. Catal. B Environ. 2021, 293, 120213. [Google Scholar] [CrossRef]
- Saidul Islam, M.S.; Shudo, Y.; Hayami, S. Energy conversion and storage in fuel cells and super-capacitors from chemical modifications of carbon allotropes: State-of-art and prospect. Bull. Chem. Soc. Jpn. 2022, 95, 1–25. [Google Scholar] [CrossRef]
- Yoshino, A. The lithium-ion battery: Two breakthroughs in development and two reasons for the Nobel prize. Bull. Chem. Soc. Jpn. 2022, 95, 195–197. [Google Scholar] [CrossRef]
- Hosaka, T.; Komaba, S. Development of nonaqueous electrolytes for high-voltage K-ion batteries. Bull. Chem. Soc. Jpn. 2022, 95, 569–581. [Google Scholar] [CrossRef]
- Xiao, J.; Hisatomi, T.; Kazunari Domen, K. Narrow-band-gap particulate photocatalysts for one-step-excitation overall water splitting. Acc. Chem. Res. 2023, 56, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Matsuzawa, K.; Nagai, T.; Ikegami, K.; Kuroda, Y.; Monden, R.; Ishihara, A. Fe, N-Doped SrTiO3 synthesized using pyrazine carboxylic acid-metal complexes: Application as an oxygen reduction catalyst for polymer electrolyte fuel cell cathodes in acidic media. Bull. Chem. Soc. Jpn. 2023, 96, 175–177. [Google Scholar] [CrossRef]
- Fu, M.; Chen, W.; Lei, Y.; Yu, H.; Lin, Y.; Terrones, M. Biomimetic construction of ferrite quantum dot/graphene heterostructure for enhancing ion/charge transfer in supercapacitors. Adv. Mater. 2023, 35, 2300940. [Google Scholar] [CrossRef]
- Ishihara, S.; Labuta, J.; Nakanishi, T.; Tanaka, T.; Kataura, H. Amperometric detection of sub-ppm formaldehyde using single-walled carbon nanotubes and hydroxylamines: A referenced chemiresistive system. ACS Sens. 2017, 2, 1405–1409. [Google Scholar] [CrossRef] [PubMed]
- Zhuge, Z.; Liu, X.; Chen, T.; Gong, Y.; Li, C.; Niu, L.; Xu, S.; Xu, X.; Alothman, Z.A.; Sun, C.Q.; et al. Highly efficient photocatalytic degradation of different hazardous contaminants by CaIn2S4-Ti3C2Tx Schottky heterojunction: An experimental and mechanism study. Chem. Eng. J. 2021, 421, 127838. [Google Scholar] [CrossRef]
- Chapman, A.; Ertekin, E.; Kubota, M.; Nagao, A.; Bertsch, K.; Macadre, A.; Tsuchiyama, T.; Masamura, T.; Takaki, S.; Komoda, R.; et al. Achieving a carbon neutral future through advanced functional materials and technologies. Bull. Chem. Soc. Jpn. 2022, 95, 73–103. [Google Scholar] [CrossRef]
- Shenashen, M.A.; Emran, M.Y.; Sabagh, A.E.; Selim, M.M.; Elmarakbi, A.; El-Safty, S.A. Progressin sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. Prog. Mater. Sci. 2022, 124, 100866. [Google Scholar] [CrossRef]
- Sasai, R.; Fujimura, T.; Sato, H.; Nii, E.; Sugata, M.; Nakayashiki, Y.; Hoashi, H.; Moriyosh, C.; Oishi, E.; Fujii, Y.; et al. Origin of selective nitrate removal by Ni2+–Al3+ layered double hydroxides in aqueous media and its application potential in seawater purification. Bull. Chem. Soc. Jpn. 2022, 95, 802–812. [Google Scholar] [CrossRef]
- Zhu, S.; Khan, M.A.; Kameda, T.; Xu, H.; Wang, F.; Xia, M.; Yoshioka, T. New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material. J. Hazard. Mater. 2022, 426, 128062. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; He, R.; Ren, J.; Tao, F.; Yang, H.; Lv, H.; Ju, X. A friendly UV-responsive fluorine-free superhydrophobic coating for oil-water separation and dye degradation. Bull. Chem. Soc. Jpn. 2022, 95, 1091–1099. [Google Scholar] [CrossRef]
- Mamun, M.R.A.; Yusuf, M.A.; Bhuyan, M.M.; Bhuiyan, M.S.H.; Arafath, M.A.; Uddin, M.N.; Soeb, M.J.A.; Almahri, A.; Rahman, M.M.; Karim, M.R. Acidity controlled desulfurization of biogas by using iron (III) and ferrosoferric (II, III) oxide. Bull. Chem. Soc. Jpn. 2022, 95, 1234–1241. [Google Scholar] [CrossRef]
- Suzuki, H.; Takahashi, K. Water purification by 2-dimensional dodecagonal nitride and graphenylene via first principles calculations. ChemPhysChem 2023, 24, e202300115. [Google Scholar] [CrossRef]
- Zhang, l.; Chong, H.L.H.; Moh, P.Y.; Albaqami, M.D.; Tighezza, A.M.; Qin, C.; Ni, X.; Cao, J.; Xu, X.; Yamauchi, Y. β-FeOOH nanospindles as chloride-capturing electrodes for electrochemical faradic deionization of saline water. Bull. Chem. Soc. Jpn. 2023, 96, 306–309. [Google Scholar] [CrossRef]
- Tiburcius, S.; Krishnan, K.; Patel, V.; Netherton, J.; Sathish, C.I.; Weidenhofer, J.; Yang, J.-H.; Verrills, N.M.; Karakoti, A.; Vinu, A. Triple surfactant assisted synthesis of novel core-shell mesoporous silica nanoparticles with high surface area for drug delivery for prostate cancer. Bull. Chem. Soc. Jpn. 2022, 95, 331–340. [Google Scholar] [CrossRef]
- Maeki, M.; Uno, S.; Niwa, A.; Okada, Y.; Tokeshi, M. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J. Control. Release 2022, 344, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Pradipta, A.R.; Michiba, H.; Kubo, A.; Fujii, M.; Tanei, T.; Morimoto, K.; Shimazu, K.; Tanaka, K. The second-generation click-to-sense probe for intraoperative diagnosis of breast cancer tissues based on acrolein targeting. Bull. Chem. Soc. Jpn. 2022, 95, 421–426. [Google Scholar] [CrossRef]
- Su, C.-H.; Soendoro, A.; Okayama, S.; Rahmania, F.J.; Nagai, T.; Imae, T.; Tsutsumiuchi, K.; Kawai, N. Drug release stimulated by magnetic field and light on magnetite- and carbon dot-loaded carbon nanohorn. Bull. Chem. Soc. Jpn. 2022, 95, 582–594. [Google Scholar] [CrossRef]
- Canh, V.D.; Liu, M.; Sangsanont, J.; Katayama, H. Capsid integrity detection of pathogenic viruses in waters: Recent progress and potential future applications. Sci. Total Environ. 2022, 827, 154258. [Google Scholar] [CrossRef] [PubMed]
- Komiyama, M. Molecular mechanisms of the medicines for COVID-19. Bull. Chem. Soc. Jpn. 2022, 95, 1308–1317. [Google Scholar] [CrossRef]
- Hata, M.; Kadoya, Y.; Hitomi, Y.; Kodera, M. Burst of DNA double-strand breaks by dicopper(II) complex with a p-cresol-2,6-bis(amide-tether-dpa) ligand via reductive O2-activation. Bull. Chem. Soc. Jpn. 2022, 95, 1546–1552. [Google Scholar] [CrossRef]
- Yang, W.; Mixich, L.; Boonstra, E.; Cabral, H. Polymer-based mRNA delivery strategies for advanced therapies. Adv. Healthc. Mater. 2023, 12, 2202688. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Imajo, Y.; Funaba, M.; Ikeda, H.; Nishida, N.; Sakai, T. Current concepts of biomaterial scaffolds and regenerative therapy for spinal cord injury. Int. J. Mol. Sci. 2023, 24, 2528. [Google Scholar] [CrossRef]
- Niwa, T.; Tahara, T.; Chase, C.E.; Fang, F.G.; Nakaoka, T.; Irie, S.; Hayashinaka, E.; Wada, Y.; Mukai, H.; Masutomi, K.; et al. Synthesis of 11C-radiolabeled eribulin as a companion diagnostics PET tracer for brain glioblastoma. Bull. Chem. Soc. Jpn. 2023, 96, 283–290. [Google Scholar] [CrossRef]
- Kumagai, S.; Koguma, T.; Annaka, T.; Sawabe, C.; Tani, Y.; Sugiura, H.; Watanabe, T.; Hashizume, D.; Takeya, J.; Okamoto, T. Regioselective functionalization of nitrogen-embedded perylene diimides for high-performance organic Electron-transporting materials. Bull. Chem. Soc. Jpn. 2022, 95, 953–960. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, J.; Wang, L.; Xiao, L.; Jia, S. All-optical information conversion in Rb vapor based on the spatial cross-phase modulation. Opt. Express 2022, 30, 45517–45524. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Sasabe, H.; Tsuneyama, H.; Abe, S.; Matsuya, M.; Kawano, T.; Kori, Y.; Hanayama, T.; Kido, J. Quinoline-modified phenanthroline electron-transporters as n-type exciplex partners for highly efficient and stable deep-red OLEDs. Bull. Chem. Soc. Jpn. 2023, 96, 24–28. [Google Scholar] [CrossRef]
- Liang, F.-C.; Jhuang, F.-C.; Fang, Y.-H.; Benas, J.-S.; Chen, W.-C.; Yan, Z.-L.; Lin, W.-C.; Su, C.-J.; Sato, Y.; Chiba, T.; et al. Synergistic effect of cation composition engineering of hybrid Cs1−xFAxPbBr3 nanocrystals for self-healing electronics application. Adv. Mater. 2023, 35, 2207617. [Google Scholar] [CrossRef] [PubMed]
- Matsuya, M.; Sasabe, H.; Sumikoshi, S.; Hoshi, K.; Nakao, K.; Kumada, K.; Sugiyama, R.; Sato, R.; Kido, J. Highly Luminescent aluminum complex with β-diketone ligands exhibiting near-unity photoluminescence quantum yield, thermally activated delayed fluorescence, and rapid radiative decay rate properties in solution-processed organic light-emitting devices. Bull. Chem. Soc. Jpn. 2023, 96, 183–189. [Google Scholar] [CrossRef]
- Yu, C.P.; Kumagai, S.; Tsutsumi, M.; Kurosawa, T.; Ishii, H.; Watanabe, G.; Hashizume, D.; Sugiura, H.; Tani, Y.; Ise, T.; et al. Asymmetrically functionalized electron-deficient π-conjugated system for printed single-crystalline organic electronics. Adv. Sci. 2023, 10, 2207440. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Ju, D.; Kim, S. Implementation of artificial synapse using IGZO-based resistive switching device. Materials 2024, 17, 481. [Google Scholar] [CrossRef]
- Kwon, C.; Kang, D. Overlay-ML: Unioning memory and storage space for on-device AI on mobile devices. Appl. Sci. 2024, 14, 3022. [Google Scholar] [CrossRef]
- D’Avenio, G.; Daniele, C.; Grigioni, M. Nanostructured medical devices: Regulatory perspective and current applications. Materials 2024, 17, 1787. [Google Scholar] [CrossRef]
- Park, J.; Shin, J.; Yoo, H. Heterostructure-based optoelectronic neuromorphic devices. Electronics 2024, 13, 1076. [Google Scholar] [CrossRef]
- Simons, K.; Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 2000, 1, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Vetter, I.R.; Wittinghofer, A. Signal transduction-The guanine nucleotide-binding switch in three dimensions. Science 2001, 294, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, K.N.; Iverson, T.M.; Maghlaoui, K.; Barber, J.; Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 2004, 303, 1831–1838. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.-R. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Ann. Rev. Plant Biol. 2015, 66, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K. Synthesis of a carbon nanobelt. Science 2017, 356, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Ikemoto, K.; Fukunaga, T.M.; Koretsune, T.; Arita, R.; Sato, S.; Isobe, H. Finite phenine nanotubes with periodic vacancy defects. Science 2019, 363, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, M.; Akiyama, M.; Yonezawa, Y.; Komaguchi, K.; Higashi, M.; Nozaki, K.; Okazoe, T. Electron in a cube: Synthesis and characterization of perfluorocubane as an electron acceptor. Science 2022, 377, 756–759. [Google Scholar] [CrossRef] [PubMed]
- Hirano, K. Copper-catalyzed electrophilic amination: An umpolung strategy for new C–N bond formations. Bull. Chem. Soc. Jpn. 2023, 96, 198–207. [Google Scholar] [CrossRef]
- Tsubaki, N.; Wang, Y.; Yang, G.; He, Y. Rational design of novel reaction pathways and tailor-made catalysts for value-added chemicals synthesis from CO2 hydrogenation. Bull. Chem. Soc. Jpn. 2023, 96, 291–302. [Google Scholar] [CrossRef]
- Kobayashi, T.; Sakurai, T.; Kumagai, N. Peripheral modification of tripodal aza-oxa-crown oxa-triquinoline. Bull. Chem. Soc. Jpn. 2023, 96, 1139–1143. [Google Scholar] [CrossRef]
- Wang, W.; Yu, L. Synthesis of indenones via persulfate promoted radical alkylation/cyclization of biaryl ynones with 1,4-dihydropyridines. Molecules 2024, 29, 458. [Google Scholar] [CrossRef] [PubMed]
- Scarpelli, R.; Bence, R.; Cano, N.C.H.; Procopio, A.; Wunderlin, D.; Nardi, M. A Review on the use of deep eutectic solvents in protection reactions. Molecules 2024, 29, 818. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Recent advances in π-stacking interaction-controlled asymmetric synthesis. Molecules 2024, 29, 1454. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, Y.; Miyabe, H. NHC-catalyzed reaction of aldehydes for C(sp2)–O bond formation. Catalysts 2024, 14, 219. [Google Scholar] [CrossRef]
- Tanaka, T. Synthesis of novel heteronanographenes via fold-in approach. Bull. Chem. Soc. Jpn. 2022, 95, 602–610. [Google Scholar] [CrossRef]
- Yoshino, S.; Iwase, A.; Yamaguchi, Y.; Suzuki, T.M.; Morikawa, T.; Kudo, A. Photocatalytic CO2 reduction using water as an electron donor under visible light irradiation by Z-scheme and photoelectrochemical systems over (CuGa)0.5ZnS2 in the presence of basic additives. J. Am. Chem. Soc. 2022, 144, 2323–2332. [Google Scholar] [CrossRef] [PubMed]
- Negishi, Y. Metal-nanocluster science and technology: My personal history and outlook. Phys. Chem. Chem. Phys. 2022, 24, 7569–7594. [Google Scholar] [CrossRef] [PubMed]
- Tanks, J.; Hiroi, T.; Tamura, K.; Naito, K. Tethering organic disulfides to layered silicates: A versatile strategy for photo-controllable dynamic chemistry and functionalization. Bull. Chem. Soc. Jpn. 2023, 96, 65–71. [Google Scholar] [CrossRef]
- Okamoto, K.; Imoto, H.; Naka, K. Silsesquioxane cage-fused siloxane rings as a novel class of inorganic-based host molecules. Bull. Chem. Soc. Jpn. 2023, 96, 84–89. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Ohkura, K.; Nishina, Y. Self-assembly strategies for graphene oxide/silica nanostructures: Synthesis and structural analysis. Bull. Chem. Soc. Jpn. 2023, 96, 113–119. [Google Scholar] [CrossRef]
- Minamihara, H.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Murakami, Y.; Matsumura, S.; Kumara, L.S.R.; Sakata, O.; Kawaguchi, S.; Kubota, Y.; et al. Continuous-flow chemical synthesis for sub-2 nm ultra-multielement alloy nanoparticles consisting of group IV to XV elements. J. Am. Chem. Soc. 2023, 145, 17136–17142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Bai, Q.; Wang, X.; Li, C.; Uyama, H.; Shen, Y. Preparation and mechanism investigation of walnut shell-based hierarchical porous carbon for supercapacitors. Bull. Chem. Soc. Jpn. 2023, 96, 190–197. [Google Scholar] [CrossRef]
- Teplonogova, M.A.; Kozlova, A.A.; Yapryntsev, A.D.; Baranchikov, A.E.; Ivanov, V.K. Synthesis and thermal decomposition of high-entropy layered rare earth hydroxychlorides. Molecules 2024, 29, 1634. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Li, Y.; Yu, J.; Deng, Z.; Liu, S.; Shi, X.; Tang, D.; Chen, X.; Zhang, L. Dragon’s blood-loaded mesoporous silica nanoparticles for rapid hemostasis and antibacterial activity. Molecules 2024, 29, 1888. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Morimoto, N.; Jiang, L.; Kawahara, S.; Noritomi, T.; Yokoyama, H.; Mayumi, K.; Ito, K. Tough hydrogels with rapid self-reinforcement. Science 2021, 372, 1078–1081. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, D.; Ubukata, T.; Seki, T. Unconventional approaches to light-promoted dynamic surface morphing on polymer films. Bull. Chem. Soc. Jpn. 2022, 95, 138–162. [Google Scholar] [CrossRef]
- Nishijima, A.; Kametani, Y.; Uemura, T. Reciprocal regulation between MOFs and polymers. Coord. Chem. Rev. 2022, 466, 214601. [Google Scholar] [CrossRef]
- Mori, H.; Yamada, Y.; Minagawa, Y.; Hasegawa, N.; Nishihara, Y. Effects of acyloxy groups in anthrabisthiadiazole-based semiconducting polymers on electronic properties, thin-film structure, and solar cell performance. Bull. Chem. Soc. Jpn. 2022, 95, 942–952. [Google Scholar] [CrossRef]
- Kato, K.; Seto, N.; Chida, K.; Yoshii, T.; Mizuno, M.; Nishihara, H.; Ohtani, S.; Ogoshi, T. Synthesis of hexa-aminated trinaphtho[3.3.3]propellane and its porous polymer solids with alkane adsorption properties. Bull. Chem. Soc. Jpn. 2022, 95, 1296–1302. [Google Scholar] [CrossRef]
- Watanabe, H.; Kamigaito, M. Direct radical copolymerizations of thioamides to generate vinyl polymers with degradable thioether bonds in the backbones. J. Am. Chem. Soc. 2023, 145, 10948–10953. [Google Scholar] [CrossRef]
- Hosokawa, S.; Nagao, A.; Hashimoto, Y.; Matsune, A.; Okazoe, T.; Suzuki, C.; Wada, H.; Kakiuchi, T.; Tsuda, A. Non-Isocyanate polyurethane synthesis by polycondensation of alkylene and arylene bis(fluoroalkyl) bis(carbonate)s with diamines. Bull. Chem. Soc. Jpn. 2023, 96, 663–670. [Google Scholar] [CrossRef]
- Bouzayani, B.; Sanromán, M.Á. Polymer-supported heterogeneous Fenton catalysts for the environmental remediation of wastewater. Molecules 2024, 29, 2188. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoteleb, K.M.A.; Wasfy, A.A.F.; El-Apasery, M.A. Novel disperse dyes based on enaminones: Synthesis, dyeing performance on polyester fabrics, and potential biological activities. Molecules 2024, 29, 2227. [Google Scholar] [CrossRef]
- Aldosari, S.M.; AlOtaibi, B.M.; Alblalaihid, K.S.; Aldoihi, S.A.; AlOgab, K.A.; Alsaleh, S.S.; Alshamary, D.O.; Alanazi, T.H.; Aldrees, S.D.; Alshammari, B.A. Mechanical recycling of carbon fiber-reinforced polymer in a circular economy. Polymers 2024, 16, 1363. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Kato, Y.; Higashiharaguchi, S.; Aratsu, K.; Isobe, A.; Saito, T.; Prabhu, D.D.; Kitamoto, Y.; Hollamby, M.J.; Smith, A.J.; et al. Self-assembled poly-catenanes from supramolecular toroidal building blocks. Nature 2020, 583, 400–405. [Google Scholar] [CrossRef]
- Baba, K.; Nagata, K.; Yajima, T.; Yoshimura, T. Synthesis, structures, and equilibrium reactions of La(III) and Ba(II) complexes with pyridine phosphonate pendant arms on a diaza-18-crown-6 ether. Bull. Chem. Soc. Jpn. 2022, 95, 466–475. [Google Scholar] [CrossRef]
- Oki, O.; Yamagishi, H.; Morisaki, Y.; Inoue, R.; Ogawa, K.; Miki, N.; Norikane, Y.; Sato, H.; Yamamoto, Y. Synchronous assembly of chiral skeletal single-crystalline microvessels. Science 2022, 377, 673–677. [Google Scholar] [CrossRef]
- Han, X.; Wang, S.; Liu, M.; Liu, L. A cucurbit[6]uril-based supramolecular assembly as a multifunctional material for the detection and removal of organic explosives and antibiotics. Bull. Chem. Soc. Jpn. 2022, 95, 1445–1452. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.D.; Ajayaghosh, A. Metallosupramolecular polymers: Current status and future prospects. Chem. Soc. Rev. 2023, 52, 8635–8650. [Google Scholar] [CrossRef]
- Kubota, R. Supramolecular–polymer composite hydrogels: From In Situ network observation to functional properties. Bull. Chem. Soc. Jpn. 2023, 96, 802–812. [Google Scholar] [CrossRef]
- Jansen, S.A.H.; Weyandt, E.; Aoki, T.; Akiyama, T.; Itoh, Y.; Vantomme, G.; Aida, T.; Meijer, E.W. Simulating assembly landscapes for comprehensive understanding of supramolecular polymer–solvent systems. J. Am. Chem. Soc. 2023, 145, 4231–4237. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wei, L.; He, C.; Yang, C.; Wu, W. Supramolecular annihilator with DPA parallelly arranged by multiple hydrogen-bonding interactions for enhanced triplet–triplet annihilation upconversion. Molecules 2024, 29, 2203. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Bao, J.; Zhang, Y.; Wang, L.; Zhang, Y.; Zhang, J.; Tang, J.; Zou, Q. Supramolecular nanoparticles of histone and hyaluronic acid for co-delivery of siRNA and photosensitizer in vitro. Int. J. Mol. Sci. 2024, 25, 5424. [Google Scholar] [CrossRef] [PubMed]
- Kuppadakkath, G.; Jayabhavan, S.S.; Damodaran, K.K. Supramolecular Gels Based on C3-symmetric amides: Application in anion-sensing and removal of dyes from water. Molecules 2024, 29, 2149. [Google Scholar] [CrossRef] [PubMed]
- Bennett, T.D.; Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat. Rev. Mater. 2018, 3, 431–440. [Google Scholar] [CrossRef]
- Gu, Y.; Zheng, J.-J.; Otake, K.; Shivanna, M.; Sakaki, S.; Yoshino, H.; Ohba, M.; Kawaguchi, S.; Wang, Y.; Li, F.; et al. Host–guest interaction modulation in porous coordination polymers for inverse selective CO2/C2H2 separation. Angew. Chem. Int. Ed. 2021, 60, 11688. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Zhang, G.; Yin, W.; Pang, H.; Xu, Q. Recent progress in Prussian blue/Prussian blue analogue-derived metallic compounds. Bull. Chem. Soc. Jpn. 2022, 95, 230–260. [Google Scholar] [CrossRef]
- Domoto, Y.; Fujita, M. Self-assembly of nanostructures with high complexity based on metal⋯unsaturated-bond coordination, Coordination. Chem. Rev. 2022, 466, 214605. [Google Scholar] [CrossRef]
- Yam, V.W.-W.; Cheng, Y.-H. Stimuli-responsive and switchable platinum(II) complexes and their applications in memory storage. Bull. Chem. Soc. Jpn. 2022, 95, 846–854. [Google Scholar] [CrossRef]
- Shivanna, M.; Otake, K.; Hiraide, S.; Fujikawa, T.; Wang, P.; Gu, Y.; Ashitani, H.; Kawaguchi, S.; Kubota, Y.; Miyahara, M.T.; et al. Crossover sorption of C2H2/CO2 and C2H6/C2H4 in soft porous coordination networks. Angew. Chem. Int. Ed. 2023, 62, e202308438. [Google Scholar] [CrossRef]
- Miles-Hobbs, A.M.; Pringle, P.G.; Woollins, J.D.; Good, D. Monofluorophos–metal gomplexes: Ripe for future discoveries in homogeneous catalysis. Molecules 2024, 29, 2368. [Google Scholar] [CrossRef] [PubMed]
- Plasseraud, L. Glycerol as ligand in metal complexes—A structural review. Crystals 2024, 14, 217. [Google Scholar] [CrossRef]
- Chiacchio, M.A.; Campisi, A.; Iannazzo, D.; Giofrè, S.V.; Legnani, L. Design of new Schiff bases and their heavy metal ion complexes for environmental applications: A molecular dynamics and density function theory study. Int. J. Mol. Sci. 2024, 25, 4159. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.A.; Dawson, G.; Keddie, N.S.; Kraus, H.; Milton, H.L.; Slawin, A.M.Z.; Wheatley, J.; Woollins, J.D. Thermal rearrangement of thiocarbonyl-stabilised triphenylphosphonium ylides leading to (Z)-1-diphenylphosphino-2-(phenylsulfenyl)alkenes and their coordination chemistry. Molecules 2024, 29, 221. [Google Scholar] [CrossRef] [PubMed]
- Hanamura, M.; Sawada, T.; Serizawa, T. In-paper self-assembly of cellulose oligomers for the preparation of all-cellulose functional paper. ACS Sustain. Chem. Eng. 2021, 9, 5684–5692. [Google Scholar] [CrossRef]
- Tamura, T.; Inoue, M.; Yoshimitsu, Y.; Hashimoto, I.; Ohashi, N.; Tsumura, K.; Suzuki, K.; Watanabe, T.; Hohsaka, T. Chemical synthesis and cell-free expression of thiazoline ring-bridged cyclic Peptides and their properties on biomembrane permeability. Bull. Chem. Soc. Jpn. 2022, 95, 359–366. [Google Scholar] [CrossRef]
- Sato, R.; Amao, Y. Curious effect of isotope-labelled substrate/Co-enzyme on catalytic Activity of CO2 reduction by formate dehydrogenase from Candida boidinii. Bull. Chem. Soc. Jpn. 2022, 95, 556–558. [Google Scholar] [CrossRef]
- Inaba, H.; Sueki, Y.; Ichikawa, M.; Kabir, A.M.R.; Iwasaki, T.; Shigematsu, H.; Kakugo, A.; Sada, K.; Tsukazaki, T.; Matsuura, K. Generation of stable microtubule superstructures by binding of peptide-fused tetrameric proteins to inside and outside. Sci. Adv. 2022, 8, eabq3817. [Google Scholar] [CrossRef]
- Sahayasheela, V.J.; Yu, Z.; Hirose, Y.; Pandian, G.N.; Bando, T.; Sugiyama, H. Inhibition of GLI-mediated transcription by cyclic pyrrole-imidazole polyamide in cancer stem cells. Bull. Chem. Soc. Jpn. 2022, 95, 693–699. [Google Scholar] [CrossRef]
- Negi, S.; Hamori, M.; Sato, A.; Shimizu, K.; Kawahara-Nakagawa, Y.; Manabe, T.; Shibata, N.; Kitagishi, H.; Mashimo, M.; Sugiura, Y. Transpeptidation reaction mediated by ligand- and metal cofactor-substituted sortase A from Staphylococcus aureus. Bull. Chem. Soc. Jpn. 2022, 95, 1025–1031. [Google Scholar] [CrossRef]
- Inaba, H.; Hori, Y.; Kabir, A.M.R.; Kakugo, A.; Sada, K.; Matsuura, K. Construction of silver nanoparticles inside microtubules using Tau-derived peptide ligated with silver-binding peptide. Bull. Chem. Soc. Jpn. 2023, 96, 1082–1087. [Google Scholar] [CrossRef]
- Rossi-Gendron, C.; Fakih, F.E.; Bourdon, L.; Nakazawa, K.; Finkel, J.; Triomphe, N.; Chocron, L.; Endo, M.; Sugiyama, H.; Bellot, C.; et al. Isothermal self-assembly of multicomponent and evolutive DNA nanostructures. Nat. Nanotechnol. 2023, 18, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, S.; Sathish, C.I.; Adams, T.J.; Kan, S.; Liang, M.; Vinu, A. A dual protective drug delivery system based on lipid coated core-shell mesoporous silica for efficient delivery of cabazitaxel to prostate cancer cells. Bull. Chem. Soc. Jpn. 2023, 96, 1188–1195. [Google Scholar] [CrossRef]
- Scheim, D.E.; Parry, P.I.; Rabbolini, D.J.; Aldous, C.; Yagisawa, M.; Clancy, R.; Borody, T.J.; Hoy, W.E. Back to the basics of SARS-CoV-2 biochemistry: Microvascular occlusive glycan bindings govern its morbidities and inform therapeutic responses. Viruses 2024, 16, 647. [Google Scholar] [CrossRef]
- Maeda, K.; Takeiri, F.; Kobayashi, G.; Matsuishi, S.; Ogino, H.; Ida, S.; Mori, T.; Uchimoto, Y.; Tanabe, S.; Hasegawa, T.; et al. Recent progress on mixed-anion materials for energy applications. Bull. Chem. Soc. Jpn. 2022, 95, 26–37. [Google Scholar] [CrossRef]
- Gilbert, P.U.P.A.; Bergmann, K.D.; Boekelheide, N.; Tambutté, S.; Mass, T.; Marin, F.; Adkins, J.F.; Erez, J.; Gilbert, B.; Knutson, V.; et al. Biomineralization: Integrating mechanism and evolutionary history. Sci. Adv. 2022, 8, eabl9653. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, E.; Hara, T.; Permana, Y.; Kojima, T.; Ichikuni, N.; Shimazu, S. Creation of highly reducible CuO species by high-temperature calcination of a Cu-Al layered double hydroxide: Selective hydrogenation of furfural into furfuryl alcohol with formic acid. Bull. Chem. Soc. Jpn. 2022, 95, 121–128. [Google Scholar] [CrossRef]
- Antonova, I.V.; Seleznev, V.A.; Nebogatikova, N.A.; Ivanov, A.I.; Voloshin, B.V.; Volodin, V.A.; Kurkina, I.I. Thin V2O5 films synthesized by plasma-enhanced atomic layer deposition for memristive applications. Phys. Chem. Chem. Phys. 2023, 25, 32132–32141. [Google Scholar] [CrossRef]
- Adschiri, T.; Takami, S.; Umetsu, M.; Ohara, S.; Naka, T.; Minami, K.; Hojo, D.; Togashi, T.; Arita, T.; Taguchi, M.; et al. Supercritical hydrothermal reactions for material synthesis. Bull. Chem. Soc. Jpn. 2023, 96, 133–147. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, W.; Li, S.; Yan, X.; Wu, S.; Qiu, H.; Guo, S.; Zhu, B. A comprehensive review on combinatorial film via high-throughput techniques. Materials 2023, 16, 6696. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Yamamura, Y. Reticular-chemical approach to soft-matter self-assembly: Why are srs and noh nets realized in thermotropics? Bull. Chem. Soc. Jpn. 2023, 96, 607–613. [Google Scholar] [CrossRef]
- Murayama, K.; Okita, H.; Asanuma, H. Highly functional acyclic xeno nucleic acids. Bull. Chem. Soc. Jpn. 2023, 96, 1179–1187. [Google Scholar] [CrossRef]
- Ariga, K.; Akakabe, S.; Sekiguchi, R.; Thomas, M.I.; Takeoka, Y.; Rikukawa, M.; Yoshizawa-Fujita, M. Boosting the ionic conductivity of pyrrolidinium-based ionic plastic crystals by LLZO fillers. ACS Omega 2024, 9, 22203–22212. [Google Scholar] [CrossRef] [PubMed]
- Shpotyuk, O.; Lukáčová Bujňáková, Z.; Baláž, P.; Kovalskiy, A.; Sznajder, M.; Cebulski, J.; Shpotyuk, Y.; Demchenko, P.; Syvorotka, I. Equimolar As4S4/Fe3O4 nanocomposites fabricated by dry and wet mechanochemistry: Some insights on the magnetic–fluorescent functionalization of an old drug. Materials 2024, 17, 1726. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Mimura, Y.; Motomura, Y.; Ikemura, R.; Shizuma, M.; Kitamatsu, M. Controlling excimer-origin circularly polarized luminescence of bipyrenyl-arginine peptides by cyclodextrin in water. Bull. Chem. Soc. Jpn. 2023, 96, 268–273. [Google Scholar] [CrossRef]
- Mieda, E.; Morishima, Y.; Watanabe, T.; Miyake, H.; Shinoda, S. Synthesis and luminescence properties of self-assembled lanthanide complexes with an EDTA-type chelating ligand in aqueous ethanol solution. Bull. Chem. Soc. Jpn. 2023, 96, 538–544. [Google Scholar] [CrossRef]
- Nguyen, L.T.B.; Abe, M. Development of photoremovable protecting groups responsive to near-infrared two-photon excitation and their application to drug delivery research. Bull. Chem. Soc. Jpn. 2023, 96, 899–906. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Wang, Z.; Zeng, Y. Halogen bond catalysis: A physical chemistry perspective. J. Phys. Chem. A 2024, 128, 507–527. [Google Scholar] [CrossRef]
- Salahuddin, B.; Masud, M.K.; Aziz, S.; Liu, C.-H.; Amiralian, N.; Ashok, A.; Hossain, S.M.A.; Park, H.; Wahab, M.A.; Amin, M.A.; et al. κ-Carrageenan gel modified mesoporous gold chronocoulometric sensor for ultrasensitive detection of microRNA. Bull. Chem. Soc. Jpn. 2022, 95, 198–207. [Google Scholar] [CrossRef]
- Murata, T.; Minami, K.; Yamazaki, T.; Sato, T.; Koinuma, H.; Ariga, K.; Matsuki, N. Nanometer-flat DNA-featured thin films prepared via laser molecular beam deposition under high-vacuum for selective methanol sensing. Bull. Chem. Soc. Jpn. 2023, 96, 29–34. [Google Scholar] [CrossRef]
- Kalyana Sundaram, S.d.; Hossain, M.M.; Rezki, M.; Ariga, K.; Tsujimura, S. Enzyme cascade electrode reactions with nanomaterials and their applicability towards biosensor and biofuel cells. Biosensors 2023, 13, 1018. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Hu, K.; Song, Z.; An, R.; Liang, X. Nanopore sequencing of short dsDNA after elongation by combination of ligation and PEAR. Bull. Chem. Soc. Jpn. 2023, 96, 785–792. [Google Scholar] [CrossRef]
- Yao, D.; Xia, L.; Li, G. Research progress on the application of covalent organic framework nanozymes in analytical chemistry. Biosensors 2024, 14, 163. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Yu, J.; Chen, F.; Li, R.; Xia, B.Y.; Xu, Z.-L. Visualizing the interfacial chemistry in multivalent metal anodes by transmission electron microscopy. Small Methods 2023, 7, 2300561. [Google Scholar] [CrossRef] [PubMed]
- Miadonye, A.; Amadu, M. Theoretical interpretation of pH and salinity effect on oil-in-water emulsion stability based on interfacial chemistry and implications for produced water demulsification. Processes 2023, 11, 2470. [Google Scholar] [CrossRef]
- Kong, Y.; Ma, S.; Zhou, F. Bioinspired interfacial friction control: From chemistry to structures to mechanics. Biomimetics 2024, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Geng, J.; Zhang, T.; Jiang, Z.; Fang, H.; Hua, W.; Li, F. Interfacial chemistry regulation using functional frameworks for stable metal batteries. J. Mater. Chem. A 2024, 12, 5080–5099. [Google Scholar] [CrossRef]
- Lu, Y.; Ni, Y.; Chen, J. Reliable organic carbonyl electrode materials enabled by electrolyte and interfacial chemistry regulation. Acc. Chem. Res. 2024, 57, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Tokoro, H.; Nakabayashi, K.; Nagashima, S.; Song, Q.; Yoshikiyo, M.; Ohkoshi, S. Optical properties of epsilon iron oxide nanoparticles in the millimeter- and terahertz-wave regions. Bull. Chem. Soc. Jpn. 2022, 95, 538–552. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nakano, S.; Shigeta, Y. Dynamical interaction analysis of proteins by a random forest-fragment molecular orbital (RF-FMO) method and application to Src tyrosine kinase. Bull. Chem. Soc. Jpn. 2023, 96, 42–47. [Google Scholar] [CrossRef]
- Yasui, K.; Hamamoto, K. Possibility of high ionic conductivity and high fracture toughness in all-dislocation-ceramics. Materials 2024, 17, 428. [Google Scholar] [CrossRef] [PubMed]
- Ii, S. Quantitative characterization by transmission electron microscopy and its application to interfacial phenomena in crystalline materials. Materials 2024, 17, 578. [Google Scholar] [CrossRef] [PubMed]
- Hieda, M.; Tsujimura, K.; Kinoshita, M.; Matsumori, N. Formation of a tight complex between amphidinol and sterols in lipid bilayers revealed by short-range energy transfer. Bull. Chem. Soc. Jpn. 2022, 95, 1753–1759. [Google Scholar] [CrossRef]
- Imahori, H. Molecular photoinduced charge separation: Fundamentals and application. Bull. Chem. Soc. Jpn. 2023, 96, 339–352. [Google Scholar] [CrossRef]
- Kuzume, A.; Yamamoto, K. Dendrimer-induced synthesis of subnano materials and their characterization: Establishing atom hybrid science. Bull. Chem. Soc. Jpn. 2024, 97, uoae022. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Pou, P.; Abe, M.; Jelinek, P.; Pérez, R.; Morita, S.; Custance, Ó. Chemical identification of individual surface atoms by atomic force microscopy. Nature 2007, 446, 64–67. [Google Scholar] [CrossRef]
- Kawai, S.; Krejcí, O.; Nishiuchi, T.; Sahara, K.; Kodama, T.; Pawlak, R.; Meyer, E.; Kubo, T.; Foster, A.S. Three-dimensional graphene nanoribbons as a framework for molecular assembly and local probe chemistry. Sci. Adv. 2020, 6, eaay8913. [Google Scholar] [CrossRef]
- Seo, D.; Seong, S.; Kim, H.; Oh, H.S.; Lee, J.H.; Kim, H.; Kim, Y.O.; Maeda, S.; Chikami, S.; Hayashi, T.; et al. Molecular self-assembly and adsorption structure of 2,2′-dipyrimidyl dDisulfides on Au(111) surfaces. Molecules 2024, 29, 846. [Google Scholar] [CrossRef]
- Fedorov, A.Y.; Bukhtiyarov, A.V.; Panafidin, M.A.; Prosvirin, I.P.; Zubavichus, Y.V.; Bukhtiyarov, V.I. Thermally Induced surface structure and morphology evolution in bimetallic Pt-Au/HOPG nanoparticles as probed using XPS and STM. Nanomaterials 2024, 14, 57. [Google Scholar] [CrossRef]
- Terabe, K.; Hasegawa, T.; Nakayama, T.; Aono, M. Quantized conductance atomic switch. Nature 2005, 433, 47–50. [Google Scholar] [CrossRef]
- Kimura, K.; Miwa, K.; Imada, H.; Imai-Imada, M.; Kawahara, S.; Takeya, J.; Kawai, M.; Galperin, M.; Kim, Y. Selective triplet exciton formation in a single molecule. Nature 2019, 570, 210–213. [Google Scholar] [CrossRef]
- Hashikawa, Y.; Murata, Y. Water in fullerenes. Bull. Chem. Soc. Jpn. 2023, 96, 943–967. [Google Scholar] [CrossRef]
- Matsuno, T.; Isobe, H. Trapped yet Free inside the Tube: Supramolecular Chemistry of Molecular Peapods. Bull. Chem. Soc. Jpn. 2023, 96, 406–419. [Google Scholar] [CrossRef]
- Ariga, K. Nanoarchitectonics: What’s coming next after nanotechnology? Nanoscale Horiz. 2021, 6, 364–378. [Google Scholar] [CrossRef]
- Feynman, R.P. There’s plenty of room at the bottom. Calif. Inst. Technol. J. Eng. Sci. 1960, 4, 23–36. [Google Scholar]
- Roukes, M. Plenty of room, indeed. Sci. Am. 2001, 285, 48–57. [Google Scholar] [CrossRef]
- Ariga, K.; Minami, K.; Ebara, M.; Nakanishi, J. What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polym. J. 2016, 48, 371–389. [Google Scholar] [CrossRef]
- Ariga, K.; Aono, M. Nanoarchitectonics. Jpn. J. Appl. Phys. 2016, 55, 1102A6. [Google Scholar] [CrossRef]
- Ariga, K.; Ji, Q.; Nakanishi, W.; Hill, J.P.; Aono, M. Nanoarchitectonics: A new materials horizon for nanotechnology. Mater. Horiz. 2015, 2, 406–413. [Google Scholar] [CrossRef]
- Eftekhari, K.; Parakhonskiy, B.V.; Grigoriev, D.; Skirtach, A.G. Advances in nanoarchitectonics: A review of “static” and “dynamic” particle assembly methods. Materials 2024, 17, 1051. [Google Scholar] [CrossRef]
- Shimada, S.; Miyagishi, H.V.; Masai, H.; Masui, Y.; Terao, J. Solvatofluorochromic contrast with supramolecular stereoisomers using linked rotaxane structures to investigate local solvation in excited donor-bridge-acceptor systems. Bull. Chem. Soc. Jpn. 2022, 95, 163–168. [Google Scholar] [CrossRef]
- Hamada, K.; Shimoyama, D.; Hirao, T.; Haino, T. Chiral supramolecular polymer formed via host-guest complexation of an octaphosphonate biscavitand and a chiral diammonium guest. Bull. Chem. Soc. Jpn. 2022, 95, 621–627. [Google Scholar] [CrossRef]
- Miyamoto, R.; Kitagawa, D.; Kobatake, S. Fatigue resistance of photochromic Diarylethene in the presence of cyclodextrins with different pore sizes. Bull. Chem. Soc. Jpn. 2022, 95, 639–645. [Google Scholar] [CrossRef]
- Masai, H. Controlling excited-state dynamics and chemical reactivities of platinum acetylide complexes via self-threading ligands with permethylated α-cyclodextrin. Bull. Chem. Soc. Jpn. 2023, 96, 1196–1205. [Google Scholar] [CrossRef]
- Kadokawa, J. A mini-review: Fabrication of polysaccharide composite materials based on self-assembled chitin nanofibers. Materials 2024, 17, 1898. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Iqbal, M.; Lin, J.; Luo, X.; Jiang, B.; Malgras, V.; Wu, K.C.-W.; Kim, K.; Yamauchi, Y. Electrochemical deposition: An advanced approach for templated synthesis of nanoporous metal architectures. Acc. Chem. Res. 2018, 51, 1764–1773. [Google Scholar] [CrossRef] [PubMed]
- Kamiyama, A.; Kubota, K.; Igarashi, D.; Youn, Y.; Tateyama, Y.; Ando, H.; Gotoh, K.; Komaba, S. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem. Int. Ed. 2021, 60, 5114–5120. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.-Z.; Lv, W.; Yang, Q.-H.; Nishihara, H. Aligned macroporous monoliths by ice-templating. Bull. Chem. Soc. Jpn. 2022, 95, 611–620. [Google Scholar] [CrossRef]
- Song, Y.; Song, X.; Wang, X.; Bai, J.; Cheng, F.; Lin, C.; Wang, X.; Zhang, H.; Sun, J.; Zhao, T.; et al. Two-dimensional metal–organic framework superstructures from ice-templated self-assembly. J. Am. Chem. Soc. 2022, 144, 17457–17467. [Google Scholar] [CrossRef]
- Matsune, H.; Ikemizu, R.; Shiomori, K.; Muraoka, E.; Yamamoto, T.; Kishida, M. Colloidal trehalose nanoparticles: Sacrifice templates for hollow silica nanospheres. Bull. Chem. Soc. Jpn. 2023, 96, 813–815. [Google Scholar] [CrossRef]
- Larasati, L.; Lestari, W.W.; Firdaus, M. Dual-action Pt(IV) prodrugs and targeted delivery in metal-organic frameworks: Overcoming cisplatin resistance and improving anticancer activity. Bull. Chem. Soc. Jpn. 2022, 95, 1561–1577. [Google Scholar] [CrossRef]
- Dai, S.; Kajiwara, T.; Ikeda, M.; Romero-Muñiz, I.; Patriarche, G.; Platero-Prats, A.E.; Vimont, A.; Daturi, M.; Tissot, A.; Xu, Q.; et al. Ultrasmall copper nanoclusters in zirconium metal-organic frameworks for the photoreduction of CO2. Angew. Chem. Int. Ed. 2022, 61, e202211848. [Google Scholar] [CrossRef]
- Horike, S. Glass and liquid chemistry of coordination polymers and MOFs. Bull. Chem. Soc. Jpn. 2023, 96, 887–898. [Google Scholar] [CrossRef]
- Mori, K.; Fujita, T.; Hata, H.; Kim, H.-J.; Nakano, T.; Yamashita, H. Surface chemical engineering of a metal 3D-printed flow reactor using a metal–organic framework for liquid-phase catalytic H2 production from hydrogen storage materials. ACS Appl. Mater. Interfaces 2023, 15, 51079–51088. [Google Scholar] [CrossRef]
- Li, J.; Yu, Z.; Zhang, J.; Liu, C.; Zhang, Q.; Shi, H.; Wu, D. Rapid, massive, and green synthesis of polyoxometalate-based metal–organic frameworks to fabricate POMOF/PAN nanofiber membranes for selective filtration of cationic dyes. Molecules 2024, 29, 1493. [Google Scholar] [CrossRef]
- EL-Mahdy, A.F.M.; Omr, H.A.E.; ALOthman, Z.A.; Lee, H. Design and synthesis of metal-free ethene-based covalent organic framework photocatalysts for efficient, selective, and long-term stable CO2 conversion into methane. J. Colloid Interface Sci. 2023, 633, 775–785. [Google Scholar] [CrossRef]
- Sun, K.; Silveira, O.J.; Ma, Y.; Hasegawa, Y.; Matsumoto, M.; Kera, S.; Krejčí, O.; Foster, A.S.; Kawai, S. On-surface synthesis of disilabenzene-bridged covalent organic frameworks. Nat. Chem. 2023, 15, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Chen, J.; Liu, J.; Ihara, H.; Qiu, H. Synthesis strategies of covalent organic frameworks: An overview from nonconventional heating methods and reaction media. Green Energy Environ. 2023, 8, 1596–1618. [Google Scholar] [CrossRef]
- Ma, B.; Zhong, L.; Huang, S.; Xiao, M.; Wang, S.; Han, D.; Meng, Y. Covalent organic framework enhanced solid polymer electrolyte for lithium metal batteries. Molecules 2024, 29, 1759. [Google Scholar] [CrossRef]
- Hamieh, T. London dispersive and Lewis acid-base surface energy of 2D single-crystalline and polycrystalline covalent organic frameworks. Crystals 2024, 14, 148. [Google Scholar] [CrossRef]
- Crudden, C.; Horton, J.; Ebralidze, I.; Zenkina, O.V.; McLean, A.B.; Drevniok, B.; She, Z.; Kraatz, H.-B.; Mosey, N.J.; Seki, T.; et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 2014, 6, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Nakagawa, M.; Ito, T.; Imura, Y.; Wang, K.-H.; Kawai, T. Chiral transcription from chiral Au nanowires to self-assembled monolayers of achiral azobenzene derivatives. Bull. Chem. Soc. Jpn. 2022, 95, 1006–1010. [Google Scholar] [CrossRef]
- Das, S.; Ishiwari, F.; Shoji, Y.; Fukushima, T.; Zharnikov, M. Triptycene-based self-assembled monolayer as a template for successive click reactions. J. Phys. Chem. C 2023, 127, 5178–5185. [Google Scholar] [CrossRef]
- Nakano, M.; Matsui, H.; Nakagawa, S.; You, J.; Shahiduzzaman, M.; Karakawa, M.; Taima, T. Control of the resistive switching voltage and reduction of the high-resistive-state current of zinc oxide by self-assembled monolayers. Chem. Commun. 2023, 59, 5761–5764. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gadenne, V.; Patrone, L.; Raimundo, J.-M. Self-assembled monolayers of push–pull chromophores as active layers and their applications. Molecules 2024, 29, 559. [Google Scholar] [CrossRef]
- Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J.P. 25th Anniversary article: What can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv. Mater. 2013, 25, 6477–6512. [Google Scholar] [CrossRef] [PubMed]
- Adachi, J.; Naito, M.; Sugiura, S.; Le, N.H.-T.; Nishimura, S.; Huang, S.; Suzuki, S.; Kawamorita, S.; Komiya, N.; Hill, J.P.; et al. Coordination amphiphile: Design of planar-coordinated platinum complexes for monolayer formation at an air-water interface based on ligand characteristics and molecular topology. Bull. Chem. Soc. Jpn. 2022, 95, 889–897. [Google Scholar] [CrossRef]
- Negi, S.; Hamori, M.; Kitagishi, H.; Kano, K. Highly ordered monolayers of an optically active amphiphilic Pyrene derivative at the air–water interface. Bull. Chem. Soc. Jpn. 2022, 95, 1537–1545. [Google Scholar] [CrossRef]
- Oliveira, O.N., Jr.; Caseli, L.; Ariga, K. The past and the future of Langmuir and Langmuir–Blodgett films. Chem. Rev. 2022, 122, 6459–6513. [Google Scholar] [CrossRef]
- Negi, S.; Hamori, M.; Kubo, Y.; Kitagishi, H.; Kano, K. Monolayer formation and chiral recognition of binaphthyl amphiphiles at the air–water interface. Bull. Chem. Soc. Jpn. 2023, 96, 48–56. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N. Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv. Mater. 2006, 18, 3203–3224. [Google Scholar] [CrossRef]
- Qiu, X.; Li, Z.; Li, X.; Zhang, Z. Flame retardant coatings prepared using layer by layer assembly: A review. Chem. Eng. J. 2018, 334, 108–122. [Google Scholar] [CrossRef]
- Guzmán, E.; Ortega, F.; Rubio, R.G. Layer-by-layer nanoassemblies for vaccination purposes. Pharmaceutics 2023, 15, 1449. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, S. Adenosine encapsulation and characterization through layer-by-layer assembly of hydroxypropyl-β-cyclodextrin and whey protein isolate as wall materials. Molecules 2024, 29, 2046. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.M.; Mendes, J.P.; Dias, B.; Almeida, J.M.M.M.d.; Coelho, L.C.C. Optical pH sensor based on a long-period fiber grating coated with a polymeric Layer-by-layer electrostatic self-assembled nanofilm. Sensors 2024, 24, 1662. [Google Scholar] [CrossRef]
- Ariga, K.; Li, J.; Fei, J.; Ji, Q.; Hill, J.P. Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv. Mater. 2016, 28, 1251–1286. [Google Scholar] [CrossRef]
- Ariga, K.; Jia, X.; Song, J.; Hill, J.P.; Leong, D.T.; Jia, Y.; Li, J. Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization. Angew. Chem. Int. Ed. 2020, 59, 15424–15446. [Google Scholar] [CrossRef]
- Ariga, K.; Nishikawa, M.; Mori, T.; Takeya, J.; Shrestha, L.K.; Hill, J.P. Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater. 2019, 20, 51–95. [Google Scholar] [CrossRef]
- Aono, M.; Ariga, K. The way to nanoarchitectonics and the way of nanoarchitectonics. Adv. Mater. 2016, 28, 989–992. [Google Scholar] [CrossRef]
- Ariga, K. Nanoarchitectonics: A navigator from materials to life. Mater. Chem. Front. 2017, 1, 208–211. [Google Scholar] [CrossRef]
- Ariga, K.; Yamauchi, Y. Nanoarchitectonics from atom to life. Chem. Asian J. 2020, 15, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, W.; Minami, K.; Shrestha, L.K.; Ji, Q.; Hill, J.P.; Ariga, K. Bioactive nanocarbon assemblies: Nanoarchitectonics and applications. Nano Today 2014, 9, 378–394. [Google Scholar] [CrossRef]
- Nguyen, N.T.K.; Lebastard, C.; Wilmet, M.; Dumait, N.; Renaud, A.; Cordier, S.; Ohashi, N.; Uchikoshi, T.; Fabien Grasset, F. A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6): Inorganic 0D and 2D powders and films. Sci. Technol. Adv. Mater. 2022, 23, 547–578. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yang, J.; Asakura, Y.; Shuai, Q.; Yamauchi, Y. Nanoarchitectonics of hollow covalent organic frameworks: Synthesis and applications. ACS Nano 2023, 17, 8918–8934. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Li, Z.; Geng, X.; Lei, Z.; Karakoti, A.; Wu, T.; Kumar, P.; Yi, J.; Vinu, A. Emerging trends of carbon-based quantum dots: Nanoarchitectonics and applications. Small 2023, 19, 2207181. [Google Scholar] [CrossRef]
- Han, M.; Kani, K.; Na, J.; Kim, J.; Bando, Y.; Ahamad, T.; Alshehri, S.M.; Yamauchi, Y. Retrospect and prospect: Nanoarchitectonics of platinum-group-metal-based materials. Adv. Funct. Mater. 2023, 33, 2301831. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Ruiz-Garci, C. MXenes vs. clays: Emerging and traditional 2D layered nanoarchitectonics. Nanoscale 2023, 15, 18959–18979. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.-C.; Lin, J.-Y.; Chen, W.-C.; Gamal Mohamed, M.; Huang, C.-F.; Chen, J.-H.; Kuo, S.-W. High-thermal stable epoxy resin through blending nanoarchitectonics with double-decker-shaped polyhedral silsesquioxane-functionalized benzoxazine derivatives. Polymers 2024, 16, 112. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, M.; Shrestha, L.K.; Mori, T.; Ji, Q.; Hill, J.P.; Ariga, K. Amphiphile nanoarchitectonics: From basic physical chemistry to advanced applications. Phys. Chem. Chem. Phys. 2013, 15, 10580–10611. [Google Scholar] [CrossRef]
- Ariga, K.; Shionoya, M. Nanoarchitectonics for coordination asymmetry and related chemistry. Bull. Chem. Soc. Jpn. 2021, 94, 839–859. [Google Scholar] [CrossRef]
- Gupta, D.; Varghese, B.S.; Suresh, M.; Panwar, C.; Gupta, T.K. Nanoarchitectonics: Functional nanomaterials and nanostructures—A review. J. Nanopart. Res. 2022, 24, 196. [Google Scholar] [CrossRef]
- Cao, L.; Huang, Y.; Parakhonskiy, B.; Skirtach, A.G. Nanoarchitectonics beyond perfect order—Not quite perfect but quite useful. Nanoscale 2022, 14, 15964–16002. [Google Scholar] [CrossRef]
- Pahal, S.; Boranna, R.; Tripathy, A.; Goudar, V.S.; Veetil, V.T.; Kurapati, R.; Prashanth, G.R.; Vemula, P.K. Nanoarchitectonics for free-standing polyelectrolyte multilayers films: Exploring the flipped surfaces. ChemNanoMat 2023, 9, e202200462. [Google Scholar] [CrossRef]
- Datta, K.K.R. Exploringthe self-cleaning facets of fluorinated graphene nanoarchitectonics: Progress and perspectives. ChemNanoMat 2023, 9, e202300135. [Google Scholar] [CrossRef]
- Jadhav, R.W.; Nadimetla, D.N.; Gawade, V.K.; Jones, L.A.; Bhosale, S.V. Mimicking the natural world with nanoarchitectonics for self-assembled superstructures. Chem. Rec. 2023, 23, e202200180. [Google Scholar] [CrossRef]
- Nayak, A.; Unayama, S.; Tai, S.; Tsuruoka, T.; Waser, R.; Aono, M.; Valov, I.; Hasegawa, T. Nanoarchitectonics for controlling the number of dopant atoms in solid electrolyte nanodots. Adv. Mater. 2018, 30, 1703261. [Google Scholar] [CrossRef]
- Eguchi, M.; Nugraha, A.S.; Rowan, A.E.; Shapter, J.; Yamauchi, Y. Adsorchromism: Molecular nanoarchitectonics at 2D nanosheets—Old chemistry for advanced chromism. Adv. Sci. 2021, 8, 2100539. [Google Scholar] [CrossRef]
- Yao, B.; Sun, H.; He, Y.; Wang, S.; Liu, X. Recent advances in the photoreactions triggered by porphyrin-based triplet–triplet annihilation upconversion systems: Molecular innovations and nanoarchitectonics. Int. J. Mol. Sci. 2022, 23, 8041. [Google Scholar] [CrossRef]
- Hikichi, R.; Tokura, Y.; Igarashi, Y.; Imai, H.; Oaki, Y. Fluorine-free substrate-independent superhydrophobic Coatings by nanoarchitectonics of polydispersed 2D materials. Bull. Chem. Soc. Jpn. 2023, 96, 766–774. [Google Scholar] [CrossRef]
- Parbat, D.; Jana, N.; Dhar, M.; Manna, U. Reactive multilayer coating as versatile nanoarchitectonics for customizing various bioinspired liquid wettabilities. ACS Appl. Mater. Interfaces 2023, 15, 25232–25247. [Google Scholar] [CrossRef]
- Li, M.; Wu, Z.; Tian, Y.; Pan, F.; Gould, T.; Zhang, S. Nanoarchitectonics of two-dimensional electrochromic Materials: Achievements and future challenges. Adv. Mater. Technol. 2023, 8, 2200917. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P. CsPbX3 (X = Cl, Br, and I) Nanocrystals in substrates toward stable photoluminescence: Nanoarchitectonics, properties, and applications. Langmuir 2023, 39, 11188–11212. [Google Scholar] [CrossRef]
- Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull. Chem. Soc. Jpn. 2017, 90, 967–1004. [Google Scholar] [CrossRef]
- Jia, Y.; Yan, X.; Li, J. Schiff base mediated dipeptide assembly toward nanoarchitectonics. Angew. Chem. Int. Ed. 2022, 61, e202207752. [Google Scholar] [CrossRef]
- Shen, X.; Song, J.; Sevencan, C.; Leong, D.T.; Ariga, K. Bio-interactive nanoarchitectonics with two-dimensional materials and environments. Sci. Technol. Adv. Mater. 2022, 23, 199–224. [Google Scholar] [CrossRef]
- Chang, R.; Zhao, L.; Xing, R.; Li, J.; Yan, X. Functional chromopeptide nanoarchitectonics: Molecular design, self-assembly and biological applications. Chem. Soc. Rev. 2023, 52, 2688–2712. [Google Scholar] [CrossRef]
- Wu, M.; Liu, J.; Wang, X.; Zeng, H. Recent advances in antimicrobial surfaces via tunable molecular interactions: Nanoarchitectonics and bioengineering applications. Curr. Opin. Colloid Interface Sci. 2023, 66, 101707. [Google Scholar] [CrossRef]
- Agamendran, N.; Uddin, M.; Yesupatham, M.S.; Shanmugam, M.; Augustin, A.; Kundu, T.; Kandasamy, R.; Sasaki, K.; Sekar, K. Nanoarchitectonics design strategy of metal–organic framework and bio-metal–organic framework composites for advanced wastewater treatment through adsorption. Langmuir 2024, 40, 3320–3334. [Google Scholar] [CrossRef]
- Javed, A.; Kong, N.; Mathesh, M.; Duan, W.; Yang, W. Nanoarchitectonics-based electrochemical aptasensors for highly efficient exosome detection. Sci. Technol. Adv. Mater. 2024, 25, 2345041. [Google Scholar] [CrossRef]
- Zhang, X.; Matras-Postolek, K.; Yang, P.; Jiang, S.P. Z-scheme WOx/Cu-g-C3N4 heterojunction nanoarchitectonics with promoted charge separation and transfer towards efficient full solar-spectrum photocatalysis. J. Colloid Interface Sci. 2023, 636, 646–656. [Google Scholar] [CrossRef]
- Sadanandan, A.M.; Yang, J.-H.; Devtade, V.; Singh, G.; Dharmarajan, N.P.; Fawaz, M.; Lee, J.M.; Tavakkoli, E.; Jeon, C.-H.; Kumar, P.; et al. Carbon nitride based nanoarchitectonics for nature-inspired photocatalytic CO2 reduction. Prog. Mater. Sci. 2024, 142, 101242. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, J.; Li, Z.; Shang, Y.; Li, Q. Nanoarchitectonics of CoMoO4/NiS catalyst with starry flower morphology for carrier transport path investigation with advanced and photocatalytic hydrogen evolution performance. Int. J. Hydrogen Energy 2024, 59, 937–946. [Google Scholar] [CrossRef]
- Thangamani, K.S.; Suba, V.; Radha, V.P.; Pradheesh, G.; Prabakaran, M. Investigation on nanoarchitectonics of PJBAC/TiO2 for photocatalytic and antimicrobial performance. J. Water Chem. Technol. 2024, 46, 132–148. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, G.; Wang, Q.; Meng, F.; Jia, H.; Jiang, W.; Ji, Q. Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chin. Chem. Lett. 2024, 35, 109193. [Google Scholar] [CrossRef]
- Yuan, Y.; He, J.; Dong, W.; Xie, X.; Liu, Y.; Wang, Z. Nanoarchitectonics of CuO/α-Fe2O3/BiVO4 photocatalysts with double heterojunctions on PVDF membranes: Investigating sulfadiazine removal and antifouling properties. Chem. Eng. J. 2024, 487, 150445. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, X.; Li, Z.; Deshpande, S.; Fawaz, M.; Dharmarajan, N.P.; Lin, C.-H.; Lei, Z.; Hu, L.; Huang, J.-K.; et al. Sulfoxide-functional nanoarchitectonics of mesoporous sulfur-doped C3N5 for photocatalytic hydrogen evolution. Chem. Mater. 2024, 36, 4511–4520. [Google Scholar] [CrossRef]
- Chen, G.; Sciortino, F.; Ariga, K. Atomic Nanoarchitectonics for catalysis. Adv. Mater. Interfaces 2021, 8, 2001395. [Google Scholar] [CrossRef]
- Chen, G.; Singh, S.K.; Takeyasu, K.; Hill, J.P.; Nakamura, J.; Ariga, K. Versatile nanoarchitectonics of Pt with morphology control of oxygen reduction reaction catalysts. Sci. Technol. Adv. Mater. 2022, 23, 413–423. [Google Scholar] [CrossRef]
- Huang, C.; Qin, P.; Luo, Y.; Ruan, Q.; Liu, L.; Wu, Y.; Li, Q.; Xu, Y.; Liu, R.; Chu, P.K. Recent progress and perspective of cobalt-based catalysts for water splitting: Design and nanoarchitectonics. Mater. Today Energy 2022, 23, 100911. [Google Scholar] [CrossRef]
- Sharma, D.; Choudhary, P.; Kumar, S.; Krishnan, V. Transition metal phosphide nanoarchitectonics for versatile organic catalysis. Small 2023, 19, 2207053. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, P.; Chauhan, S.S.; Sharma, D.; Kumar, S.; Krishnan, V. Nanoarchitectonics of sulfonated boron nitride for catalytic synthesis of aromatic nitriles under mild conditions. Chem. Eng. J. 2023, 475, 146055. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P. g-C3N4 Nanosheet nanoarchitectonics: H2 Generation and CO2 reduction. ChemNanoMat 2023, 9, e202300041. [Google Scholar] [CrossRef]
- Jiang, B.; Guo, Y.; Sun, F.; Wang, S.; Kang, Y.; Xu, X.; Zhao, J.; You, J.; Eguchi, M.; Yamauchi, Y.; et al. Nanoarchitectonics of metallene materials for electrocatalysis. ACS Nano 2023, 17, 13017–13043. [Google Scholar] [CrossRef]
- Ishihara, S.; Labuta, J.; Rossom, W.V.; Ishikawa, D.; Minami, K.; Hill, J.P.; Ariga, K. Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Phys. Chem. Chem. Phys. 2014, 16, 9713–9746. [Google Scholar] [CrossRef]
- Komiyama, M.; Mori, T.; Ariga, K. Molecular Imprinting: Materials nanoarchitectonics with molecular information. Bull. Chem. Soc. Jpn. 2018, 91, 1075–1111. [Google Scholar] [CrossRef]
- Yang, Y.; Du, X.; Jiang, D.; Shan, X.; Wang, W.; Shiigi, H.; Chen, Z. Photo-assisted Zn-air battery promoted self-powered sensor for selective and sensitive detection of antioxidant gallic acid based on Z-scheme nanoarchitectonics with heterojunction AgBr/CuBi2O4. Sens. Actuat. B Chem. 2023, 393, 134302. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, B.; Lai, C.; Wang, M.; Cao, Y.; Tu, J.; Chen, D.; Liu, Y.; Wu, Q. High-performance Vo-ZnO/ZnS benefiting nanoarchitectonics from the synergism between defect engineering and surface engineering for photoelectrochemical glucose sensors. RSC Adv. 2023, 13, 19782–19788. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. npj Flex. Electron. 2023, 7, 26. [Google Scholar] [CrossRef]
- Wang, C.; Cui, Z.; Zhu, Y.; Liu, X.; Wang, L.; Wang, L.J. Nanoarchitectonics of high-sensitivity humidity sensors based on graphene oxide films for respiratory monitoring. Diam. Relat. Mater. 2024, 144, 110970. [Google Scholar] [CrossRef]
- Sasaki, Y.; Lyu, X.; Kawashima, T.; Zhang, Y.; Ohshiro, K.; Okabe, K.; Tsuchiya, K.; Minami, T. Nanoarchitectonics of highly dispersed polythiophene on paper for accurate quantitative detection of metal ions. RSC Adv. 2024, 14, 5159–5166. [Google Scholar] [CrossRef]
- Liu, J.; Wang, R.; Zhou, H.; Mathesh, M.; Dubey, M.; Zhang, W.; Wang, B.; Yang, W. Nucleic acid isothermal amplification-based soft nanoarchitectonics as an emerging electrochemical biosensing platform. Nanoscale 2022, 14, 10286–10298. [Google Scholar] [CrossRef]
- Kim, S.K.; Lee, J.U.; Jeon, M.J.; Kim, S.K.; Hwang, S.-H.; Honge, M.E.; Sim, S.J. Bio-conjugated nanoarchitectonics with dual-labeled nanoparticles for a colorimetric and fluorescent dual-mode serological lateral flow immunoassay sensor in detection of SARS-CoV-2 in clinical samples. RSC Adv. 2023, 13, 27225–27232. [Google Scholar] [CrossRef] [PubMed]
- Geetha, B.; Deepa, P.N. Nanoarchitectonics of a new rGO/poly(p-aminobenzoic acid) (pPABA)-based molecularly imprinted polymer electrode for detecting ascorbic acid, uric acid and glucose. J. Solid State Electrochem. 2024, 28, 357–375. [Google Scholar]
- Huanga, P.; Wu, W.; Li, M.; Li, Z.; Pan, L.; Ahamad, T.; Alshehri, S.M.; Bando, Y.; Yamauchi, Y.; Xu, X. Metal-organic framework-based nanoarchitectonics: A promising material platform for electrochemical detection of organophosphorus pesticides. Coord. Chem. Rev. 2024, 501, 215534. [Google Scholar] [CrossRef]
- Kathiravan, A.; Premkumar, S.; Jhons, M.A. Nanoarchitectonics of Melia dubia flowers to fluorescent carbon dots and its Ferritin sensing. Colloid Surf. A Physicochem. Eng. Asp. 2024, 681, 132824. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mukherjee, A.; Bytesnikova, Z.; Ashrafi, A.M.; Richtera, L.; Adam, V. 2D graphene-based advanced nanoarchitectonics for electrochemical biosensors: Applications in cancer biomarker detection. Biosens. Bioelectron. 2024, 250, 116050. [Google Scholar] [CrossRef]
- Geravand, M.; Erfani, Y.; Nematpour, N.; Khosravani, M.; Rahimnia, R.; Adabi, M. Nanoarchitectonics of aptamer-based electrochemical biosensor utilizing electerospun carbon nanofibers and gold nanoparticles for Acinetobacter baumannii detection. Microchem. J. 2024, 200, 110437. [Google Scholar] [CrossRef]
- Giussi, J.M.; Cortez, M.L.; Marmisollé, W.A.; Azzaroni, O. Practical use of polymer brushes in sustainable energy applications: Interfacial nanoarchitectonics for high-efficiency devices. Chem. Soc. Rev. 2019, 48, 814–849. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Nakayama, T.; Ariga, K. Nanoarchitectonics Intelligence with atomic switch and neuromorphic network system. Appl. Phys. Express 2022, 15, 100101. [Google Scholar] [CrossRef]
- Azzaroni, O.; Piccinini, E.; Fenoy, G.; Marmisollé, W.; Ariga, K. Field-effect transistors engineered via solution-based layer-by-layer nanoarchitectonics. Nanotechnology 2023, 34, 472001. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, Y.; Fu, F.; Liu, L.; Luo, Z. Thickness nanoarchitectonics with edge-enhanced raman, polarization Raman, optoelectronic properties of GaS nanosheets devices. Crystals 2023, 13, 1506. [Google Scholar] [CrossRef]
- Baek, S.; Kim, S.; Han, S.A.; Kim, Y.H.; Kim, S.; Kim, J.H. Synthesis strategies and nanoarchitectonics for high-performance transition metal qichalcogenide thin film field-effect transistors. ChemNanoMat 2023, 9, e202300104. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, X.; Shi, W.; Yang, P. Highly luminescent CsPbX3@MIL-53(Al) nanoarchitectonics with anomalous stability towards flexible emitting films. J. Alloys Compd. 2024, 986, 174132. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; Sun, W.; He, L.; Li, X.; Jia, X.; Qin, D. Dye-based nanoarchitectonics for the effective bandgap and stability of blue phosphorescent organic light-emitting diodes. Appl. Phys. A 2024, 130, 53. [Google Scholar] [CrossRef]
- Kim, M.; Firestein, K.L.; Fernando, J.F.S.; Xu, X.; Lim, H.; Golberg, D.V.; Na, J.; Kim, J.; Nara, H.; Tang, J.; et al. Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: From the perspective of nanoarchitectonics. Chem. Sci. 2022, 13, 10836–10845. [Google Scholar] [CrossRef] [PubMed]
- Thmaini, N.; Charradi, K.; Ahmed, Z.; Chtourou, R.; Aranda, P. Nanoarchitectonics of fibrous clays as fillers of improved proton-conducting membranes for fuel-cell applications. Appl. Clay Sci. 2023, 242, 107019. [Google Scholar] [CrossRef]
- Ju, L.; Hao, G.; Meng, F.; Jiang, W.; Ji, Q. Nanoarchitectonics tuning for Fe/N-doped C60-derived carbon electrocatalysts with enhanced ORR activity by oxygen plasma treatment on C60. J. Mater. Chem. A 2023, 11, 25534–25544. [Google Scholar] [CrossRef]
- Ravipati, M.; Badhulika, S. Solvothermal synthesis of hybrid nanoarchitectonics nickel-metal organic framework modified nickel foam as a bifunctional electrocatalyst for direct urea and nitrate fuel cell. Adv. Powder Technol. 2023, 34, 104087. [Google Scholar] [CrossRef]
- Liang, H.; Zhu, X.; Chen, Y.; Cheng, J. Nanoarchitectonics of yttrium-doped barium cerate-based proton conductor electrolyte for solid oxide fuel cells. Appl. Phys. A 2024, 130, 168. [Google Scholar] [CrossRef]
- Allwyn, N.; Gokulnath, S.; Sathish, M. In-situ nanoarchitectonics of Fe/Co LDH over cobalt-enriched N-doped carbon cookies as facile oxygen redox electrocatalysts for high-rate rechargeable zinc–air batteries. ACS Appl. Mater. Interfaces 2024, 16, 20360–20374. [Google Scholar] [CrossRef]
- Su, Y.; Ding, X.; Yuan, J. Trimetallicnanoarchitectonics of FeCoNi catalyst with modulated spin polarization for enhanced oxygen reduction performance. Int. J. Hydrogen Energy 2024, 55, 893–903. [Google Scholar] [CrossRef]
- Vuk, D.; Radovanović-Perić, F.; Mandić, V.; Lovrinčević, V.; Rath, T.; Panžić, I.; Le-Cunff, J. Synthesis and nanoarchitectonics of novel squaraine derivatives for organic photovoltaic devices. Nanomaterials 2022, 12, 1206. [Google Scholar] [CrossRef] [PubMed]
- Marineau-Plante, G.; Qassab, M.; Schlachter, A.; Nos, M.; Durandetti, M.; Hardouin, J.; Lemouchi, C.; Loïc Le Pluart, L.L.; Harvey, P.D. Photoreductive electron transfers in nanoarchitectonics organization between a diketopyrrolopyroleplatinum(II)-containing organometallic polymer and various electron acceptors. J. Inorg. Organomet. Polym. 2022, 32, 1266–1276. [Google Scholar] [CrossRef]
- Bogachuk, D.; Girard, J.; Tilala, S.; Martineau, D.; Narbey, S.; Verma, A.; Hinsch, A.; Kohlstädt, M.; Wagner, L. Nanoarchitectonics in fully printed perovskite solar cells with carbon-based electrodes. Nanoscale 2023, 15, 3130–3134. [Google Scholar] [CrossRef] [PubMed]
- Lappi, T.; Cordier, S.; Gayfulin, Y.; Ababou-Girard, S.; Grasset, F.; Uchikoshi, T.; Naumov, N.G.; Renaud, A. Nanoarchitectonics of metal atom cluster-based building blocks applied to the engineering of photoelectrodes for solar cells. Sol. RRL 2023, 7, 2201037. [Google Scholar] [CrossRef]
- Qiu, D.; Hou, P. Ferroelectricity-driven self-powered weak temperature and broadband light detection in MoS2/CuInP2S6/WSe2 van der Waals heterojunction nanoarchitectonics. ACS Appl. Mater. Interfaces 2023, 15, 59671–59680. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lim, H.; Kim, S.H.; Lee, K.N.; You, J.; Ryu, D.Y.; Kim, J. Recent developments of polymer-based encapsulants and backsheets for stable and high-performance silicon photovoltaic modules: Materials nanoarchitectonics and mechanisms. J. Mater. Chem. A 2024, 12, 7452–7469. [Google Scholar] [CrossRef]
- Abdulrhman, M.; Abdel-Aal, S.K.; Bain, C.A.; Raptis, D.; Bernal-Texca, F.; Wlodarczyk, K.L.; Hand, D.P.; Martorell, J.; Marques-Hueso, J. Nanoarchitectonics of lead-free 2D cobalt-based diammonium hybrid for perovskites solar cell applications. Appl. Phys. A 2024, 130, 426. [Google Scholar] [CrossRef]
- Koralkar, N.; Mehta, S.; Upadhyay, A.; Patel, G.; Deshmukh, K. MOF-based nanoarchitectonics for lithium-ion batteries: A comprehensive review. J. Inorg. Organomet. Polym. 2024, 34, 903–929. [Google Scholar] [CrossRef]
- Bahadur, R.; Singh, G.; Li, Z.; Singh, B.; Srivastava, R.; Sakamoto, Y.; Chang, S.; Murugavel, R.; Vinu, A. Hybrid nanoarchitectonics of ordered mesoporous C60–BCN with high surface area for supercapacitors and lithium-ion batteries. Carbon 2024, 216, 118568. [Google Scholar] [CrossRef]
- Kozhunova, E.Y.; Inozemtseva, A.I.; Nazarov, M.A.; Nikolenko, A.D.; Zhvanskaya, E.S.; Kiselyova, O.I.; Motyakin, M.V.; Kutyakov, S.V.; Pakhomov, A.A.; Itkis, D.M.; et al. Nanoarchitectonics and electrochemical properties of redox-active nanogels for redox flow battery electrolytes. Electrochim. Acta 2024, 475, 143534. [Google Scholar] [CrossRef]
- Yu, L.; Chang, M.; Zhang, M.; Yang, Y.; Chen, K.; Jiang, T.; Shi, D.; Zhang, Q.; You, J. Nanoarchitectonics of 3D-networked bio-based binders for silicon anodes in lithium-ion batteries based on dynamic hydrogen bonding. Sustain. Energy Fuels 2024, 8, 843–851. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z.; Xie, J.; Lu, Y.; Liu, S.; Xu, X.; Tu, J.; Xu, B.; Zhao, X. Nanoarchitectonics for a long-life and robust Na-ion battery at low temperature with Prussian blue cathode and low-concentration electrolyte. J. Energy Storage 2024, 80, 110263. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Yu, Y.Z.; Wu, C.-H.; Lee, P.-Y.; Chen, H.-M.; Husain, S.; Kongvarhodom, C.; Hsiao, Y.-C.; Lin, L.-Y. Metal ratio and bimetal nanoarchitectonics of ammonia-based fluoride complex induced nickel hydroxide and manganese oxide composites as active materials of an energy storage device. J. Energy Storage 2024, 80, 110316. [Google Scholar] [CrossRef]
- Jheng, Y.-S.; Lue, S.-J.J.; Cheng, K.-W. Nanoarchitectonics of ternary NixCo1−xSe2 electrocatalysts on Ni-foams combined with Pt-loaded carbon clothes as the air-cathodes in Zn-air energy storage systems. J. Taiwan Inst. Chem. Eng. 2024, 159, 105451. [Google Scholar] [CrossRef]
- Na, J.; Zheng, D.; Kim, J.; Gao, M.; Azhar, A.; Lin, J.; Yamauchi, Y. Material nanoarchitectonics of functional polymers and inorganic nanomaterials for smart supercapacitors. Small 2022, 18, 2102397. [Google Scholar] [CrossRef]
- Qi, P.; Su, Y.; Yang, L.; Wang, J.; Jiang, M.; Sun, X.; Zhang, P.; Xiong, Y. Nanoarchitectonics of hierarchical porous carbon based on carbonization of heavy fraction of bio-oil and its supercapacitor performance. J. Energy Storage 2023, 74, 109398. [Google Scholar] [CrossRef]
- Joseph, A.; Ramachandran, S.; Thomas, T. Ball milling nanoarchitectonics of nitrogen-doped Cr2O3 on thermally exfoliated. amorphous nanosheets for a high-performance supercapacitor. ChemistrySelect 2023, 8, e202300808. [Google Scholar] [CrossRef]
- Vivekanand; Balaji, S.S.; Nasrin, K.; Sathish, M. Unveiled supercapacitive performance of Se-doped graphene nanoarchitectonics prepared via supercritical fluid technique. ChemNanoMat 2023, 9, e202300209. [Google Scholar] [CrossRef]
- Dong, K.; Sun, Z.; Jing, G.; Wang, J.; Tang, B.; Zhao, N.; Kong, L.; Guo, F. Nanoarchitectonics of self-supporting porous carbon electrode with heteroatoms co-doped: For high-performance supercapacitors. J. Energy Storage 2024, 85, 111048. [Google Scholar] [CrossRef]
- Wang, H.; Shi, H.; Gao, Z.; Cui, X. Growing-fruits-type nanoarchitectonics of nickel-vanadium layered double hydroxide on branches of nitrogen-rich carbon nanotube for high performance supercapacitors. J. Energy Storage 2024, 89, 111745. [Google Scholar] [CrossRef]
- Salunkhe, T.T.; Gurugubelli, T.R.; Bathula, B.; Thirumal, V.; Kim, J.; Yoo, K. Energy storage nanoarchitectonics of La2W2O9 porous microspheres for advanced supercapacitive performance. Mater. Chem. Phys. 2024, 315, 128993. [Google Scholar] [CrossRef]
- Khan, A.H.; Ghosh, S.; Pradhan, B.; Dalui, A.; Shrestha, L.K.; Acharya, S.; Ariga, K. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull. Chem. Soc. Jpn. 2017, 90, 627–648. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.H.; Ariga, K. Redox-active polymers for energy storage nanoarchitectonics. Joule 2017, 1, 739–768. [Google Scholar] [CrossRef]
- Feng, J.-C.; Xia, H. Application of nanoarchitectonics in moist-electric generation. Beilstein J. Nanotechnol. 2022, 13, 1185–1200. [Google Scholar] [CrossRef]
- Geng, X.; Singh, G.; Sathish, C.I.; Li, Z.; Bahadur, R.; Liu, Y.; Li, S.; Yu, X.; Breese, M.; Yi, J.; et al. Biomass derived nanoarchitectonics of porous carbon with tunable oxygen functionalities and hierarchical structures and their superior performance in CO2 adsorption and energy storage. Carbon 2023, 214, 118347. [Google Scholar] [CrossRef]
- Ali, S.M.; Kassim, H.; Alaizeri, Z.A.M.; Shahabuddin, M. Enhanced electrochemical performance of novel nanoarchitectonics tin selenide (SnSe/rGO) pseudocapacitive material for energy storage application. J. Energy Storage 2023, 73, 109163. [Google Scholar] [CrossRef]
- Gupta, P.; Jaidka, S.; Singh, D.P. Quenching induced modified nanoarchitectonics in the dielectric and energy storage behavior of poly (vinylidene fluoride)/Ba0.7Sr0.3TiO3 composites thick films. Appl. Phys. A 2024, 130, 279. [Google Scholar] [CrossRef]
- Chahal, S.; Bhushan, R.; Kumari, P.; Guan, X.; Lee, J.M.; Ray, S.J.; Thakur, A.K.; Vinu, A.; Kumar, P. Microwave nanoarchitectonics of black phosphorene for energy storage. Matter 2024, 7, 237–254. [Google Scholar] [CrossRef]
- Pham, T.-A.; Qamar, A.; Dinh, T.; Masud, N.K.; Rais-Zadeh, M.; Senesky, D.G.; Yamauchi, Y.; Nguyen, N.-T.; Phan, H.-P. Nanoarchitectonics for wide bandgap semiconductor nanowires: Toward the next generation of nanoelectromechanical systems for environmental monitoring. Adv. Sci. 2020, 7, 2001294. [Google Scholar] [CrossRef]
- Ali, N.; Funmilayo, O.R.; Khan, A.; Ali, F.; Bilal, M.; Yang, Y.; Akhter, M.S.; Zhou, C.; Wenjie, Y.; Iqbal, H.M.N. Nanoarchitectonics: Porous hydrogel as bio-sorbent for effective remediation of hazardous contaminants. J. Inorg. Organomet. Polym. 2022, 32, 3301–3320. [Google Scholar] [CrossRef]
- Nawaz, A.; Atif, M.; Naz, I.; Khan, A.; Naz, F.; Ali, N. Comparative robustness and sustainability of in-situ prepared antimony nanoarchitectonics in chitosan/synthesized carboxymethyl chitosan in environmental remediation perspective. Int. J. Biol. Macromol. 2023, 235, 123591. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Maccato, C. Nanoarchitectonics of metal oxide materials for sustainable technologies and environmental applications. CrystEngComm 2023, 25, 3968–3987. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Shrestha, L.K.; Ariga, K. Porous carbon nanoarchitectonics for the environment: Detection and adsorption. CrystEngComm 2022, 24, 6804–6824. [Google Scholar] [CrossRef]
- Akamatsu, M. Inner and interfacial environmental nanoarchitectonics of supramolecular assemblies formed by amphiphiles: From emergence to application. J. Oleo Sci. 2023, 72, 105–116. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, P.; Chhabra, T.; Kaur, H.; Kumar, A.; Qamar, M.; Krishnan, V. Frontier nanoarchitectonics of graphitic carbon nitride based plasmonic photocatalysts and photoelectrocatalysts for energy, environment and organic reactions. Mater. Chem. Front. 2023, 7, 1197–1247. [Google Scholar] [CrossRef]
- Molla, M.R.; Levkin, P.A. Combinatorial approach to nanoarchitectonics for nonviral delivery of nucleic acids. Adv. Mater. 2016, 28, 1159–1175. [Google Scholar] [CrossRef]
- Momekova, D.B.; Gugleva, V.E.; Petrov, P.D. Nanoarchitectonics of multifunctional niosomes for advanced drug delivery. ACS Omega 2021, 6, 33265–33273. [Google Scholar] [CrossRef] [PubMed]
- Ferhan, A.R.; Park, S.; Park, H.; Tae, H.; Jackman, J.A.; Cho, N.-J. Lipid nanoparticle technologies for nucleic acid delivery: A nanoarchitectonics perspective. Adv. Funct. Mater. 2022, 32, 2203669. [Google Scholar] [CrossRef]
- Mohanan, S.; Guan, X.; Liang, M.; Karakoti, A.; Vinu, A. Stimuli-responsive silica silanol conjugates: Strategic nanoarchitectonics in targeted drug delivery. Small 2023, 2301113. [Google Scholar] [CrossRef]
- Komiyama, M. Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems. Beilstein J. Nanotechnol. 2023, 14, 218–232. [Google Scholar] [CrossRef]
- Tian, W.; Wang, C.; Chu, R.; Ge, H.; Sun, X.; Li, M. Injectable hydrogel nanoarchitectonics with near-infrared controlled drug delivery for in situ photothermal/endocrine synergistic endometriosis therapy. Biomater. Res. 2023, 27, 100. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.; De, A.; Paul, S.; Pujari, A.K.; Bhaumik, J. In Situ Nanoarchitectonics of a MOF hydrogel: A self-adhesive and pH-responsive smart platform for phototherapeutic delivery. Biomacromolecules 2023, 24, 1717–1730. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Shi, J.; Lv, W.; Jia, X.; Ariga, K. Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. Sci. Technol. Adv. Mater. 2022, 23, 393–412. [Google Scholar] [CrossRef] [PubMed]
- Jang, T.-S.; Park, S.J.; Lee, J.E.; Yang, J.; Park, S.-H.; Jun, M.B.G.; Kim, Y.W.; Aranas, C.; Choi, J.P.; Zou, Y.; et al. Topography-supported nanoarchitectonics of hybrid scaffold for systematically modulated bone regeneration and remodeling. Adv. Funct. Mater. 2022, 32, 2206863. [Google Scholar] [CrossRef]
- Jia, X.; Chen, J.; Lv, W.; Li, H.; Ariga, K. Engineering dynamic and interactive biomaterials using material nanoarchitectonics for modulation of cellular behaviors. Cell Rep. Phys. Sci. 2023, 4, 101251. [Google Scholar] [CrossRef]
- Li, B.; Huang, Y.; Bao, J.; Xu, Z.; Yan, X.; Zou, Q. Supramolecular nanoarchitectonics based on antagonist peptide self-assembly for treatment of liver fibrosis. Small 2023, 19, 2304675. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, P.; Cao, S.; Liu, Y.; Gao, C. Nanoarchitectonics composite hydrogels with high toughness, mechanical strength, and self-healing capability for electrical actuators with programmable shape memory properties. Nanoscale 2023, 15, 18667–18677. [Google Scholar] [CrossRef] [PubMed]
- Mendes de Almeida Junior, A.; Ferreira, A.S.; Camacho, S.A.; Gontijo Moreira, L.; de Toledo, K.A.; Oliveira, O.N., Jr.; Aoki, P.H.B. Enhancing Phototoxicity in Human Colorectal Tumor Cells through Nanoarchitectonics for Synergistic Photothermal and Photodynamic Therapies. ACS Appl. Mater. Interfaces 2024, 16, 23742–23751. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, Q.; Zhang, Y.; Adler-Abramovich, L.; Fan, X.; Mei, D.; Gazit, E.; Tao, K. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. J. Colloid Interface Sci. 2023, 636, 113–133. [Google Scholar] [CrossRef]
- Kumbhar, P.; Kolekar, K.; Khot, C.; Dabhole, S.; Salawi, A.; Sabei, F.Y.; Mohite, A.; Kole, K.; Mhatre, S.; Jha, N.K.; et al. Co-crystal nanoarchitectonics as an emerging strategy in attenuating cancer: Fundamentals and applications. J. Control. Release 2023, 353, 1150–1170. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Kawakami, K.; Ariga, K. Nanoarchitectonics in combat against bacterial infection using molecular, interfacial, and material tools. Curr. Opin. Colloid Interface Sci. 2023, 65, 101702. [Google Scholar] [CrossRef]
- Sutrisno, L.; Ariga, K. Pore-engineered nanoarchitectonics for cancer therapy. NPG Asia Mater. 2023, 15, 21. [Google Scholar] [CrossRef]
- Duan, H.; Wang, F.; Xu, W.; Sheng, G.; Sun, Z.; Chu, H. Recentadvances in the nanoarchitectonics of metal–organic frameworks for light-activated tumor therapy. Dalton Trans. 2023, 52, 16085–16102. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Wang, Z.; Xu, H.; Huang, H.; Tao, X.; Hu, Y.; He, Y.; Zhang, Z.; Huang, X. Redox-activatable magnetic nanoarchitectonics for self-enhanced tumor imaging and synergistic photothermal-chemodynamic therapy. Small Methods 2023, 8, 2301099. [Google Scholar] [CrossRef] [PubMed]
- Meng, R.-Y.; Zhao, Y.; Xia, H.-Y.; Wang, S.-B.; Chen, A.-Z.; Kankala, R.K. 2D Architectures-transformed conformational nanoarchitectonics for light-augmented nanocatalytic chemodynamic and photothermal/photodynamic-based trimodal therapies. ACS Mater. Lett. 2024, 6, 1160–1177. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Wu, L.; Zhao, J. Molecular nanoarchitectonics of natural photosensitizers and their derivatives nanostructures for improved photodynamic therapy. ChemMedChem 2024, 19, e202300599. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, R.B.; Pines, D. The theory of everything. Proc. Natl. Acad. Sci. USA 2000, 97, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K.; Fakhrullin, R. Materials nanoarchitectonics from atom to living cell: A method for everything. Bull. Chem. Soc. Jpn. 2022, 95, 774–795. [Google Scholar] [CrossRef]
- Ariga, K. Nanoarchitectonics: Method for everything in material science. Bull. Chem. Soc. Jpn. 2024, 97, uoad001. [Google Scholar] [CrossRef]
- Ariga, K.; Kunitake, T. Molecular recognition at air−water and related interfaces: Complementary hydrogen bonding and multisite interaction. Acc. Chem. Res. 1998, 31, 371–378. [Google Scholar] [CrossRef]
- Kurihara, K. Surface forces measurement for materials science. Pure Appl. Chem. 2019, 91, 707–716. [Google Scholar] [CrossRef]
- Takada, K. Interfacial nanoarchitectonics for solid-state lithium batteries. Langmuir 2013, 29, 7538–7541. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K. Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. Nanoscale 2022, 14, 10610–10629. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K. Don’t forget Langmuir–Blodgett films 2020: Interfacial nanoarchitectonics with molecules, materials, and living objects. Langmuir 2020, 36, 7158–7180. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.L.; Osvaldo, N.; Oliveira, O.N. Dominant hydrophobic interactions with β-glucan in nanoarchitectonics with mixed Langmuir monolayers of cholesterol/dipalmitoyl phosphatidyl choline. Biointerphases 2022, 17, 031005. [Google Scholar] [CrossRef]
- Martins, B.A.; Deffune, E.; Oliveira, O.N., Jr.; de Moraes, M.L. Penicillin-binding proteins (PBPs) determine antibiotic action in Langmuir monolayers as nanoarchitectonics mimetic membranes of methicillin-resistant Staphylococcus aureus. Colloid Surf. B Biointerfaces 2022, 214, 112447. [Google Scholar] [CrossRef] [PubMed]
- Rydzek, G.; Ji, Q.; Li, M.; Schaaf, P.; Hill, J.P.; Boulmedais, F.; Ariga, K. Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future. Nano Today 2015, 10, 138–167. [Google Scholar] [CrossRef]
- Ariga, K.; Lvov, Y.; Decher, G. There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Phys. Chem. Chem. Phys. 2022, 24, 4097–4115. [Google Scholar] [CrossRef]
- Ariga, K. Chemistry of materials nanoarchitectonics for two-dimensional films: Langmuir–Blodgett, layer-by-layer assembly, and newcomers. Chem. Mater. 2023, 35, 5233–5254. [Google Scholar] [CrossRef]
- Ariga, K.; Song, J.; Kawakami, K. Layer-by-layer designer nanoarchitectonics for physical and chemical communications in functional materials. Chem. Commun. 2024, 60, 2152–2167. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, K. Synthesis of fullerene nanowhiskers using the liquid–liquid interfacial precipitation method and their mechanical, electrical and superconducting properties. Sci. Technol. Adv. Mater. 2015, 16, 013502. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, K.; Kuwasaki, Y.; Obayashi, A.; Kuwabara, M. C60 nanowhiskers formed by the liquid–liquid interfacial precipitation method. J. Mater. Res. 2002, 17, 83–88. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Wu, C.-E.; Chen, S.-Y.; Cui, C.; Cheng, Y.-J.; Hsu, C.-S.; Wang, Y.-L.; Li, Y. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angew. Chem. Int. Ed. 2011, 50, 9386–9390. [Google Scholar] [CrossRef]
- Miyazawa, K.; Minato, J.; Yoshii, T.; Fujino, M.; Suga, T. Structural characterization of the fullerene nanotubes prepared by the liquid–liquid interfacial precipitation method. J. Mater. Res. 2005, 20, 688–695. [Google Scholar] [CrossRef]
- Chen, G.; Shrestha, L.K.; Ariga, K. Zero-to-two nanoarchitectonics: Fabrication of two-dimensional materials from zero-dimensional fullerene. Molecules 2021, 26, 4636. [Google Scholar] [CrossRef]
- Chen, G.; Bhadra, B.N.; Sutrisno, L.; Shrestha, L.K.; Ariga, K. Fullerene rosette: Two-dimensional interactive nanoarchitectonics and selective vapor sensing. Int. J. Mol. Sci. 2022, 23, 5454. [Google Scholar] [CrossRef]
- Park, C.; Yoon, E.; Kawano, M.; Joo, T.; Choi, H.C. Self-crystallization of C70 cubes and remarkable enhancement of photoluminescence. Angew. Chem. Int. Ed. 2010, 49, 9670–9675. [Google Scholar] [CrossRef]
- Bairi, P.; Minami, K.; Nakanishi, W.; Hill, J.; Ariga, K.; Shrestha, L. Hierarchically Structured Fullerene C70 Cube for Sensing Volatile Aromatic Solvent Vapors. ACS Nano 2016, 10, 6631–6637. [Google Scholar] [CrossRef]
- Bairi, P.; Minami, K.; Hill, J.P.; Ariga, K.; Shrestha, L.K. Intentional Closing/Opening of “Hole-in-Cube” Fullerene Crystals with Microscopic Recognition Properties. ACS Nano 2017, 11, 7790–7796. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Hsu, S.-h.; Maji, S.; Chahal, M.K.; Song, J.; Hill, J.P.; Ariga, K.; Shrestha, L.K. Post-assembly dimension-dependent face-selective etching of fullerene crystals. Mater. Horiz. 2020, 7, 787–795. [Google Scholar] [CrossRef]
- Bairi, P.; Minami, K.; Hill, J.P.; Nakanishi, W.; Shrestha, L.K.; Liu, C.; Harano, K.; Nakamura, E.; Ariga, K. Supramolecular differentiation for constructing anisotropic fullerene nanostructures by time-programmed control of interfacial growth. ACS Nano 2016, 10, 8796–8802. [Google Scholar] [CrossRef]
- Chen, G.; Sciortino, F.; Takeyasu, K.; Nakamura, J.; Hill, J.P.; Shrestha, L.K.; Ariga, K. Hollow spherical fullerene obtained by kinetically controlled liquid-liquid interfacial precipitation. Chem. Asian J. 2022, 17, e202200756. [Google Scholar] [CrossRef] [PubMed]
- Banya, S.; Kumagawa, Y.; Izumoto, D.; Tanaka, M.; Kanbe, K.; Oku, T.; Akiyama, T. Fabrication and photoelectric conversion of densely packed C60–ethylenediamine adduct microparticle films-modified electrode covered with electrochemically deposited polythiophene thin-films. RSC Adv. 2023, 13, 31244–31251. [Google Scholar] [CrossRef]
- Takase, S.; Aritsu, T.; Sakamoto, Y.; Sakuno, Y.; Shimizu, Y. Preparation of highly conductive phthalocyaninato-cobalt iodide at the interface between aqueous KI solution and organic solvent and catalytic properties for electrochemical reduction of CO2. Bull. Chem. Soc. Jpn. 2023, 96, 649–653. [Google Scholar] [CrossRef]
- Kaneko, M.; Nakayama, T.; Seki, H.; Yamamoto, S.; Uemura, T.; Inoue, K.; Hadano, S.; Watanabe, S.; Niko, Y. Lipophilic nitrile N-oxide for catalyst-free surface modification of nanoemulsions as light-harvesting nanoantennas. Bull. Chem. Soc. Jpn. 2022, 95, 1760–1768. [Google Scholar] [CrossRef]
- Sawayama, T.; Wang, Y.; Watanabe, T.; Takayanagi, M.; Yamamoto, T.; Hosono, N.; Uemura, T. Metal-organic frameworks for practical separation of cyclic and linear polymers. Angew. Chem. Int. Ed. 2021, 60, 11830–11834. [Google Scholar] [CrossRef] [PubMed]
- Kioka, K.; Mizutani, N.; Hosono, N.; Uemura, T. Mixed metal–organic framework stationary phases for liquid chromatography. ACS Nano 2022, 16, 6771–6780. [Google Scholar] [CrossRef] [PubMed]
- Ay, B.; Takano, R.; Ishida, T. Metal-organodiphosphonate chemistry: Hydrothermal syntheses and structures of two novel copper(II) coordination polymers with o-xylylenediphosphonic acid and 4,4′-bipyridine ligands. Bull. Chem. Soc. Jpn. 2023, 96, 1129–1138. [Google Scholar] [CrossRef]
- Xu, X.; Eguchi, M.; Asakura, Y.; Pan, L.; Yamauchi, Y. Metal–organic framework derivatives for promoted capacitive deionization of oxygenated saline water. Energy Environ. Sci. 2023, 16, 1815–1820. [Google Scholar] [CrossRef]
- Han, M.; Tashiro, S.; Shiraogawa, T.; Ehara, M.; Shionoya, M. Substrate-specific activation and long-range olefin migration catalysis at the Pd centers in a porous metal-macrocycle framework. Bull. Chem. Soc. Jpn. 2022, 95, 1303–1307. [Google Scholar] [CrossRef]
- Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K.T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933. [Google Scholar] [CrossRef] [PubMed]
- Stähler, C.; Grunenberg, L.; Terban, M.W.; Browne, W.R.; Doellerer, D.; Kathan, M.; Etter, M.; Bettina, V.; Lotsch, B.V.; Feringa, B.L.; et al. Light-driven molecular motors embedded in covalent organic frameworks. Chem. Sci. 2022, 13, 8253–8264. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Tsutsui, Y.; Kawaguchi, T.; Matsuda, W.; Nagano, S.; Suzuki, K.; Kaji, H.; Seki, S. Band-like transport of charge carriers in oriented two-dimensional conjugated covalent organic frameworks. Chem. Mater. 2022, 34, 736–745. [Google Scholar] [CrossRef]
- Charles-Blin, Y.; Kondo, T.; Wu, Y.; Bandow, S.; Awaga, K. Salt-assisted pyrolysis of covalent organic framework for controlled active nitrogen functionalities for oxygen reduction reaction. Bull. Chem. Soc. Jpn. 2022, 95, 972–977. [Google Scholar] [CrossRef]
- Yang, M.; Hanayama, H.; Fang, L.; Addicoat, M.A.; Guo, Y.; Graf, R.; Harano, K.; Kikkawa, J.; Jin, E.; Narita, A.; et al. Saturated linkers in two-dimensional covalent organic frameworks boost their luminescence. J. Am. Chem. Soc. 2023, 145, 14417–14426. [Google Scholar] [CrossRef] [PubMed]
- Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Surface nano-architecture of a metal–organic framework. Nat. Mater. 2010, 9, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Makiura, R. Creation of metal–organic framework nanosheets by the Langmuir-Blodgett technique. Coord. Chem. Rev. 2022, 469, 214650. [Google Scholar] [CrossRef]
- Ohata, T.; Tachimoto, K.; Takeno, K.J.; Nomoto, A.; Watanabe, T.; Hirosawa, I.; Makiura, R. Influence of the solvent on the assembly of Ni3(hexaiminotriphenylene)2 metal–organic framework nanosheets at the air/liquid interface. Bull. Chem. Soc. Jpn. 2023, 96, 274–282. [Google Scholar] [CrossRef]
- Moribe, S.; Takeda, Y.; Umehara, M.; Kikuta, H.; Ito, J.; Ma, J.; Yamada, Y.; Hirano, M. Spike current induction by photogenerated charge accumulation at the surface sites of porous porphyrinic zirconium metal-organic framework electrodes in photoelectrochemical cells. Bull. Chem. Soc. Jpn. 2023, 96, 321–327. [Google Scholar] [CrossRef]
- Hong, J.; Liu, M.; Liu, Y.; Shang, S.; Wang, X.; Du, C.; Gao, W.; Hua, C.; Xu, H.; You, Z.; et al. Solid-liquid interfacial engineered large-area two-dimensional covalent organic framework films. Angew. Chem. Int. Ed. 2024, 63, e202317876. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Li, Q.; Zhang, R.; Xiong, Z.; Li, B.; Wang, J.; Wang, R.; Fang, Q.; Yang, H. Amphiphilic Covalent Organic Framework Nanoparticles for Pickering Emulsion Catalysis with Size Selectivity. Angew. Chem. Int. Ed. 2024, 63, e202314650. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Sun, Q.; He, W.; Liu, L.; Song, Z.; Yao, A.; Ma, J.; Cao, D.; Hassan, S.U.; Guan, J.; et al. A 2D soft covalent organic framework membrane prepared via a molecular bridge. Adv. Mater. 2023, 35, 2300975. [Google Scholar] [CrossRef]
- Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.; Araujo, G.R.d.S.; Santana, C.; Matias, D.; Moura-Neto, V.; Farina, M.; Frases, S.; Viana, N.B.; Romão, L.; Nussenzveig, H.M.; et al. Membrane elastic properties during neural precursor cell differentiation. Cells 2020, 9, 1323. [Google Scholar] [CrossRef]
- Zhang, R.; Jo, J.-I.; Kanda, R.; Nishiura, A.; Hashimoto, Y.; Matsumoto, N. Bioactive polyetheretherketone with gelatin hydrogel leads to sustained release of bone morphogenetic protein-2 and promotes osteogenic differentiation. Int. J. Mol. Sci. 2023, 24, 12741. [Google Scholar] [CrossRef]
- Cazzanelli, P.; Wuertz-Kozak, K. MicroRNAs in intervertebral disc degeneration, apoptosis, inflammation, and mechanobiology. Int. J. Mol. Sci. 2020, 21, 3601. [Google Scholar] [CrossRef]
- Tuna, R.; Yi, W.; Crespo Cruz, E.; Romero, J.; Ren, Y.; Guan, J.; Li, Y.; Deng, Y.; Bluestein, D.; Liu, Z.L.; et al. Platelet biorheology and mechanobiology in thrombosis and hemostasis: Perspectives from multiscale computation. Int. J. Mol. Sci. 2024, 25, 4800. [Google Scholar] [CrossRef] [PubMed]
- Bryniarska-Kubiak, N.; Basta-Kaim, A.; Kubiak, A. Mechanobiology of dental pulp cells. Cells 2024, 13, 375. [Google Scholar] [CrossRef]
- Minami, K.; Mori, T.; Nakanishi, W.; Shigi, N.; Nakanishi, J.; Hill, J.P.; Komiyama, M.; Ariga, K. Suppression of myogenic differentiation of mammalian cells caused by fluidity of a liquid–liquid interface. ACS Appl. Mater. Interfaces 2017, 9, 30553–30560. [Google Scholar] [CrossRef]
- Jia, X.; Minami, K.; Uto, K.; Chang, A.C.; Hill, J.P.; Nakanishi, J.; Ariga, K. Adaptive liquid interfacially assembled protein nanosheets for guiding mesenchymal stem cell fate. Adv. Mater. 2020, 32, 1905942. [Google Scholar] [CrossRef]
- Jia, X.; Song, J.; Lv, W.; Hill, J.P.; Nakanishi, J.; Ariga, K. Adaptive liquid interfaces induce neuronal differentiation of mesenchymal stem cells through lipid raft assembly. Nat. Commun. 2022, 13, 3110. [Google Scholar] [CrossRef]
- Ueki, T.; Uto, K.; Yamamoto, S.; Tamate, R.; Kamiyama, Y.; Jia, X.; Noguchi, H.; Minami, K.; Ariga, K.; Wang, H.; et al. Ionic liquid interface as a cell scaffold. Adv. Mater. 2024, 36, 2310105. [Google Scholar] [CrossRef]
- Chrysanthou, A.; Kanso, H.; Zhong, W.; Shang, L.; Gautrot, J.E. Supercharged protein nanosheets for cell expansion on bioemulsions. ACS Appl. Mater. Interfaces 2023, 15, 2760–2770. [Google Scholar] [CrossRef]
- Peng, L.; Nadal, C.; Gautrot, J.E. Growth of mesenchymal stem cells at the surface of silicone, mineral and plant-based oils. Biomed. Mater. 2023, 18, 035005. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, S.; Zhang, L.; Huang, R.; Wang, R. The understanding and compact modeling of reliability in modern metal–oxide–semiconductor field-effect transistors: From single-mode to mixed-mode mechanisms. Micromachines 2024, 15, 127. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, Z.; Yue, S.; Zhang, K.; Wang, R.; Zhang, Z. Optical second harmonic generation of low-dimensional semiconductor materials. Nanomaterials 2024, 14, 662. [Google Scholar] [CrossRef]
- Kasuya, N.; Tsurumi, J.; Okamoto, T.; Watanabe, S.; Takeya, J. Two-dimensional hole gas in organic semiconductors. Nat. Mater. 2021, 20, 1401–1406. [Google Scholar] [CrossRef]
- Kumagai, S.; Makita, T.; Watanabe, S.; Takeya, J. Scalable printing of two-dimensional single crystals of organic semiconductors towards high-end device applications. Appl. Phys. Express 2022, 15, 030101. [Google Scholar] [CrossRef]
- Murai, M.; Iba, S.; Hamao, S.; Kubozono, Y.; Ota, H.; Takai, K. Azulene-fused linearly π-extended polycyclic aromatic compounds: Synthesis, photophysical properties, and OFETs applications. Bull. Chem. Soc. Jpn. 2023, 96, 1077–1081. [Google Scholar] [CrossRef]
- Yamashita, Y.; Tsurumi, J.; Ohno, M.; Fujimoto, R.; Kumagai, S.; Kurosawa, T.; Okamoto, T.; Takeya, J.; Watanabe, S. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 2019, 572, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Miura, N.; Taguchi, H.; Komatsu, T.; Nosaka, H.; Okamoto, T.; Yamashita, Y.; Watanabe, S.; Takeya, J. Improvement of contact resistance at carbon electrode/organic semiconductor interfaces through chemical doping. Appl. Phys. Express 2022, 15, 101005. [Google Scholar] [CrossRef]
- Yamashita, Y.; Kohno, S.; Longhi, E.; Jhulki, S.; Kumagai, S.; Barlow, S.; Marder, S.R.; Takeya, J.; Watanabe, S. N-type molecular doping of a semicrystalline conjugated polymer through cation exchange. Commun. Mater. 2024, 5, 79. [Google Scholar] [CrossRef]
- Ishii, M.; Yamashita, Y.; Watanabe, S.; Ariga, K.; Takeya, J. Doping of molecular semiconductors through proton-coupled electron transfer. Nature 2023, 622, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: Recent applications and prospects. npj Comput. Mater. 2017, 3, 54. [Google Scholar] [CrossRef]
- Liang, Y.; Jiao, C.; Zhou, P.; Li, W.; Zang, Y.; Liu, Y.; Yang, G.; Liu, L.; Cheng, J.; Liang, G.; et al. Highly efficient perovskite solar cells with light management of surface antireflection. Bull. Chem. Soc. Jpn. 2023, 96, 148–155. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Funada, T.; Onda, T.; Chen, Z.-C. Knowledge extraction and performance improvement of Bi2Te3-based thermoelectric materials by machine learning. Mater. Today Phys. 2023, 31, 100971. [Google Scholar] [CrossRef]
- Saito, N.; Nawachi, A.; Kondo, Y.; Choi, J.; Morimoto, H.; Ohshima, T. Functionalgroup evaluation kit for digitalization of information on the functional group compatibility and chemoselectivity of organic reactions. Bull. Chem. Soc. Jpn. 2023, 96, 465–474. [Google Scholar] [CrossRef]
- Liao, T.; Xia, W.; Sakurai, M.; Wang, R.; Zhang, C.; Sun, H.; Ho, K.-M.; Wang, C.-Z.; Chelikowsky, J.R. Magnetic iron-cobalt silicides discovered using machine-learning. Phys. Rev. Mater. 2023, 7, 034410. [Google Scholar] [CrossRef]
- Chaikittisilp, W.; Yamauchi, Y.; Ariga, K. Material evolution with nanotechnology, nanoarchitectonics, and materials informatics: What will be the next paradigm shift in nanoporous materials? Adv. Mater. 2022, 34, 2107212. [Google Scholar] [CrossRef] [PubMed]
- Oviedo, L.R.; Oviedo, V.R.; Martins, M.O.; Fagan, S.B.; da Silva, W.L. Nanoarchitectonics: The role of artificial intelligence in the design and application of nanoarchitectures. J. Nanopart. Res. 2022, 24, 157. [Google Scholar] [CrossRef]
- Lombardo, D.; Kiselev, M.A.; Magazù, S.; Calandra, P. Amphiphiles self-assembly: Basic concepts and future perspectives of supramolecular approaches. Adv. Condens. Matter Phys. 2015, 2015, 151683. [Google Scholar] [CrossRef]
- Crupi, V.; Jannelli, M.P.; Magazu, S.; Maisano, G.; Majolino, D.; Migliardo, P.; Sirna, D. Rayleigh wing and Fourier transform infraredstudies of intermolecular and intramolecularhydrogen bonds in liquid ethylene glycol. Mol. Phys. 1995, 84, 645–652. [Google Scholar] [CrossRef]
- Caccamo, M.T.; Magazù, S. Thermal restraint on PEG-EG mixtures by FTIR investigations and wavelet cross-correlation analysis. Polym. Test. 2017, 62, 311–318. [Google Scholar] [CrossRef]
- Caccamo, M.T.; Mavilia, G.; Mavilia, L.; Lombardo, D.; Magazù, S. Self-assembly processes in hydrated montmorillonite by FTIR investigations. Materials 2020, 13, 1100. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Yang, X.-L.; Wu, G.-Y.; Cheng, L. Controlled self-assembly of metallacycle-bridged gold nanoparticles for surface-enhanced Raman scattering. Chem. Eur. J. 2020, 26, 11695–11700. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-Y.; Liang, C.; Li, H.; Zhang, X.; Yao, G.; Zhu, F.-F.; Hu, Y.-X.; Yin, G.-Q.; Zheng, W.; Lu, Z. A multi-responsive supramolecular heparin-based biohybrid metallogel constructed by controlled self-assembly based on metal–ligand, host–guest and electrostatic interactions. Org. Chem. Front. 2021, 8, 4715–4722. [Google Scholar] [CrossRef]
- Wu, G.-Y.; Zheng, W.; Yang, X.-L.; Liu, Q.-J.; Cheng, L. Supramolecular metallacycle-assisted interfacial self-assembly: A promising method of fabricating goldnanoparticle monolayers with precise interparticlespacing for tunable SERS activity. Tetrahedron Lett. 2022, 94, 153716. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariga, K. Liquid–Liquid and Liquid–Solid Interfacial Nanoarchitectonics. Molecules 2024, 29, 3168. https://doi.org/10.3390/molecules29133168
Ariga K. Liquid–Liquid and Liquid–Solid Interfacial Nanoarchitectonics. Molecules. 2024; 29(13):3168. https://doi.org/10.3390/molecules29133168
Chicago/Turabian StyleAriga, Katsuhiko. 2024. "Liquid–Liquid and Liquid–Solid Interfacial Nanoarchitectonics" Molecules 29, no. 13: 3168. https://doi.org/10.3390/molecules29133168
APA StyleAriga, K. (2024). Liquid–Liquid and Liquid–Solid Interfacial Nanoarchitectonics. Molecules, 29(13), 3168. https://doi.org/10.3390/molecules29133168