Optimization of an Ultrasound-Assisted Extraction Technique and the Effectiveness of the Sunscreen Components Isolated from Bletilla striata
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of Sunscreen Components Extraction Conditions
2.1.1. The Effect of Ultrasonic Time on the Extraction Effect of Sunscreen Ingredients from B. striata
2.1.2. The Influence of Ethanol Concentration on the Extraction Effect of Sunscreen Ingredients from B. striata
2.1.3. The Effect of the Solid–Liquid Ratio on the Extraction of Sunscreen Ingredients from B. striata
2.1.4. The Effect of Ultrasonic Temperature on the Extraction of Sunscreen Ingredients from B. striata
2.2. Statistical Analysis of the Orthogonal Test
2.3. Verification Test
2.4. Analysis Using UPLC-Q-TOF-MS
2.5. Evaluation of Sunscreen Effects in the UVB Region
No. | tR (min) | Extracting ions | Calculated (m/z) | Observed (m/z) | Error (ppm) | Area (%) | Formula | Main Secondary Fragment Ions | Identity | Category | References |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5.787 | [M − H]− | 351.1297 | 351.1308 | 3.2 | 0.792 | C14H24O10 | 171.0666, 127.0771 | Dactylorhin C | 2-isobutyl malic acid glucose oxybenzyl esters | [28,29] |
2 | 6.788 | [M − H]− | 189.0768 | 189.0777 | 4.5 | 1.763 | C8H14O5 | 171.0648, 129.0556 | α-isobutylmalic acid | α-isobutylmalic acid | [28] |
3 | 7.57 | [M − H]− | 619.2244 | 619.2259 | 2.5 | 3.261 | C27H40O16 | 439.1605, 171.0661, 153.0554 | Dactylorhin E | 2-isobutyl malic acid glucose oxybenzyl esters | [28,29] |
4 | 7.833 | [M − H]− | 593.1876 | 593.1881 | 0.9 | 1.039 | C28H34O14 | 431.1346, 325.0930, 269.0802, 163.0399 | 2,4-dimethoxyphenanthrene-3,7-O-β-D-diglucopyranoside | Phenanthrenes | [28] |
5 | 8.345 | [M − H]− | 887.319 | 887.3216 | 2.9 | 7.538 | C40H56O22 | 619.2248, 439.1607, 179.0564, 171.0658, 153.0555 | Dactylorhin A | 2-isobutyl malic acid glucose oxybenzyl esters | [28,29] |
6 | 8.925 | [M − H]− | 457.1715 | 457.1721 | 1.2 | 6.611 | C21H30O11 | 171.0660, 161.0450, 153.0555, 129.0562, 127.0768, 123.0456 | Gymnoside II | 2-isobutyl malic acid glucose oxybenzyl esters | [29,30] |
7 | 9.044 | [M − H]− | 723.5053 | 723.5049 | −0.5 | 2.332 | C41H72O10 | 661.2368, 481.1685, 439.1621, 153.0562 | Unknown | ||
8 | 9.341 | [M − H]− | 661.2349 | 661.2369 | 3 | 2.593 | C29H42O17 | 439.1610, 171.0663, 153.0557 | Isomers | 2-isobutyl malic acid glucose oxybenzyl esters | [30] |
9 | 9.51 | [M − H]− | 853.5776 | 853.579 | 1.6 | 2.51 | C58H78O5 | 661.2358, 481.1727, 439.1611, 171.0667, 153.0553 | Unknown | ||
10 | 9.637 | [M − H]− | 929.3296 | 929.3323 | 2.9 | 6.621 | C42H58O23 | 661.2353, 439.1610, 221.0662, 171.0666, 161.0443, 153.0555 | Gymnoside Ⅲ | 2-isobutyl malic acid glucose oxybenzyl esters | [28,29] |
11 | 9.908 | [M − H]− | 725.2662 | 725.2686 | 3.3 | 19.932 | C34H46O17 | 457.1726, 285.0984, 171.0662, 153.0555, 129.0561, 127.0769 | Militarine | 2-isobutyl malic acid glucose oxybenzyl esters | [28] |
12 | 10.574 | [M − H]− | 971.3402 | 971.3432 | 3.1 | 3.396 | C44H60O24 | 703.2466, 481.1735, 439.1619, 153.0554 | Gymnoside VIII | 2-isobutyl malic acid glucose oxybenzyl esters | [28,29,30] |
13 | 10.963 | [M − H]− | 971.3402 | 971.3429 | 2.8 | 1.369 | C44H60O24 | 749.2674, 703.2490, 661.2341, 481.1725, 439.1619, 153.0550 | Habenarioside | 2-isobutyl malic acid glucose oxybenzyl esters | [28,29] |
14 | 11.287 | [M − H]− | 753.2611 | 753.2624 | 1.7 | 1.007 | C35H46O18 | 439.1585, 171.0661, 153.0537 | Unknown | ||
15 | 11.938 | [M − H]− | 241.087 | 241.087 | 0.8 | 2.088 | C15H14O3 | 226.0640, 225.0566, 198.0686, 197.0600, 181.0678 | Coelonin | Phenanthrenes | [31] |
16 | 12.148 | [M − H]− | 1017.3609 | 1017.3621 | 1.9 | 1.67 | C49H62O23 | 897.3407, 767.2793, 499.1825, 457.1680, 439.1532, 285.0985, 153.0559 | Gymnoside IV | 2-isobutyl malic acid glucose oxybenzyl esters | [28,29] |
17 | 13.064 | [M − H]− | 1059.3715 | 1059.3738 | 2.2 | 2.24 | C51H64O24 | 837.3036, 791.2795, 439.1623, 569.2024, 661.2389, 153.0557 | Gymnoside X | 2-isobutyl malic acid glucose oxybenzyl esters | [28,29] |
18 | 13.49 | [M − H]− | 243.1027 | 243.1034 | 3.8 | 1.017 | C15H16O3 | 243.1044, 227.0722, 183.0819, 136.0539, 106.0424 | Batatasin Ⅲ | Bibenzyl | [31] |
19 | 13.775 | [M − H]− | 347.1289 | 347.1296 | 2.1 | 0.912 | C22H20O4 | 332.1050, 331.0973, 304.1091, 239.0707, 238.0632, 237.0562, 225.0550 | 1-(p-hydroxybenzyl)-4-methoxy-9,10-dihydroph -enanthrene-2,7-diol. | Phenanthrenes | [32] |
20 | 14.446 | [M − H]− | 481.1657 | 481.1660 | 0.7 | 1.755 | C30H26O6 | 466.1434, 465.1347, 451.1219, 435.1243, 225.0568 | Blestrianol A or Gymconopin C or Blesriarene A | Phenanthrenes | [32] |
21 | 14.921 | [M − H]− | 455.1816 | 455.1866 | 0.4 | 0.601 | C29H28O5 | 361.1440, 346.1183, 331.0959, 255.1010 | 3,3’-dihydroxy-2’,6’-bis(p-hydroxybenzyl)-5-methoxybibenzyl | Bibenzyl | [33] |
No. | Wavelength (nm) | |||||
---|---|---|---|---|---|---|
A280 | A290 | A300 | A310 | A320 | Ai | |
Control | 0.537 | 0.570 | 0.468 | 0.336 | 0.203 | 0.409 |
1 | 0.948 | 0.873 | 0.790 | 0.622 | 0.403 | 0.727 |
2 | 1.569 | 1.350 | 1.221 | 1.054 | 0.811 | 1.201 |
Absorbance (A) | Sunscreen Effect | Conditions of Use |
---|---|---|
0.5~1.0 | Minimum UV protection effect | Winter sunshine, summer morning and evening sunshine and overcast days |
1.1~1.5 | Moderate UV protection | Moderate sunlight |
1.6~2.0 | High-efficiency protection against ultraviolet radiation | Outdoor work, strong sunlight in summer |
2.1 | Fully protected against UV radiation | Outdoor work, strong sunlight in summer |
3. Materials and Methods
3.1. Materials and Instruments
3.1.1. Materials and Chemical Regents
3.1.2. Instruments
3.2. Methods
3.2.1. Extraction of the Sunscreen Ingredients from B. striata
3.2.2. The Determination of the Absorbance UV
3.2.3. Single-Factor Tests on the Extraction Process of Sun Protection Ingredients from B. striata
3.2.4. The Orthogonal Optimization Test
3.2.5. UPLC-Q-TOF-MS Analysis
Sample Preparation for UPLC-Q-TOF-MS
UPLC-Q-TOF-MS Analysis Conditions
3.2.6. Evaluation of the Sunscreen Effects of the Extracts from B. striata in the UVB Region
3.2.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greinert, R.; de Vries, E.; Erdmann, F.; Espina, C.; Auvinen, A.; Kesminiene, A.; Schüz, J. European Code against Cancer 4th Edition: Ultraviolet radiation and cancer. Cancer Epidemiol. 2015, 39, S75–S83. [Google Scholar] [CrossRef] [PubMed]
- Romanhole, R.C.; Ataide, J.A.; Moriel, P.; Mazzola, P.G. Update on ultraviolet A and B radiation generated by the sun and artificial lamps and their effects on skin. Int. J. Cosmet. Sci. 2015, 37, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Seité, S.; Colige, A.; Piquemal-Vivenot, P.; Montastier, C.; Fourtanier, A.; Lapière, C.; Nusgens, B. A full-UV spectrum absorbing daily use cream protects human skin against biological changes occurring in photoaging. Photodermatol. Photoimmunol. Photomed. 2002, 16, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Popiół, J.; Gunia-Krzyżak, A.; Słoczyńska, K.; Koczurkiewicz-Adamczyk, P.; Piska, K.; Wójcik-Pszczoła, K.; Żelaszczyk, D.; Krupa, A.; Żmudzki, P.; Marona, H.; et al. The Involvement of Xanthone and (E)-Cinnamoyl Chromophores for the Design and Synthesis of Novel Sunscreening Agents. Int. J. Mol. Sci. 2020, 22, 34. [Google Scholar] [CrossRef] [PubMed]
- Saewan, N.; Jimtaisong, A. Natural products as photoprotection. J. Cosmet. Dermatol. 2015, 14, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.R.; Vieira, Í.G.P.; Queiroz, D.B.; Leal, A.L.A.B.; Maia Morais, S.; Muniz, D.F.; Calixto-Junior, J.T.; Coutinho, H.D.M. Use of Flavonoids and Cinnamates, the Main Photoprotectors with Natural Origin. Adv. Pharmacol. Sci. 2018, 5341487. [Google Scholar] [CrossRef] [PubMed]
- Gou, K.; Li, Y.; Qu, Y.; Li, H.; Zeng, R. Advances and prospects of Bletilla striata polysaccharide as promising multifunctional biomedical materials. Mater. Des. 2022, 223, 111198. [Google Scholar] [CrossRef]
- Luo, L.; Fan, W.; Qin, J.; Guo, S.; Xiao, H.; Tang, Z. Study on Process Optimization and Antioxidant Activity of Polysaccharide from Bletilla striata Extracted via Deep Eutectic Solvents. Molecules 2023, 28, 5538. [Google Scholar] [CrossRef]
- Commission, N.P. Pharmacopoeia of the People′s Republic of China: Part One; China Medical Science Press: Beijing, China, 2020. [Google Scholar]
- Fan, Y.X.; Long, C.L. Traditional skin-care knowledge of Bletilla plants. Chin. Det. Cosmet. 2020, 43, 41–48. [Google Scholar] [CrossRef]
- He, X.; Wang, X.; Fang, J.; Zhao, Z.; Huang, L.; Guo, H.; Zheng, X. Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities. J. Ethnopharmacol. 2017, 195, 20–38. [Google Scholar] [CrossRef]
- Jiang, F.; Li, M.; Wang, H.; Ding, B.; Zhang, C.; Ding, Z.; Yu, X.; Lv, G. Coelonin, an Anti-Inflammation Active Component of Bletilla striata and Its Potential Mechanism. Int. J. Mol. Sci. 2019, 20, 4422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Qi, C.; Wang, H.; Xiao, X.; Zhuang, Y.; Gu, S.; Zhou, Y.; Wang, L.; Yang, H.; Xu, W. Biocompatible and degradable Bletilla striata polysaccharide hemostasis sponges constructed from natural medicinal herb Bletilla striata. Carbohydr. Polym. 2019, 226, 115304. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Sun, D.; Lu, H.; Han, B.; Zhang, G.; Guan, Q. In vitro characterization of pH-sensitive Bletilla Striata polysaccharide copolymer micelles and enhanced tumour suppression in vivo. J. Pharm. Pharmacol. 2018, 70, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; He, Y.; Chen, Z.; Shi, J.; Qu, Y.; Zhang, J. Effect of Polysaccharides from Bletilla striata on the Healing of Dermal Wounds in Mice. Evid.-Based Complement. Altern. Med. 2019, 9212314. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Li, C.; Zhang, C.; Zeng, R.; Fu, C. Optimization of infrared-assisted extraction of Bletilla striata polysaccharides based on response surface methodology and their antioxidant activities. Carbohydr. Polym. 2016, 148, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.D.; Wang, Z.; Qin, L.H. Drying methods affect bioactive compound contents and antioxidant capacity of Bletilla striata (Thunb.) Reichb.f. flower. Ind. Crop. Prod. 2021, 164, 113388. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.Z.; Long, J.T.; Gong, Z.F.; Nong, K.Y.; Liang, X.M.; Qin, T.; Huang, W.; Yang, L. Current State of Knowledge on the Antioxidant Effects and Mechanisms of Action of Polyphenolic Compounds. Nat. Prod. Commun. 2021, 16, 1934578X211027745. [Google Scholar] [CrossRef]
- Roh, E.; Kim, J.-E.; Kwon, J.Y.; Park, J.S.; Bode, A.M.; Dong, Z.; Lee, K.W. Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging. Crit. Rev. Food Sci. Nutr. 2015, 57, 1631–1637. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, H.X.; Tang, X.L.; Zhou, Y.F. Consideration on development of Bletillae striata based on whitening theory in traditional Chinese medicine. Chin. Tradit. Herb. Drugs 2017, 48, 2313–2320. [Google Scholar] [CrossRef]
- Zhou, Y.K.; Li, W.P.; Tian, S.S.; Ma, D.D.; Jiang, F.S.; Ding, Z.S. Determination of Total Polyphenol Content in Different Parts of Rhizoma Bletillae Striatae. Chin. J. Exp. Tradit. Med. Form. 2012, 18, 161–164. [Google Scholar] [CrossRef]
- Peng, Y.; Tang, K.H. Study on Flash Extraction Process of Total Phenol and Determination of Its Content from Bletilla Striata. J. Anhui Agric. Sci. 2018, 46, 157–160. [Google Scholar]
- Chen, X.Y.; Song, W.; Tan, X.F.; Wang, T.T.; Geng, Y.C.; Wang, W.D.; Kang, Q.J.; Wu, Y.X. Optimization of extraction process of polyphenols from fibrous roots of Bletilla striata and study on its antioxidant and tyrosinase inhibitory activities. Nat. Prod. Res. Dev. 2020, 32, 1134–1142. [Google Scholar] [CrossRef]
- Mehta, N.; Kumar, P.; Verma, A.K.; Umaraw, P.; Khatkar, S.K.; Khatkar, A.B.; Pathak, D.; Kaka, U.; Sazili, A.Q. Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods 2022, 11, 2973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R. Preparation of Rabbit Hair Keratin and Its Application in Ultraviolet Protective Health Products. Master’s Thesis, Tianjin Polytechnic University, Tianjin, China, 2018. [Google Scholar]
- Ma, X.Y.; Zhu, Y. Application of plant polyphenols in cosmetics. Chin. Det. Cosmet. 2018, 41, 40–44. [Google Scholar]
- Liu, J.M.; Liu, G.; Liu, Y.C.; Sun, Q.W.; Zhang, Y.P. Analysis of Chemical Constituents in Baiji(Bletilla Striata) by UPLC-Q-TOF/MS. Chin. Arch. Trad. Chin. Med. 2022, 40, 72–76. [Google Scholar] [CrossRef]
- Li, M.; Guo, S.X.; Wang, C.L.; Yang, J.S.; Xiao, P.G. Distribution characteristics and pharmacological activities of 2-isobutyl malic acid glucose oxybenzyl ester compounds in orchid plants. Chin. Pharm. J. 2010, 45, 724–726. [Google Scholar]
- Li, L.M. Study on the Metabolite and Pharmacokinetics of Militarine from Bletilla Striata in Rats. Ph.D. Thesis, Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2019. [Google Scholar]
- Qin, Y.D.; Wang, R.B.; Tang, H.; Li, L.H. Relationship between HPLC Fingerprint Chromatogram and Antibacterial Activity of Medicinal Herb of Bletilla Rchb. F. Tradit. Chin. Drug. Res. Clin. Pharmacol. 2020, 31, 832–837. [Google Scholar] [CrossRef]
- Gang, Y.Q. Studies on Chemical Constituents from Bletilla striata and Their Biological Activities. Master’s Thesis, South-Central University for Nationalities, Wuhan, China, 2020. [Google Scholar]
- Jiang, S.; Wan, K.; Lou, H.Y.; Yi, P.; Zhang, N.; Zhou, M.; Song, Z.Q.; Wang, W.; Wu, M.-K.; Pan, W.D. Antibacterial bibenzyl derivatives from the tubers of Bletilla striata. Phytochemistry 2019, 162, 216–223. [Google Scholar] [CrossRef]
- Tie, H.; Liao, F.; Wang, C.; Yan, Y.; Xie, X.; Su, N. The active ingredients and safety analysis of colla corii asini as a cosmetic raw material. China Surfactant Deterg. Cosmet. 2020, 50, 38–43+70. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Ge, R.; Zhang, J.; Liu, W.; Mou, K.; Lv, S.; Mu, X. Gossypetin Inhibits Solar-UV Induced Cutaneous Basal Cell Carcinoma Through Direct Inhibiting PBK/TOPK Protein Kinase. Anti-Cancer Agents Med. Chem. 2019, 19, 1029–1036. [Google Scholar] [CrossRef]
- Teixeira, M.A.C.; Piccirillo, C.; Tobaldi, D.M.; Pullar, R.C.; Labrincha, J.A.; Ferreira, M.O.; Castro, P.M.L.; Pintado, M.M.E. Effect of preparation and processing conditions on UV absorbing properties of hydroxyapatite-Fe2O3 sunscreen. Mater. Sci. Eng. C 2017, 71, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L. Study on Sunscreen Performance of the Hemp Plant Ingredients and Its Application in Military Cosmetics. Master’s Thesis, Guangdong Ocean University, Zhanjiang, China, 2013. [Google Scholar]
Experiment No. | Factors | Average Absorption of UVB (%) | |||
---|---|---|---|---|---|
A: Solid–Liquid Ratio (g/mL) | B: Ultrasonic Temperature (℃) | C: Ethanol Concentration (%) | D: Ultrasound Time (min) | ||
1 | 1:30 | 40 | 50 | 40 | 79.74 |
2 | 1:30 | 50 | 60 | 50 | 78.70 |
3 | 1:30 | 60 | 70 | 60 | 78.48 |
4 | 1:40 | 40 | 60 | 60 | 79.02 |
5 | 1:40 | 50 | 70 | 40 | 76.30 |
6 | 1:40 | 60 | 50 | 50 | 84.34 |
7 | 1:50 | 40 | 70 | 50 | 75.78 |
8 | 1:50 | 50 | 50 | 60 | 78.56 |
9 | 1:50 | 60 | 60 | 40 | 80.72 |
Item | Level | A: Solid–Liquid Ratio (g/mL) | B: Ultrasonic Temperature (°C) | C: Ethanol Concentration (%) | D: Ultrasound Time (min) |
---|---|---|---|---|---|
K value | 1 | 236.92 | 234.54 | 242.64 | 236.76 |
2 | 239.66 | 233.56 | 230.56 | 238.82 | |
3 | 235.06 | 243.54 | 238.44 | 236.06 | |
K avg value | 1 | 78.97 | 78.18 | 80.88 | 78.92 |
2 | 79.89 | 77.85 | 76.85 | 79.61 | |
3 | 78.35 | 81.18 | 79.48 | 78.69 | |
Optimum level | 2 | 3 | 1 | 2 | |
R | 1.53 | 3.33 | 4.03 | 0.92 | |
Number of levels | 3 | 3 | 3 | 3 | |
Number of repetitions per level r | 3.0 | 3.0 | 3.0 | 3.0 |
Test Number | Weight of Medicinal Materials (g) | Average Absorption of UVB (%) | x ± s (%) |
---|---|---|---|
1 | 1.0002 | 84.40 | 84.38 ± 0.07 |
2 | 1.0001 | 84.28 | |
3 | 1.0000 | 84.46 |
Level | A: Solid–Liquid Ratio (g/mL) | B: Ultrasonic Temperature (°C) | C: Ethanol Concentration (%) | D: Ultrasonic Time (min) |
---|---|---|---|---|
1 | 1:30 | 40 | 50 | 40 |
2 | 1:40 | 50 | 60 | 50 |
3 | 1:50 | 60 | 70 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Tan, Z.; Zhang, H.; Tang, S.; Sooranna, S.R.; Xie, J. Optimization of an Ultrasound-Assisted Extraction Technique and the Effectiveness of the Sunscreen Components Isolated from Bletilla striata. Molecules 2024, 29, 2786. https://doi.org/10.3390/molecules29122786
Luo Y, Tan Z, Zhang H, Tang S, Sooranna SR, Xie J. Optimization of an Ultrasound-Assisted Extraction Technique and the Effectiveness of the Sunscreen Components Isolated from Bletilla striata. Molecules. 2024; 29(12):2786. https://doi.org/10.3390/molecules29122786
Chicago/Turabian StyleLuo, Yan, Zhenyuan Tan, Hancui Zhang, Shuai Tang, Suren R. Sooranna, and Jizhao Xie. 2024. "Optimization of an Ultrasound-Assisted Extraction Technique and the Effectiveness of the Sunscreen Components Isolated from Bletilla striata" Molecules 29, no. 12: 2786. https://doi.org/10.3390/molecules29122786
APA StyleLuo, Y., Tan, Z., Zhang, H., Tang, S., Sooranna, S. R., & Xie, J. (2024). Optimization of an Ultrasound-Assisted Extraction Technique and the Effectiveness of the Sunscreen Components Isolated from Bletilla striata. Molecules, 29(12), 2786. https://doi.org/10.3390/molecules29122786