Polyaromatic Hydrocarbon Inclusion Complexes with 2-Hydroxylpropyl-β/γ-Cyclodextrin: Molecular Dynamic Simulation and Spectroscopic Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fluorescence Measurements
2.2. NMR Spectroscopy
2.3. Molecular Dynamic Simulations
2.4. X-ray Diffraction
2.5. Field Emission Scanning Electron Microscopy (SEM)
3. Materials and Methods
3.1. Materials
Preparation of Solid Inclusion Complexes and Physical Mixtures
Co-Precipitation Method
Preparation of the Physical Mixture
3.2. Methods
3.2.1. Fluorescence Measurements
3.2.2. 1H NMR Spectroscopy
3.2.3. Powder X-ray Diffractometry
3.2.4. Field Emission Scanning Electron Microscopy SEM
3.2.5. Molecular Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wüpper, S.; Lüersen, K.; Rimbach, G. Cyclodextrins, Natural Compounds, and Plant Bioactives—A Nutritional Perspective. Biomolecules 2021, 11, 401. [Google Scholar] [CrossRef]
- Poulson, B.G.; Alsulami, Q.A.; Sharfalddin, A.; El Agammy, E.F.; Mouffouk, F.; Emwas, A.-H.; Jaremko, L.; Jaremko, M. Cyclodextrins: Structural, Chemical, and Physical Properties, and Applications. Polysaccharides 2022, 3, 1–31. [Google Scholar] [CrossRef]
- Pereira, A.G.; Carpena, M.; Oliveira, P.G.; Mejuto, J.C.; Prieto, M.A.; Gandara, J.S. Main Applications of Cyclodextrins in the Food Industry as the Compounds of Choice to Form Host–Guest Complexes. Int. J. Mol. Sci. 2021, 22, 1339. [Google Scholar] [CrossRef]
- Jadhav, P.; Pore, Y. Physicochemical, thermodynamic and analytical studies on binary and ternary inclusion complexes of bosentan with hydroxypropyl-β-cyclodextrin. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 147–154. [Google Scholar] [CrossRef]
- Sandilya, A.A.; Natarajan, U.; Priya, M.H. Molecular View into the Cyclodextrin Cavity: Structure and Hydration. ACS Omega 2020, 5, 25655–25667. [Google Scholar] [CrossRef]
- Sandilya, A.A.; Natarajan, U.; Priya, M.H. Study of freeze-dried quercetin-cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J. Pharm. Biomed. Anal. 2004, 34, 333–339. [Google Scholar]
- Mokhtar, M.S.; Suliman, F.O.; Elbashir, A.A. Atrazine and ametryne inclusion complexes with 2-hydroxypropyl-β/γ-cyclodextrin: Spectroscopic studies and molecular dynamics simulation. J. Mol. Struct. 2019, 1179, 161–170. [Google Scholar] [CrossRef]
- Rajamohan, R.; Swaminathan, M. Effect of inclusion complexation on the photophysical behavior of diphenylamine in β-cyclodextrin medium: A study by electronic spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 83, 207–212. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, J.; He, J.; Li, J.; Cai, J. Cyclodextrin Inclusion Complexes and Their Application in Food Safety Analysis: Recent Developments and Future Prospects. Foods 2022, 11, 3871. [Google Scholar] [CrossRef]
- Cid-Samamed, A.; Rakmai, J.; Mejuto, J.C.; Simal-Gandara, J.; Astray, G. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem. 2022, 384, 132467. [Google Scholar] [CrossRef]
- Loftsson, T.; HSigurdsson, H.; Jansook, P. Anomalous Properties of Cyclodextrins and Their Complexes in Aqueous Solutions. Materials 2023, 16, 2223. [Google Scholar] [CrossRef]
- Cristina, T.; Iulia, M.; Mihaela, H. The Determination of the Stoichiometry of Cyclodextrin Inclusion Complexes by Spectral Methods: Possibilities and Limitations, in Stoichiometry and Research; Alessio, I., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 3. [Google Scholar]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef]
- Matencio, A.; Navarro-Orcajada, S.; Garcia-Carmona, F.; Lopez-Nicolas, J.M. Applications of cyclodextrins in food science. A review. Trends Food Sci. Technol. 2020, 104, 132–143. [Google Scholar] [CrossRef]
- Rassu, G.; Sorrenti, M.; Catenacci, L.; Pavan, B.; Ferraro, L.; Gavini, E.; Bonferoni, M.C.; Giunchedi, P.; Dalpiaz, A. Versatile Nasal Application of Cyclodextrins: Excipients and/or Actives? Pharmaceutics 2021, 13, 1180. [Google Scholar] [CrossRef]
- Jug, M.; Yoon, B.K.; Jackman, J.A. Cyclodextrin-based Pickering emulsions: Functional properties and drug delivery applications. J. Incl. Phenom. Macrocycl. Chem. 2021, 101, 31–50. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Rageh, A.H.; Ali, M.F.; Mohamed, F.A. Micelle and inclusion complex enhanced spectrofluorimetric methods for determination of Retigabine: Application in pharmaceutical and biological analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 207, 251–261. [Google Scholar] [CrossRef]
- Costa, J.A.S.; de Jesus, R.A.; da Silva, C.M.P.; Romão, L.P.C. Efficient adsorption of a mixture of polycyclic aromatic hydrocarbons (PAHs) by Si–MCM–41 mesoporous molecular sieve. Powder Technol. 2017, 308, 434–441. [Google Scholar] [CrossRef]
- Syahrir, M.; Wijaya, M.; Ilyas, N.M. The Characteristics of Naphthalene and Phenanthrene as Polycyclic Aromatic Hydrocarbons (PAH) Compounds in The Marine Sediment of Tanjung Bayang Beach in Makassar. J. Phys. Conf. Ser. 2021, 1899, 012033. [Google Scholar] [CrossRef]
- Fasano, E.; Yebra-Pimentel, I.; Martínez-Carballo, E.; Simal-Gándara, J. Profiling, distribution and levels of carcinogenic polycyclic aromatic hydrocarbons in traditional smoked plant and animal foods. Food Control 2016, 59, 581–590. [Google Scholar] [CrossRef]
- Fan, X.; Li, W.; Chen, L.; Ouyang, T.; Fei, Y. Sequential Extraction of Coal Tar Pitch and Structural Characterization of Enriched Large Polycyclic Aromatic Hydrocarbons. ChemistrySelect 2019, 4, 4874–4882. [Google Scholar] [CrossRef]
- De, J.; Setia, S.; Pal, S.K. Synthesis, Mesomorphism and Photoluminescence of a New Class of Anthracene-based Discotic Liquid Crystals. ChemistrySelect 2016, 1, 5075–5082. [Google Scholar] [CrossRef]
- Yan, S.; Wu, G. Uptake of Polycyclic Aromatic Hydrocarbons across Bacterial Membrane. Adv. Microbiol. 2020, 10, 331–348. [Google Scholar] [CrossRef]
- Zhou, Q.; Lei, M.; Wu, Y.; Yuan, Y. Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101 (Cr) modified zero valent iron nano-particles. J. Chromatogr. A 2017, 1487, 22–29. [Google Scholar] [CrossRef]
- Baviera, G.S.; Donate, P.M. Recent advances in the syntheses of anthracene derivatives. Beilstein J. Org. Chem. 2021, 17, 2028–2050. [Google Scholar] [CrossRef]
- Hillenweck, A.; Canlet, C.; Mauffret, A.; Debrauwer, L.; Claireaux, G.; Cravedi, J.-P. Characterization of biliary metabolites of fluoranthene in the common sole (Solea solea). Environ. Toxicol. Chem. 2008, 27, 2575–2581. [Google Scholar] [CrossRef]
- Diaz-Uribe, C.; Vallejo, W.; Quiñones, C. Physical-Chemical Study of Anthracene Selective Oxidation by a Fe(III)-Phenylporhyrin Derivative. Int. J. Mol. Sci. 2020, 21, 353. [Google Scholar] [CrossRef] [PubMed]
- McCune, J.A.; Scherman, O.A. 1.17—Cucurbit[n]urils, in Comprehensive Supramolecular Chemistry II; Atwood, J.L., Ed.; Elsevier: Oxford, UK, 2017; pp. 405–434. [Google Scholar]
- Sueishi, Y.; Fujita, T.; Nakatani, S.; Inazumi, N.; Osawa, Y. The enhancement of fluorescence quantum yields of anilino naphthalene sulfonic acids by inclusion of various cyclodextrins and cucurbit[7]uril. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 114, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Steed, J.W.; Atwood, J.L. Concepts. In Supramolecular Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 1–48. [Google Scholar]
- Lakowicz, J.R. Effects of Solvents on Fluorescence Emission Spectra. In Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 1983; pp. 187–215. [Google Scholar]
- Yang, H.; Shi, Z.; Wang, X.-X.; Cheng, R.; Lu, M.; Zhu, J.; Deng, W.; Zeng, Y.; Zhao, L.-Y.; Zhang, S.-Y. Phenanthrene, but not its isomer anthracene, effectively activates both human and mouse nuclear receptor constitutive androstane receptor (CAR) and induces hepatotoxicity in mice. Toxicol. Appl. Pharmacol. 2019, 378, 114618. [Google Scholar] [CrossRef]
- Elbashir, A.A.; Alfadil, A.A.; Suliman, F.O.; Alnajjar, A.O. Investigation of the Interaction of Benzo(a)Pyrene and Fluoranthene with Cucurbit[n]urils (n = 6–8): Experimental and Molecular Dynamic Study. Molecules 2023, 28, 1136. [Google Scholar] [CrossRef]
- Saenger, W. Cyclodextrin Inclusion Compounds in Research and Industry. Angew. Chem. Int. Ed. Engl. 1980, 19, 344–362. [Google Scholar] [CrossRef]
- Kurkov, S.V.; Loftsson, T. Cyclodextrins. Int. J. Pharm. 2013, 453, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Antony Muthu Prabhu, A.; Subramanian, V.K.; Rajendiran, N. Excimer formation in inclusion complexes of β-cyclodextrin with salbutamol, sotalol and atenolol: Spectral and molecular modeling studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 96, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guo, Q.-X. The Driving Forces in the Inclusion Complexation of Cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 42, 1–14. [Google Scholar] [CrossRef]
- Pereva, S.; Nikolova, V.; Angelova, S.; Spassov, T.; Dudev, T. Water inside β-cyclodextrin cavity: Amount, stability and mechanism of binding. Beilstein J. Org. Chem. 2019, 15, 1592–1600. [Google Scholar] [CrossRef] [PubMed]
- Morillo, E.; Sánchez-Trujillo, M.A.; Moyano, J.R.; Villaverde, J.; Gómez-Pantoja, M.E.; Pérez-Martínez, J.I. Enhanced Solubilisation of Six PAHs by Three Synthetic Cyclodextrins for Remediation Applications: Molecular Modelling of the Inclusion Complexes. PLoS ONE 2012, 7, e44137. [Google Scholar] [CrossRef] [PubMed]
- Thi, T.D.; Nauwelaerts, K.; Froeyen, M.; Baudemprez, L.; Van Speybroeck, M.; Augustijns, P.; Annaert, P.; Martens, J.; Van Humbeeck, J.; Mooter, G.V.D. Comparison of the complexation between methylprednisolone and different cyclodextrins in solution by 1H-NMR and molecular modeling studies. J. Pharm. Sci. 2010, 99, 3863–3873. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.R.; Becker, B.A.; Morris, K.F.; Larive, C.K. NMR characterization of the host–guest inclusion complex between β-cyclodextrin and doxepin. Magn. Reson. Chem. 2008, 46, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Puttreddy, R.; Beyeh, N.K.; Ras, R.H.; Rissanen, K. Host–Guest Complexes of C-Ethyl-2-methylresorcinarene and Aromatic N,N′-Dioxides. ChemistryOpen 2017, 6, 417–423. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R. Introduction to Spectroscopy; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
- Zhu, X.; Wu, G.; Chen, D. Molecular dynamics simulation of cyclodextrin aggregation and extraction of Anthracene from non-aqueous liquid phase. J. Hazard. Mater. 2016, 320, 169–175. [Google Scholar] [CrossRef]
- Kalescky, R.; Kraka, E.; Cremer, D. Description of Aromaticity with the Help of Vibrational Spectroscopy: Anthracene and Phenanthrene. J. Phys. Chem. A 2014, 118, 223–237. [Google Scholar] [CrossRef]
- Herbstein, F.H.; Kaftory, M. Molecular compounds and complexes. V. Crystallography of equimolar aromatic hydrocarbon:l-X-2,4,6-trinitrobenzene molecular compounds. Crystal structure of fluoranthene: Picryl bromide, polymorph I. Acta Crystallogr. Sect. B 1975, 31, 60–67. [Google Scholar] [CrossRef]
- Periasamy, R.; Rajamohan, R.; Kothainayaki, S.; Sivakumar, K. Spectral investigation and structural characterization of Dibenzalacetone: β-Cyclodextrin inclusion complex. J. Mol. Struct. 2014, 1068, 155–163. [Google Scholar] [CrossRef]
- Rubim, A.M.; Rubenick, J.B.; Maurer, M.; Laporta, L.V.; Rolim, C.M.B. Inclusion complex of amiodarone hydrochloride with cyclodextrins: Preparation, characterization and dissolution rate evaluation. Braz. J. Pharm. Sci. 2017, 53, e16083. [Google Scholar] [CrossRef]
- Dang, Z.; Song, L.X.; Guo, X.Q.; Du, F.Y.; Yang, J.; Yang, J. Applications of Powder X-ray Diffraction to Inclusion Complexes of Cyclodextrins. Curr. Org. Chem. 2011, 15, 848–861. [Google Scholar] [CrossRef]
- Dzombak, D.A.; Luthy, R.G. Estimating Adsorption of Polycyclic Aromatic Hydrocarbons on Soil. Soil Sci. 1984, 137, 292–308. [Google Scholar] [CrossRef]
- Satouh, S.; Martín, J.; Orta, M.d.M.; Medina-Carrasco, S.; Messikh, N.; Bougdah, N.; Santos, J.L.; Aparicio, I.; Alonso, E. Adsorption of Polycyclic Aromatic Hydrocarbons by Natural, Synthetic and Modified Clays. Environments 2021, 8, 124. [Google Scholar] [CrossRef]
- Zhou, Y.; Jie, K.; Zhao, R.; Huang, F. Supramolecular-Macrocycle-Based Crystalline Organic Materials. Adv. Mater. 2020, 32, 1904824. [Google Scholar] [CrossRef] [PubMed]
- Thallapally, P.K.; McGrail, B.P.; Atwood, J.L.; Gaeta, C.; Tedesco, C.; Neri, P. Carbon Dioxide Capture in a Self-Assembled Organic Nanochannels. Chem. Mater. 2007, 19, 3355–3357. [Google Scholar] [CrossRef]
- Tian, J.; Thallapally, P.K.; McGrail, B.P. Porous organic molecular materials. CrystEngComm 2012, 14, 1909–1919. [Google Scholar] [CrossRef]
- Roy, S.; Titi, H.M.; Goldberg, I. Supramolecular organic frameworks (SOFs) of tetrakis(4-hydroxyphenyl)porphyrin with efficient guest inclusion. CrystEngComm 2016, 18, 3372–3382. [Google Scholar] [CrossRef]
- Gao, S.; Bie, C.; Ji, Q.; Ling, H.; Li, C.; Fu, Y.; Zhao, L.; Ye, F. Preparation and characterization of cyanazine–hydroxypropyl-beta-cyclodextrin inclusion complex. RSC Adv. 2019, 9, 26109–26115. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Yang, J.; Wang, Q.; Ren, L.; Zhou, J. Physicochemical properties of catechin/β-cyclodextrin inclusion complex obtained via co-precipitation. CyTA J. Food 2019, 17, 544–551. [Google Scholar] [CrossRef]
- Srinivasan, K.; Stalin, T. Study of inclusion complex between 2,6-dinitrobenzoic acid and β-cyclodextrin by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD, SEM and photophysical methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; Patel, P.; Jakhar, A.; Khan, N.H.; Biradar, A.V.; Kureshy, R.I.; Bajaj, H.C. Cucurbit[6]uril-Stabilized Palladium Nanoparticles as a Highly Active Catalyst for Chemoselective Hydrogenation of Various Reducible Groups in Aqueous Media. ChemistrySelect 2017, 2, 9911–9919. [Google Scholar] [CrossRef]
- Hedges, A.R. Industrial Applications of Cyclodextrins. Chem. Rev. 1998, 98, 2035–2044. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Guo, C.; Chen, Y. Analysis of Polycyclic Aromatic Hydrocarbon (PAH) Mixtures Using Diffusion-Ordered NMR Spectroscopy and Adsorption by Powdered Activated Carbon and Biochar. Materials 2018, 11, 460. [Google Scholar] [CrossRef]
- Plummer, B.F. Modeling and NMR Studies of Somè Polycyclic Aromatic Hydrocarbons. Polycycl. Aromat. Compd. 1994, 4, 25–39. [Google Scholar] [CrossRef]
PHN:[Host] Complex | Molar Ratio | Binding Constant M−1 | Equation | R2 |
---|---|---|---|---|
2-HP-β-CD | 1:1 | 85 ± 12 | Y = (5.5 × 10−5)X + 0.0046 | 0.9973 |
2-HP-γ-CD | 1:1 | 49 ± 29 | Y = (1.02 × 10−4)X + 0.005 | 0.984 |
ANT:[Host] complex | ||||
2-HP-β-CD | 1:1 | 502 ± 46 | Y = (1.00 × 10−4)X + 0.0147 | 0.9746 |
2-HP-γ-CD | 1:1 | 289 ±44 | Y = (4.00 × 10−7)X + 0.0949 | 0.9994 |
BaP:[Host] complex | ||||
2-HP-β-CD | 1:1 | 1500 ± 200 | Y = (4.0 × 10−7)X + 0.0006 | 0.9994 |
2-HP-γ-CD | 1:1 | 94 ± 28 | Y = (3.67 × 10−6)X + 0.0003 | 0.995 |
FLT:[Host] complex | ||||
2-HP-β-CD | 1:1 | 1060 ± 60 | Y = (9.06 × 10−6)X + 0.0095 | 0.9867 |
2-HP-γ-CD | 1:1 | 0.14 ± 14 | Y = (8.7 × 10−5)X + 1.1 × 10−5 | 0.992 |
Proton | δ(Free)/ppm | δ(B[a]P-HP-β-CD)/ppm | Δδ(δComplex − δFree)/ppm | δ(B[a]P-HP-γ-CD)/ppm | Δδ(δComplex − δFree)/ppm |
---|---|---|---|---|---|
H1′ | 8.4040 | 8.3960 | −0.0080 | 8.3980 | −0.0060 |
H2′ | 8.2280 | 8.2180 | −0.0100 | 8.2200 | −0.0080 |
H3′ | 8.3760 | 8.3660 | −0.0100 | 8.3680 | −0.0080 |
H4′ | 8.0700 | 8.0580 | −0.0120 | 8.0610 | −0.0090 |
H5′ | 8.1320 | 8.1240 | −0.0080 | 8.1260 | −0.0060 |
H6′ | 8.7170 | 8.7100 | −0.0070 | 8.7130 | −0.0040 |
H7′ | 8.4600 | 8.4530 | −0.0073 | 8.4555 | −0.0045 |
H8′ | 7.8606 | 7.8500 | −0.0105 | 7.8520 | −0.0085 |
H9′ | 7.9025 | 7.8930 | −0.0095 | 7.8950 | −0.0075 |
H10′ | 9.2525 | 9.2410 | −0.0115 | 9.2450 | −0.0075 |
H11′ | 9.2275 | 8.2170 | −0.0105 | 9.2200 | −0.0075 |
H12′ | 8.4725 | 8.4660 | −0.0065 | 8.4685 | −0.0040 |
Proton | δ(free)/ppm | δ(FLT-HP-β-CD)/ppm | Δδ(δComplex − δfree)/ppm | δ(FLT-HP-γ-CD)/ppm | Δδ(δComplex − δfree)/ppm |
---|---|---|---|---|---|
H1’ | 8.1325 | 8.1350 | 0.0025 | 8.1360 | 0.0035 |
H2’ | 7.715 | 7.7170 | 0.0020 | 7.7180 | 0.0030 |
H3’ | 7.9620 | 7.9630 | 0.0010 | 7.9640 | 0.0020 |
H4’ | 8.057 | 8.0580 | 0.0010 | 8.0590 | 0.0020 |
H5’ | 7.4275 | 7.4295 | 0.0020 | 7.4295 | 0.0020 |
Compound | RMSD (Å) | rgyr (Å) |
---|---|---|
BaP-2-HP-β-CD | 2.57 ± 0.33 | 6.35 ± 0.06 |
BaP | 0.20 ± 0.04 | 3.18 ± 0.01 |
2-HP-β-CD | 1.86 ± 0.21 | 6.58 ± 0.11 |
BaP-2-HP-γ-CD | 3.32 ± 0.48 | 6.57 ± 0.12 |
BaP | 0.18 ± 0.04 | 3.18 ± 0.01 |
2-HP-γ-CD | 3.07 ± 0.37 | 6.76 ± 0.17 |
Compound | RMSD (Å) | rgyr (Å) |
---|---|---|
FLT-2-HP-β-CD | 1.67 ± 0.21 | 6.35 ± 0.07 |
FLT | 0.19 ± 0.04 | 2.74 ± 0.01 |
2-HP-β-CD | 1.57 ± 0.19 | 6.66 ± 0.09 |
FLT-2-HP-γ-CD | 3.00 ± 0.37 | 6.57 ± 0.09 |
FLT | 0.18 ± 0.03 | 2.74 ± 0.01 |
2-HP-γ-CD | 3.12 ± 0.36 | 6.85 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsadun, N.S.; Alfadil, A.A.; Elbashir, A.A.; Suliman, F.O.; Ali Omar, M.M.; Ahmed, A.Y. Polyaromatic Hydrocarbon Inclusion Complexes with 2-Hydroxylpropyl-β/γ-Cyclodextrin: Molecular Dynamic Simulation and Spectroscopic Studies. Molecules 2024, 29, 2535. https://doi.org/10.3390/molecules29112535
Alsadun NS, Alfadil AA, Elbashir AA, Suliman FO, Ali Omar MM, Ahmed AY. Polyaromatic Hydrocarbon Inclusion Complexes with 2-Hydroxylpropyl-β/γ-Cyclodextrin: Molecular Dynamic Simulation and Spectroscopic Studies. Molecules. 2024; 29(11):2535. https://doi.org/10.3390/molecules29112535
Chicago/Turabian StyleAlsadun, Norah S., Amira A. Alfadil, Abdalla A. Elbashir, FakhrEldin O. Suliman, Mei Musa Ali Omar, and Amel Y. Ahmed. 2024. "Polyaromatic Hydrocarbon Inclusion Complexes with 2-Hydroxylpropyl-β/γ-Cyclodextrin: Molecular Dynamic Simulation and Spectroscopic Studies" Molecules 29, no. 11: 2535. https://doi.org/10.3390/molecules29112535
APA StyleAlsadun, N. S., Alfadil, A. A., Elbashir, A. A., Suliman, F. O., Ali Omar, M. M., & Ahmed, A. Y. (2024). Polyaromatic Hydrocarbon Inclusion Complexes with 2-Hydroxylpropyl-β/γ-Cyclodextrin: Molecular Dynamic Simulation and Spectroscopic Studies. Molecules, 29(11), 2535. https://doi.org/10.3390/molecules29112535