High Coulomb Efficiency Sn–Co Alloy/rGO Composite Anode Material for Li–ion Battery with Long Cycle–Life
Abstract
:1. Introduction
2. Results and Discussions
2.1. Microstructure and Composition
2.2. Electrochemical Performance
3. Materials and Methods
3.1. Preparation of Materials
3.2. Materials Characterization
3.3. Electrochemical Measurements
3.4. Theoretical Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Qu, S.; Yang, M.; Zhang, J. Materials and electrode engineering of high capacity anodes in lithium ion batteries. J. Power Sources 2020, 450, 227697. [Google Scholar] [CrossRef]
- Im, H.S.; Cho, Y.J.; Lim, Y.P.; Jung, C.S.; Jang, D.M.; Park, J.; Shojaei, F.; Kang, H.S. Phase evolution of tin nanocrystals in lithium ion batteries. ACS Nano 2013, 7, 11103–11111. [Google Scholar] [CrossRef] [PubMed]
- Bintang, H.M.; Lee, S.; Shin, S.; Kim, B.G.; Jung, H.-G.; Whang, D.; Lim, H.-D. Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries. Chem. Eng. J. 2021, 424, 130524. [Google Scholar] [CrossRef]
- Ahn, J.H.; Wang, G.X.; Yao, J.; Liu, H.K.; Dou, S.X. Tin-based composite materials as anode materials for Li-ion batteries. J. Power Sources 2003, 119, 45–49. [Google Scholar] [CrossRef]
- Cook, J.B.; Detsi, E.; Liu, Y.; Liang, Y.-L.; Kim, H.-S.; Petrissans, X.; Dunn, B.; Tolbert, S.H. Nanoporous tin with a granular hierarchical ligament morphology as a highly stable Li-ion battery anode. ACS Appl. Mater. Interfaces 2017, 9, 293–303. [Google Scholar] [CrossRef]
- Arbizzani, C.; Beninati, S.; Lazzari, M.; Mastragostino, M. Carbon paper as three-dimensional conducting substrate for tin anodes in lithium-ion batteries. J. Power Sources 2005, 141, 149–155. [Google Scholar] [CrossRef]
- Gurung, A.; Naderi, R.; Vaagensmith, B.; Varnekar, G.; Zhou, Z.; Elbohy, H.; Qiao, Q. Tin selenide-mult-walled carbon nanotubes hybrid anodes for high performance lithium-ion batteries. Electrochim. Acta 2016, 211, 720–725. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, L.; Yu, X.; Lou, X. Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Adv. Energy Mater. 2016, 22, 1601177. [Google Scholar] [CrossRef]
- Shen, Z.; Hu, Y.; Chen, Y.; Zhang, X.; Wang, K.; Chen, R. Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries. J. Power Sources 2015, 278, 660–667. [Google Scholar] [CrossRef]
- Bai, X.; Wang, B.; Wang, H.; Jiang, J. Preparation and electrochemical properties of profiled carbon fiber-supported Sn anodes for lithium-ion batteries. J. Alloys Compd. 2015, 628, 407–412. [Google Scholar] [CrossRef]
- Luo, B.; Qiu, T.; Ye, D.; Wang, L.; Zhi, L. Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy 2016, 22, 232–240. [Google Scholar] [CrossRef]
- Beck, F.R.; Epur, R.; Hong, D.; Manivannan, A.; Kumta, P. Microwave derived facile approach to Sn/graphene composite anodes for lithium-ion batteries. Electrochim. Acta 2014, 127, 299–306. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Panina, L.V.; Kostishyn, V.G.; Turchenko, V.A.; Trukhanova, E.L.; Trukhanov, A.V.; Zubar, T.I.; Ivanov, V.M.; Tishkevich, D.I.; et al. Temperature evolution of the structure parameters and exchange interactions in BaFe12-xInxO19. J. Magn. Magn. Mater. 2018, 466, 393–405. [Google Scholar] [CrossRef]
- Zdorovets, M.V.; Kozlovskiy, A.L.; Shlimas, D.I.; Borgekov, D.B. Phase transformations in FeCo-Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J. Mater. Sci. Mater. Electron. 2021, 32, 16694–16705. [Google Scholar] [CrossRef]
- Mo, R.; Tan, X.; Li, F.; Tao, R.; Xu, J.; Kong, D.; Wang, Z.; Xu, B.; Wang, X.; Wang, C.; et al. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities. Nat. Commun. 2020, 11, 1374. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Ahn, H.; Wang, G. Microwave hydrothermal synthesis of high performance tin-graphene nanocomposites for lithium ion batteries. J. Power Sources 2012, 216, 22–27. [Google Scholar] [CrossRef]
- Qin, J.; He, C.; Zhao, N.; Wang, Z.; Shi, C.; Liu, E.-Z.; Li, J. Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 2014, 8, 1728–1738. [Google Scholar] [CrossRef]
- Granados-Moreno, M.; Moreno-Fernández, G.; Cid, R.; Gómez-Urbano, J.L.; Carriazo, D. Microstructured nitrogen-doped graphene-Sn composites as a negative electrode for high performance lithium-ion hybrid supercapacitors. Sustain. Energy Fuels 2022, 6, 700–710. [Google Scholar] [CrossRef]
- Liu, K.; Zheng, H.; Wang, J.; Zhou, Y.; Zhang, N.; Du, Y.; Man, J.; Henkelman, G.; Sun, J. Green self-derived templating preparation of nitrogen, sulfur co-doped porous carbon/tin composites with synergistic effect towards high-performance lithium-ion batteries. Appl. Surf. Sci. 2022, 580, 152319. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Xiao, Q.; Jia, L.; Lin, H.; Zhang, Y. Hierarchical sulfur-doped graphene foam embedded with Sn nanoparticles for superior lithium storage in LiFSI-based electrolyte. ACS Appl. Mater. Interfaces 2019, 11, 30500–30507. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Huang, X.; Guo, X.; Mao, S.; Chen, J. Decorating in situ ultrasmall tin particles on crumpled N-doped graphene for lithium-ion batteries with a long life cycle. J. Power Sources 2016, 328, 482–491. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Güner, S.; Slimani, Y.; Hassan, M.; Baykal, A.; Gondal, M.A.; Baig, U.; Trukhanov, S.V.; Trukhanov, A.V. Structural and magnetic properties of Co0.5Ni0.5Ga0.01Gd0.01Fe1.98O4/ZnFe2O4 spinel ferrite nanocomposites: Comparative study between sol-gel and pulsed laser ablation in liquid approaches. Nanomaterials 2021, 11, 2461. [Google Scholar] [CrossRef] [PubMed]
- Kozlovskiy, A.L.; Shlimas, D.I.; Zdorovets, M.V. Synthesis, structural properties and shielding efficiency of glasses based on TeO2-(1-x)ZnO-xSm2O3. J. Mater. Sci. Mater. Electron. 2021, 32, 12111–12120. [Google Scholar] [CrossRef]
- Ventura, T.; Terzi, S.; Rappaz, M.; Dahle, A.K. Effects of solidification kinetics on microstructure formation in binary Sn-Cu solder alloys. Acta Mater. 2011, 59, 1651–1658. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, G.; Zhang, J. Preparation of Sn-Cu-graphene nanocomposites with superior reversible lithium ion storage. Mater. Lett. 2016, 185, 565–568. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Zhang, X.; Ding, Y.; Wang, Y.; Wu, X.; Li, Q. Scalable synthesis of SnCo/NC composite as a high performance anode material for lithium-ion batteries. J. Alloys Compd. 2019, 775, 975–981. [Google Scholar] [CrossRef]
- Xin, F.X.; Tian, H.J.; Wang, X.L.; Xu, W.; Zheng, W.G.; Han, W.Q. Enhanced electrochemical performance of Fe0.74Sn5@reduced graphene oxide nanocomposite anodes for both Li-ion and Na-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 7912–7919. [Google Scholar] [CrossRef]
- Yakovenko, O.; Lazarenko, O.; Matzui, L.; Vovchenko, L.; Borovoy, M.; Tesel’ko, P.; Lozitsky, O.; Astapovich, K.; Trukhanov, A.; Trukhanov, S. Effect of Ga content on magnetic properties of BaFe12-xGaxO19/epoxy composites. J. Mater. Sci. 2020, 55, 9385–9395. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Zhumanazar, N.; Gorin, Y.G.; Yeszhanov, A.B.; Zdorovets, M.V. Enhancement of electrochemical detection of Pb2+ by sensor based on track-etched membranes modified with interpolyelectrolyte complexes. J. Mater. Sci. Mater. Electron. 2020, 31, 20368–20377. [Google Scholar] [CrossRef]
- Todd, A.D.W.; Ferguson, P.P.; Fleischauer, M.D.; Dahn, J.R. Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods. Int. J. Energy Res. 2010, 34, 535–555. [Google Scholar] [CrossRef]
- Shams, M.; Guiney, L.M.; Huang, L.; Ramesh, M.; Yang, X.; Hersam, M.C. Chowdhury, I. Influence of functional groups on the degradation of graphene oxide nanomaterials. Environ. Sci.-Nano. 2019, 6, 2203–2214. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M.A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019, 45, 14439–14448. [Google Scholar] [CrossRef]
- Wang, X.; Han, J.; Luo, C.; Zhang, B.; Ma, J.; Li, Z.; He, Y.B.; Yang, Q.H.; Kang, F.; Lv, W. Coordinated adsorption and catalytic conversion of polysulfides enabled by perovskite bimetallic hydroxide nanocages for lithium-sulfur batteries. Small 2021, 17, 2101538. [Google Scholar] [CrossRef]
- Huang, X.; Cui, S.; Chang, J.; Hallac, P.B.; Fell, C.R.; Luo, Y.; Metz, B.; Jiang, J.; Hurley, P.T.; Chen, J. A hierarchical Tin/Carbon composite as an anode for lithium-ion batteries with a long cycle life. Angew. Chem. Int. Edit. 2015, 54, 1490–1493. [Google Scholar] [CrossRef]
- Surace, Y.; Leanza, D.; Mirolo, M.; Kondracki, Ł.; Vaz, C.A.F.; Kazzi, M.E.; Novák, P.; Trabesinger, S. Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery. Energy Storag. Mater. 2022, 44, 156–167. [Google Scholar] [CrossRef]
- Reddy, B.S.; Lee, T.H.; Reddy, N.S.; Ahn, H.-J.; Ahn, J.-H.; Cho, K.-K. Nano tin encapsulated in copper grooves as an anode for high-performance lithium-ion batteries. J. Alloys Compd. 2022, 918, 165578. [Google Scholar] [CrossRef]
- Ryu, J.; Kim, H.; Kang, J.; Bark, H.; Park, S.; Lee, H. Dual buffering inverse design of three-dimensional graphene-supported Sn-TiO2 anodes for durable lithium-ion batteries. Small 2020, 16, 2004861. [Google Scholar] [CrossRef]
- Zeng, L.; Deng, C.; Zheng, C.; Qiu, H.; Qian, Q.; Chen, Q.; Wei, M. SnCo-CMK nanocomposite with improved electrochemical performance for lithium-ion batteries. Mater. Res. Bull. 2015, 71, 42–47. [Google Scholar] [CrossRef]
- Tian, H.; Xin, F.; Wang, X.; He, W.; Han, W. High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J. Mater. 2015, 1, 153–169. [Google Scholar] [CrossRef]
- Fu, C.; Zhao, G.; Zhang, H.; Li, S. Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries. Int. J. Electrochem. Sci. 2013, 8, 6269–6280. [Google Scholar]
- Noonan, O.; Liu, Y.; Huang, X.; Yu, C. Layered graphene/mesoporous carbon heterostructures with improved mesopore accessibility for high performance capacitive deionization. J. Mater. Chem. A 2018, 6, 14272–14280. [Google Scholar] [CrossRef]
- Kaghazchi, P. Phase-sensitivity of Li intercalation into Sn. J. Phys.-Condens. Matter 2013, 25, 382204. [Google Scholar] [CrossRef] [PubMed]
- Hummers, W.; Offeman, R. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.J.; Refson, K.; Payne, M. First principles methods using CASTEP. Z. Kristallogr.-Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Mills, G.; Jónsson, H. Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. Phys. Rev. Lett. 1994, 72, 1124. [Google Scholar] [CrossRef]
Sintering Temperature | Rs/Ω | RSEI/Ω | Rct/Ω | DLi+ × 10−13 |
---|---|---|---|---|
Unsintered | 4.84 | 38.67 | 46.32 | 2.16 |
400 °C | 3.42 | 32.47 | 38.51 | 2.22 |
450 °C | 2.35 | 28.24 | 31.05 | 2.96 |
500 °C | 2.30 | 24.29 | 21.86 | 3.41 |
600 °C | 2.32 | 24.43 | 25.93 | 3.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, D.; Jia, M.; Li, M.; Fu, X.; Liu, Y.; Dong, W.; Yang, S. High Coulomb Efficiency Sn–Co Alloy/rGO Composite Anode Material for Li–ion Battery with Long Cycle–Life. Molecules 2023, 28, 3923. https://doi.org/10.3390/molecules28093923
Shen D, Jia M, Li M, Fu X, Liu Y, Dong W, Yang S. High Coulomb Efficiency Sn–Co Alloy/rGO Composite Anode Material for Li–ion Battery with Long Cycle–Life. Molecules. 2023; 28(9):3923. https://doi.org/10.3390/molecules28093923
Chicago/Turabian StyleShen, Ding, Mengyuan Jia, Mingyue Li, Xiaofan Fu, Yaohan Liu, Wei Dong, and Shaobin Yang. 2023. "High Coulomb Efficiency Sn–Co Alloy/rGO Composite Anode Material for Li–ion Battery with Long Cycle–Life" Molecules 28, no. 9: 3923. https://doi.org/10.3390/molecules28093923
APA StyleShen, D., Jia, M., Li, M., Fu, X., Liu, Y., Dong, W., & Yang, S. (2023). High Coulomb Efficiency Sn–Co Alloy/rGO Composite Anode Material for Li–ion Battery with Long Cycle–Life. Molecules, 28(9), 3923. https://doi.org/10.3390/molecules28093923