Redesigning Carbon–Carbon Backbone Polymers for Biodegradability–Compostability at the End-of-Life Stage
Abstract
:1. Introduction
2. Bioplastics for a Managed End of Life
2.1. Biodegradation of Polymers
2.1.1. Industrial Composting
2.1.2. Home Composting
2.1.3. Soil Biodegradation
2.1.4. Marine Biodegradation
2.1.5. Microplastics
2.2. Biobased Polymers
3. Outlook
4. Conclusions/Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- From Pollution to Solution: A Global Assessment of Marine Litter and Plastic Pollution. Available online: https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution (accessed on 10 January 2023).
- Yeung, C.W.S.; Teo, J.Y.Q.; Loh, X.J.; Lim, J.Y.C. Polyolefins and Polystyrene as Chemical Resources for a Sustainable Future: Challenges, Advances, and Prospects. ACS Mater. Lett. 2021, 3, 1660–1676. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, W.; Musioł, M.; Zawidlak-Węgrzyńska, B.; Rydz, J. End-of-Life Options for (Bio)degradable Polymers in the Circular Economy. Adv. Polym. Technol. 2021, 2021, 6695140. [Google Scholar] [CrossRef]
- Kakadellis, S.; Rosetto, G. Achieving a circular bioeconomy for plastics. Science 2021, 373, 49–50. [Google Scholar] [CrossRef] [PubMed]
- Plastic Production Accounts for Much Larger Carbon Footprint than Previously Thought. Available online: https://www.downtoearth.org.in/news/environment/plastic-production-accounts-for-much-larger-carbon-footprint-than-previously-thought-80651#:~:text=The%20global%20carbon%20footprint%20of,Sustainability%2C%20December%202%2C%202021 (accessed on 11 February 2023).
- Plastic & Climate: The Hidden Costs of a Plastic Planet. Available online: https://www.ciel.org/project-update/plastic-climate-the-hidden-costs-of-a-plastic-planet/ (accessed on 13 February 2023).
- Nicholson, S.R.; Rorrer, N.A.; Carpenter, A.C.; Beckham, G.T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 2021, 5, 673–686. [Google Scholar] [CrossRef]
- Meys, R.; Kätelhön, A.; Bachmann, M.; Winter, B.; Zibunas, C.; Suh, S.; Bardow, A. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 2021, 374, 71–76. [Google Scholar] [CrossRef]
- Ban on Identified Single Use Plastic Items from 1st July 2022. Available online: https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1837518 (accessed on 17 January 2023).
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Johansen, M.R.; Christensen, T.B.; Ramos, T.M.; Syberg, K. A review of the plastic value chain from a circular economy perspective. J. Environ. Manag. 2022, 302, 113975. [Google Scholar] [CrossRef]
- Rhein, S.; Sträter, K.F. Corporate self-commitments to mitigate the global plastic crisis: Recycling rather than reduction and reuse. J. Clean. Prod. 2021, 296, 126571. [Google Scholar] [CrossRef]
- Vogt, B.D.; Stokes, K.K.; Kumar, S.K. Why is Recycling of Postconsumer Plastics so Challenging? ACS Appl. Polym. Mater. 2021, 3, 4325–4346. [Google Scholar] [CrossRef]
- Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci. 2007, 7, 255–277. [Google Scholar] [CrossRef] [PubMed]
- Cywar, R.M.; Rorrer, N.A.; Hoyt, C.B.; Beckham, G.T.; Chen, E.Y.X. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater. 2022, 7, 83–103. [Google Scholar] [CrossRef]
- Law, K.L.; Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 2022, 7, 104–116. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Wu, F.; Mincheva, R.; Hakkarainen, M.; Raquez, J.-M.; Mielewski, D.F.; Narayan, R.; Netravali, A.N.; Misra, M. Sustainable polymers. Nat. Rev. Methods Prim. 2022, 2, 46. [Google Scholar] [CrossRef]
- Zumstein, M.T.; Narayan, R.; Kohler, H.-P.E.; McNeill, K.; Sander, M. Dos and Do Nots When Assessing the Biodegradation of Plastics. Environ. Sci. Technol. 2019, 53, 9967–9969. [Google Scholar] [CrossRef]
- Tonini, D.; Schrijvers, D.; Nessi, S.; Garcia-Gutierrez, P.; Giuntoli, J. Carbon footprint of plastic from biomass and recycled feedstock: Methodological insights. Int. J. Life Cycle Assess. 2021, 26, 221–237. [Google Scholar] [CrossRef]
- Van Roijen, E.C.; Miller, S.A. A review of bioplastics at end-of-life: Linking experimental biodegradation studies and life cycle impact assessments. Resour. Conserv. Recycl. 2022, 181, 106236. [Google Scholar] [CrossRef]
- Altman, R. The myth of historical bio-based plastics. Science 2021, 373, 47–49. [Google Scholar] [CrossRef]
- Lambert, S.; Wagner, M. Environmental performance of bio-based and biodegradable plastics: The road ahead. Chem. Soc. Rev. 2017, 46, 6855–6871. [Google Scholar] [CrossRef]
- Tyagi, P.; Agate, S.; Velev, O.D.; Lucia, L.; Pal, L. A Critical Review of the Performance and Soil Biodegradability Profiles of Biobased Natural and Chemically Synthesized Polymers in Industrial Applications. Environ. Sci. Technol. 2022, 56, 2071–2095. [Google Scholar] [CrossRef]
- Biodegradability of Plastics in the Open Environment. Available online: https://op.europa.eu/en/publication-detail/-/publication/0c0d6267-433a-11eb-b27b-01aa75ed71a1#:~:text=Biodegradability%20depends%20not%20only%20on,the%20open%20environment%20more%20generally (accessed on 13 January 2023).
- López-Ibáñez, S.; Beiras, R. Is a compostable plastic biodegradable in the sea? A rapid standard protocol to test mineralization in marine conditions. Sci. Total Environ. 2022, 831, 154860. [Google Scholar] [CrossRef]
- Samantaray, P.K.; Little, A.; Wemyss, A.M.; Iacovidou, E.; Wan, C. Design and Control of Compostability in Synthetic Biopolyesters. ACS Sustain. Chem. Eng. 2021, 9, 9151–9164. [Google Scholar] [CrossRef]
- Kalita, N.K.; Damare, N.A.; Hazarika, D.; Bhagabati, P.; Kalamdhad, A.; Katiyar, V. Biodegradation and characterization study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator. Environ. Chall. 2021, 3, 100067. [Google Scholar] [CrossRef]
- Meereboer, K.W.; Misra, M.; Mohanty, A.K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. 2020, 22, 5519–5558. [Google Scholar] [CrossRef]
- Zhao, X.; Anwar, I.; Zhang, X.; Pellicciotti, A.; Storts, S.; Nagib, D.A.; Vodovotz, Y. Thermal and Barrier Characterizations of Cellulose Esters with Variable Side-Chain Lengths and Their Effect on PHBV and PLA Bioplastic Film Properties. ACS Omega 2021, 6, 24700–24708. [Google Scholar] [CrossRef] [PubMed]
- Mulchandani, N.; Masutani, K.; Kumar, S.; Yamane, H.; Sakurai, S.; Kimura, Y.; Katiyar, V. Toughened PLA-b-PCL-b-PLA triblock copolymer based biomaterials: Effect of self-assembled nanostructure and stereocomplexation on the mechanical properties. Polym. Chem. 2021, 12, 3806–3824. [Google Scholar] [CrossRef]
- Albright, V.C.; Chai, Y. Knowledge Gaps in Polymer Biodegradation Research. Environ. Sci. Technol. 2021, 55, 11476–11488. [Google Scholar] [CrossRef]
- Anunciado, M.B.; Hayes, D.G.; Astner, A.F.; Wadsworth, L.C.; Cowan-Banker, C.D.; Gonzalez, J.E.L.y.; DeBruyn, J.M. Effect of Environmental Weathering on Biodegradation of Biodegradable Plastic Mulch Films under Ambient Soil and Composting Conditions. J. Polym. Environ. 2021, 29, 2916–2931. [Google Scholar] [CrossRef]
- Amelia, T.S.M.; Govindasamy, S.; Tamothran, A.M.; Vigneswari, S.; Bhubalan, K. Applications of PHA in Agriculture. In Biotechnological Applications of Polyhydroxyalkanoates; Kalia, V.C., Ed.; Springer: Singapore, 2019; pp. 347–361. [Google Scholar]
- Koller, M.; Mukherjee, A. A New Wave of Industrialization of PHA Biopolyesters. Bioengineering 2022, 9, 74. [Google Scholar] [CrossRef]
- Kabe, T.; Tanaka, T.; Marubayashi, H.; Hikima, T.; Takata, M.; Iwata, T. Investigating thermal properties of and melting-induced structural changes in cold-drawn P(3HB) films with α- and β-structures using real-time X-ray measurements and high-speed DSC. Polymer 2016, 93, 181–188. [Google Scholar] [CrossRef]
- Thirmizir, M.Z.A.; Hazahar, M.D.; Mohd Ishak, Z.A. Mechanical and morphological properties of poly (Butylene Succinate)/Poly (Hydroxybutyrate-co-Hydroxyhexanoate) Polymer Blends: Effect of blend ratio and maleated compatibiliser. In Key Engineering Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2017; pp. 313–319. [Google Scholar]
- Kourmentza, K.; Kachrimanidou, V.; Psaki, O.; Pateraki, C.; Ladakis, D.; Koutinas, A. Competitive advantage and market introduction of PHA polymers and potential use of PHA monomers. In The Handbook of Polyhydroxyalkanoates; CRC Press: Boca Raton, FL, USA, 2020; pp. 167–202. [Google Scholar]
- Guo, M.; Stuckey, D.; Murphy, R. Is it possible to develop biopolymer production systems independent of fossil fuels? Case study in energy profiling of polyhydroxybutyrate-valerate (PHBV). Green Chem. 2013, 15, 706–717. [Google Scholar] [CrossRef]
- Grace, R. Learning from Nature: The Beauty & Value of Biomimicry: Sustainable innovation inspired by nature is not new, but it’s never been more relevant. Plast. Eng. 2017, 73, 12–16. [Google Scholar]
- End-of-Life Options for Bioplastics. Available online: https://www.totalenergies-corbion.com/media/bm1p2dwl/totalcorbionpla_whitepaper_end-of-life-201127.pdf (accessed on 17 December 2022).
- Mulchandani, N.; Kimura, Y.; Katiyar, V. Preparation, structure, and properties of stereocomplex-type poly (lactic acid). In Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life; Wiley: Hoboken, NJ, USA, 2022; pp. 73–86. [Google Scholar]
- Susterra® Propanediol. Available online: https://covationbiopdo.com/susterra/ (accessed on 15 January 2023).
- Luoma, E.; Välimäki, M.; Immonen, K. Effect of accelerated aging on properties of biobased polymer films applicable in printed electronics. J. Appl. Polym. Sci. 2022, 140, e53414. [Google Scholar] [CrossRef]
- Schneider, J.; Manjure, S.; Narayan, R. Reactive modification and compatibilization of poly (lactide) and poly (butylene adipate-co-terephthalate) blends with epoxy functionalized-poly (lactide) for blown film applications. J. Appl. Polym. Sci. 2016, 133, 43310. [Google Scholar] [CrossRef]
- Journal, C.P. Green Cultivation with Biodegradable Plastic Mulch: Fully biodegradable agricultural mulch films offer special advantages over conventional plastic films. Plast. Eng. 2014, 70, 24–27. [Google Scholar] [CrossRef]
- Lackner, M.; Ivanič, F.; Kováčová, M.; Chodák, I. Mechanical properties and structure of mixtures of poly (butylene-adipate-co-terephthalate)(PBAT) with thermoplastic starch (TPS). Int. J. Biobased Plast. 2021, 3, 126–138. [Google Scholar] [CrossRef]
- Wu, C.; Pan, S.; Shan, Y.; Ma, Y.; Wang, D.; Song, X.; Hu, H.; Ren, X.; Ma, X.; Cui, J. Microplastics mulch film affects the environmental behavior of adsorption and degradation of pesticide residues in soil. Environ. Res. 2022, 214, 114133. [Google Scholar] [CrossRef]
- Nulty, J.; Freeman, F.E.; Browe, D.C.; Burdis, R.; Ahern, D.P.; Pitacco, P.; Lee, Y.B.; Alsberg, E.; Kelly, D.J. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomater. 2021, 126, 154–169. [Google Scholar] [CrossRef]
- Siegenthaler, K.; Künkel, A.; Skupin, G.; Yamamoto, M. Ecoflex® and Ecovio®: Biodegradable, performance-enabling plastics. In Synthetic Biodegradable Polymers; Springer: Berlin/Heidelberg, Germany, 2011; pp. 91–136. [Google Scholar]
- Hejna, A.; Barczewski, M.; Kosmela, P.; Mysiukiewicz, O.; Sulima, P.; Przyborowski, J.A.; Kowalkowska-Zedler, D. Mater-Bi/Brewers’ Spent Grain Biocomposites—Novel Approach to Plant-Based Waste Filler Treatment by Highly Efficient Thermomechanical and Chemical Methods. Materials 2022, 15, 7099. [Google Scholar] [CrossRef]
- Aliotta, L.; Seggiani, M.; Lazzeri, A.; Gigante, V.; Cinelli, P. A Brief Review of Poly (Butylene Succinate)(PBS) and Its Main Copolymers: Synthesis, Blends, Composites, Biodegradability, and Applications. Polymers 2022, 14, 844. [Google Scholar] [CrossRef]
- DuPont Biomaterials Becomes Covation Biomaterials. Available online: https://greenchemicalsblog.com/2022/06/01/dupont-biomaterials-becomes-covation-biomaterials/#:~:text=Sorona%C2%AE%20polytrimethylene%20(PTT)%20is,suiting%2C%20faux%20fur%2C% (accessed on 13 January 2023).
- Rodriguez-Uribe, A.; Wang, T.; Pal, A.K.; Wu, F.; Mohanty, A.K.; Misra, M. Injection moldable hybrid sustainable composites of BioPBS and PHBV reinforced with talc and starch as potential alternatives to single-use plastic packaging. Compos. Part C Open Access 2021, 6, 100201. [Google Scholar] [CrossRef]
- Ong, K.L.; Fickers, P.; Lin, C.S.K. Enhancing succinic acid productivity in the yeast Yarrowia lipolytica with improved glycerol uptake rate. Sci. Total Environ. 2020, 702, 134911. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.; Janssen, R.; Theunissen, L. Evaluating the Properties and Performance Of Susterra® 1, 3 Propanediol and Biosuccinium™ Sustainable Succinic Acid in TPU Applications; CPI Polyurethanes: San Antonio, TX, USA, 2012; pp. 1–19. [Google Scholar]
- Kennedy, S.; Whiteman, G.; van den Ende, J. Radical Innovation for Sustainability: The Power of Strategy and Open Innovation. Long Range Plan. 2017, 50, 712–725. [Google Scholar] [CrossRef]
- Narayan, R. Biodegradable and Biobased Plastics: An Overview. In Soil Degradable Bioplastics for a Sustainable Modern Agriculture; Malinconico, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 23–34. [Google Scholar]
- Zumstein, M.T.; Schintlmeister, A.; Nelson, T.F.; Baumgartner, R.; Woebken, D.; Wagner, M.; Kohler, H.-P.E.; McNeill, K.; Sander, M. Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass. Sci. Adv. 2018, 4, eaas9024. [Google Scholar] [CrossRef]
- EN-13432:2000; Packaging-Requirements for Packaging Recoverable through Composition and Biodegradation-Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging. Available online: https://www.en-standard.eu/bs-en-13432-2000-packaging.-requirements-for-packaging-recoverable-through-composting-and-biodegradation.-test-scheme-and-evaluation-criteria-for-the-final-acceptance-of-packaging/ (accessed on 17 January 2023).
- ASTM D6400–21; Standard Specification for Labeling of Plastics Designed to Be Aerobically Composted in Municipal or Industrial Facilities. Available online: https://www.astm.org/d6400-21.html (accessed on 17 December 2022).
- ASTM D6868-21; Standard Specification for Labeling of End Items That Incorporate Plastics and Polymers as Coatings or Additives with Paper and Other Substrates Designed to Be Aerobically Composted in Municipal or Industrial Facilities. Available online: https://www.astm.org/d6868-21.html (accessed on 17 January 2023).
- Narayan, R. Carbon footprint of bioplastics using biocarbon content analysis and life-cycle assessment. MRS Bull. 2011, 36, 716–721. [Google Scholar] [CrossRef]
- Flury, M.; Narayan, R. Biodegradable plastic as an integral part of the solution to plastic waste pollution of the environment. Curr. Opin. Green Sustain. Chem. 2021, 30, 100490. [Google Scholar] [CrossRef]
- Claims on Biodegradability and Compostability on Products and Packaging. Available online: https://docs.european-bioplastics.org/publications/Claims_on_biodegradability_and_compostability_on_products_and_packaging_210108.pdf (accessed on 17 December 2022).
- EN 13432 Certified Bioplastics Performance in Industrial Composting, Background Apr 2015. Available online: https://docs.european-bioplastics.org/publications/bp/EUBP_BP_En_13432.pdf (accessed on 17 December 2022).
- Fate of Compostable Products during Industrial Composting of SSO. Available online: https://www.biocycle.net/fate-compostable-products-industrial-composting-sso/ (accessed on 13 January 2023).
- Kale, G.; Auras, R.; Singh, S.P.; Narayan, R. Biodegradability of polylactide bottles in real and simulated composting conditions. Polym. Test. 2007, 26, 1049–1061. [Google Scholar] [CrossRef]
- ASTM D5988-18; Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in Soil. Available online: https://www.astm.org/d5988-18.html (accessed on 17 January 2023).
- EN-17033 Plastics-Biodegradable Mulch Films for Use in Agriculture and Horticulture-Requirements and Test Methods. Available online: https://www.en-standard.eu/csn-en-17033-plastics-biodegradable-mulch-films-for-use-in-agriculture-and-horticulture-requirements-and-test-methods/ (accessed on 17 January 2023).
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef]
- AB-1201 Solid Waste: Products: Labeling: Compostability and Biodegradability. Available online: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=202120220AB1201 (accessed on 18 January 2023).
- Bioplastics-Industry Standards & Labels. Available online: https://docs.european-bioplastics.org/publications/fs/EUBP_FS_Standards.pdf (accessed on 18 January 2023).
- Narayan, R. Biobased and Biodegradable Polymer Materials: Rationale, Drivers, and Technology Exemplars. In Degradable Polymers and Materials; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2006; Volume 939, pp. 282–306. [Google Scholar]
- Rochman, C.M. Microplastics research-from sink to source. Science 2018, 360, 28–29. [Google Scholar] [CrossRef]
- ASTM WK72349; New Test Method for Determination of Microplastics Particle and Fiber Size, Distribution, Shape and Concentration in Waters with High to Low Suspended Solids Using a Dynamic Image Particle Size and Shape Analyzer. Available online: https://www.astm.org/workitem-wk72349 (accessed on 12 February 2023).
- Law, K.L.; Thompson, R.C. Microplastics in the seas. Science 2014, 345, 144–145. [Google Scholar] [CrossRef]
- Weithmann, N.; Möller, J.N.; Löder, M.G.J.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Lehmann, A. Microplastic in terrestrial ecosystems. Science 2020, 368, 1430–1431. [Google Scholar] [CrossRef] [PubMed]
- Ramsperger, A.F.R.M.; Narayana, V.K.B.; Gross, W.; Mohanraj, J.; Thelakkat, M.; Greiner, A.; Schmalz, H.; Kress, H.; Laforsch, C. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 2020, 6, eabd1211. [Google Scholar] [CrossRef] [PubMed]
- Vethaak, A.D.; Legler, J. Microplastics and human health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef] [PubMed]
- Tosin, M.; Pischedda, A.; Degli-Innocenti, F. Biodegradation kinetics in soil of a multi-constituent biodegradable plastic. Polym. Degrad. Stab. 2019, 166, 213–218. [Google Scholar] [CrossRef]
- Biodegradable Plastics Do Not Cause Persistent Microplastics. Available online: https://docs.european-bioplastics.org/publications/pp/EUBP_PP_Biodegradable_plastics_do_not_cause_persistent_microplastics.pdf (accessed on 13 February 2023).
- Paul-Pont, I.; Ghiglione, J.-F.; Gastaldi, E.; Ter Halle, A.; Huvet, A.; Bruzaud, S.; Lagarde, F.; Galgani, F.; Duflos, G.; George, M.; et al. Discussion about suitable applications for biodegradable plastics regarding their sources, uses and end of life. Waste Manag. 2023, 157, 242–248. [Google Scholar] [CrossRef]
- Kulkarni, A.; Narayan, R. Effects of Modified Thermoplastic Starch on Crystallization Kinetics and Barrier Properties of PLA. Polymers 2021, 13, 4125. [Google Scholar] [CrossRef]
- Mulchandani, N.; Gupta, A.; Masutani, K.; Kumar, S.; Sakurai, S.; Kimura, Y.; Katiyar, V. Effect of Block Length and Stereocomplexation on the Thermally Processable Poly(ε-caprolactone) and Poly(Lactic acid) Block Copolymers for Biomedical Applications. ACS Appl. Polym. Mater. 2019, 1, 3354–3365. [Google Scholar] [CrossRef]
- Mulchandani, N.; Masutani, K.; Kumar, S.; Sakurai, S.; Kimura, Y.; Katiyar, V. Effects of chain microstructure on the thermal, mechanical and crystallization behaviors of poly(ε-caprolactone-co-lactide) copolymers: Processable biomaterials with tunable properties. Mater. Today Commun. 2022, 33, 104040. [Google Scholar] [CrossRef]
- Narayan, R. Principles, drivers, and analysis of biodegradable and biobased plastics. In Handbook of Biodegradable Polymers; Catia, B., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2020; pp. 455–474. [Google Scholar]
- Mulchandani, N.; Narayan, R. End of Life of Plastics/Bioplastics. In Bioplastics and Biocomposites: A Practical Introduction, 1st ed.; Grewell, D., Ed.; Royal Society of Chemistry: London, UK, 2023; in press. [Google Scholar]
Source | Polymers | Commercial Name | Company | Ref. |
---|---|---|---|---|
Biobased | Polyhydroxyalkanoates (PHAs) | Nodax® | Danimer Scientific | [34] |
AmBio | Shenzhen Ecomann Biotechnology Co., Ltd. | [35] | ||
AONILEX® | Kaneka Corporation | [36,37] | ||
SolonTM | RWDC Industries | [38] | ||
Enmat | TianAn Biologic Materials Co., Ltd. | [39] | ||
AirCarbon | Newlight Technologies LLC | [40] | ||
Polylactic acid (PLA) | Luminy® PLA | TotalEnergies Corbion | [41] | |
NatureWorks® PLA | NatureWorks LLC | [42] | ||
Polyurethane (PU) | Susterra® | Covation Biomaterials LLC | [43] | |
Cellulosic polymers | NatureFlexTM | Futamura Chemical Co., Ltd. | [44] | |
Fossil-based | Polybutylene adipate-co-terephthalate (PBAT) | Ecoflex® | BASF | [45] |
Ecopond® | Kingfa | [46] | ||
Ecoworld® | Jinhui Zhaolong High Technology Co., Ltd. | [47] | ||
Tunhe PBAT | Xinjiang Blue Ridge Tunhe Sci.&Tech. Co., Ltd. | [48] | ||
Poly(ε-caprolactone) (PCL) | CAPA® | IngevityTM | [49] | |
Blends of fossil based and bio-based | PBAT/PLA | Ecovio® | BASF | [50] |
PCL/Starch | Mater Bi | Novamont | [51] | |
PLA/PBS | BioFlex® S 5630 | FKuR Kunststoff GmbH | [52] | |
Poly(trimethylene terephthalate) (PTT) | Sorona® | Covation BiomaterialsTM | [53] | |
Polybutyelene succinate (PBS) | BioPBSTM | PTT MCC Biochem Co., Ltd. | [54] | |
Biobased Succinic Acid® | Succinity GmbH (Joint venture between Corbion and BASF) | [55] | ||
BiosucciniumTM | Reverdia | [56,57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulchandani, N.; Narayan, R. Redesigning Carbon–Carbon Backbone Polymers for Biodegradability–Compostability at the End-of-Life Stage. Molecules 2023, 28, 3832. https://doi.org/10.3390/molecules28093832
Mulchandani N, Narayan R. Redesigning Carbon–Carbon Backbone Polymers for Biodegradability–Compostability at the End-of-Life Stage. Molecules. 2023; 28(9):3832. https://doi.org/10.3390/molecules28093832
Chicago/Turabian StyleMulchandani, Neha, and Ramani Narayan. 2023. "Redesigning Carbon–Carbon Backbone Polymers for Biodegradability–Compostability at the End-of-Life Stage" Molecules 28, no. 9: 3832. https://doi.org/10.3390/molecules28093832
APA StyleMulchandani, N., & Narayan, R. (2023). Redesigning Carbon–Carbon Backbone Polymers for Biodegradability–Compostability at the End-of-Life Stage. Molecules, 28(9), 3832. https://doi.org/10.3390/molecules28093832