Rapid Sensing: Hand-Held and Portable FTIR Applications for On-Site Food Quality Control from Farm to Fork
Abstract
:1. Introduction
2. Fourier Transform Infrared Spectroscopy
3. Preprocessing and Chemometrics
4. Portable FTIR Systems
5. Implementation of Portable and Hand-Held FTIR Spectroscopy to Food Control
Commodity | Type of Food Product | Parameters Measured | Data Acquisition | Type of Analysis | Equipment, Multivariate Analysis | Reference |
---|---|---|---|---|---|---|
Fats and oils | Edible fats and oils | Trans fat content | 4000–700 cm−1 | Quality and safety control | ATR-FTIR, PLSR | [33] |
Fats and oils | Trans fat content | 4000–700 cm−1 | Quality and safety control | ATR-FTIR, MCT detect | [34] | |
Fast-foods (hamburgers, chicken tenders, French fries, apple pies) | Trans fat content | 4000–700 cm−1 | Quality and safety control | ATR-FTIR, using MCT detector | [35] | |
Fats, oils and lipids extracted from fast-foods | Total trans fat | 966 cm−1 | Quality and safety control | ATR-FTIR | [36] | |
Corn, cottonseed, canola, safflower, safflower, and peanut | Fatty acid composition, peroxide values, free fatty acids | 4000–650 cm−1 | Quality control | ATR-FTIR, SIMCA and PLSR | [37] | |
Sacha inchi oil and vegetable oils(canola, flax, cottonseed, sunflower and olive) | Fatty acid profiles (palmitic, stearic, oleic linoleic, linolenic) | 4000–650 cm−1 | Quality control, determination of adulteration | ATR-MIR, SIMCA, PLSR | [38] | |
Microencapsulated fish oil supplements | Oil and protein contents | 1800–950 cm−1 | Quality control | ATR-FTIR, PLSR | [39] | |
Marine oil omega-3 dietary supplements | Major and minor fatty acid (EPA, DHA, PUFA) | 650−1500 or 650−1500 and 2800−3050 cm−1 | Quality control | ATR-FTIR, PLSR | [40] | |
Edible oils and fast-food lipid extracts (hamburgers, chicken tenders/nuggets, French fries, and apple pies) | Total trans fatty acid (TFAs) contents | 4000–650 cm−1 | Quality and safety control | ATR-FTIR, PLSR | [41] | |
Marine oil omega-3 dietary supplements | Major and minor fatty acids (EPA, DHA, PUFA) | 4000–650 cm−1 and 12,500–4000 cm−1 | Quality control | ATR-FTIR, FT-NIR, PCA, PLS-DA | [42] | |
Butter and margarine | Trans fats, conjugated linoleic acid (CLA) and other fatty acids | 4000–700 cm−1 | Quality control | FTIR, FT-NIR, SIMCA | [43] | |
Vegetables | Tomato | Quality parameters (°Brix, pH, titratable acidity, fructose and glucose, and citric and glutamic acid | 4000−700 cm−1 | Quality control, maturity control | ATR-FTIR, PLSR | [44] |
Raw Potato Tubers | Sugars, asparagine, acrylamide and glutamine levels | 4000–700 cm−1 | Quality control, classification | ATR-FTIR, MIR PLSR | [45] | |
Potato (Andean native) | Anthocyanin, other phenolics and sugar (glucose, fructose and sucrose | 4000 and 700 cm−1 | Quality control, classification | ATR-FTIR, PLSR | [46] | |
Onion juice | Carbohydrate profiling | 4000–375 cm−1 | Quality control, classification | HCA of ATR-FTIR Spectra | [47] | |
Leafy Vegetables (Chinese cabbage, water spinach, celery, and lettuce) | Nitrate content | 4000–400 cm−1 and 1500–1200 cm−1 | Quality and safety control | ATR-FTIR, ED-ELM model PCA | [48] | |
Milk and dairy products | Milk powder (Nonfat dry milk and skim milk powder | Melamine | 4000–650 cm−1 | Safety control, adulteration | ATR-FTIR, SIMCA | [49] |
Meats | Minced beef, lamb, chicken and pork | Lipids, phospholipids, proteins and amino acids | 3200–1000 cm−1 | Quality control | ATR-FTIR, DR-FTIR, OCC screening approach | [50] |
Cereals | Andean flours | Protein, amino acids | 4000–700 cm−1 | Quality control, authentication | ATR-FTIR, ATR-MIR, SIMCA | [56] |
Oat groat | β-glucan, starch, protein, and lipids | 4000–650 cm−1 | Quality control | FT-IR, FT-NIR, PLSR | [57] | |
Nuts | Pistachio nuts (Pistacia vera fruits) | Detection of green pea and peanut | 4000–650 cm−1 and 3920–7400 cm−1 | Quality control, determination of adulteration | FT-MIR and FT-NIR spectroscopy, SIMCA, PLSR | [51] |
Hazelnut | Lipids, proteins | 3660–2500 cm−1 and 1850–667 cm−1 | Quality control | FTIR, PCA-LDA and PLS-DA | [52] | |
Pistachio nuts (Pistacia vera fruits) | Detection of green pea and peanut | 4000- 700 cm−1 | Quality control, adulteration | FT-IR and UV–Vis spectrometers, SIMCA, PLSR | [58] | |
Others | Honey | Quality parameters (sucrose, glucose, fructose, reducing sugar, 5-HMF, Brix, moisture content, water activity, pH and free acidity) | 6250–4170 cm−1 (1600 and 2400 nm) | Quality control | FTIR, MIR, NIR, PLSR | [53] |
Wine (must fermentation) | Density, sugars (glucose and fructose) and acetic acid values | 950–1500 cm−1 and 3000–3500 cm−1 | Quality control, fermentation control | ATR-FTIR, PCA, PLSR, and PLS-DA | [55] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pérez-Marín, L. Innovation for food integrity assessment and fraud detection using NIRS as a nontargeted method: Towards intelligent product and process control. NIR News 2020, 31, 5–8. [Google Scholar] [CrossRef]
- Kamilaris, A.; Fonts, A.; Prenafeta-Boldύ, F.X. The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci. Technol. 2019, 91, 640–652. [Google Scholar] [CrossRef]
- Manning, L. Food fraud: Policy and food chain. Curr. Opin. Food Sci. 2016, 10, 16–21. [Google Scholar] [CrossRef]
- Johnson, R. Food fraud and “Economically motivated adulteration” of food and food ingredients. Food Fraud. Adulterated Ingred. Backgr. Issues Fed. Action 2014, 1–56. [Google Scholar]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B.K. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- Valand, R.; Tanna, S.; Lawson, G.; Bengtström, L. A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 19–38. [Google Scholar] [CrossRef]
- Schiering, D.W.; Stein, J.T. Design Considerations for Portable Mid-Infrared FTIR Spectrometers Used for In-Field Identifications of Threat Materials. Portable Spectrosc. Spectrom. 2021, 41–65. [Google Scholar] [CrossRef]
- Ismail, A.A.; Sedman, J.; Van De Voort, F.R. Vibrational Spectroscopy of Food and Food Products; Wiley: New York, NY, USA, 2002; ISBN 9780470027325. [Google Scholar]
- Alvarez-Ordonez, A.; Prieto, M. Fourier Transform Infrared Spectroscopy in Food Microbiology; Hartel, R.W., Clark, J.P., Rodriguez-Lazaro, D., Topping, D., Eds.; Springer: New York, NY, USA, 2012; ISBN 9781461438120. [Google Scholar]
- Rodriguez-Saona, L.E.; Pujolras, M.P.; Giusti, M.M. Targeted and non-targeted analysis. Anal. Sep. Sci. 2015, 1401–1436. [Google Scholar]
- Özkan, E. FT-IR Spektroskopisi Kullanılarak Tahribatsız Tereyağı Kalitesi Değerlendirilmesi; İstanbul Technical University: Istanbul, Turkey, 2011. [Google Scholar]
- Ellis, D.I.; Brewster, V.L.; Dunn, W.B.; Allwood, J.W.; Golovanov, A.P.; Goodacre, R. Fingerprinting food: Current technologies for the detection of food adulteration and contamination. Chem. Soc. Rev. 2012, 41, 5706–5727. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.I.; Muhamadali, H.; Haughey, S.A.; Elliott, C.T.; Goodacre, R. Point-and-shoot: Rapid quantitative detection methods for on-site food fraud analysis-moving out of the laboratory and into the food supply chain. Anal. Methods 2015, 7, 9401–9414. [Google Scholar] [CrossRef]
- Kharbach, M.; Marmouzi, I.; El Jemli, M.; Bouklouze, A.; Vander Heyden, Y. Recent advances in untargeted and targeted approaches applied in herbal-extracts and essential-oils fingerprinting—A review. J. Pharm. Biomed. Anal. 2020, 177, 112849. [Google Scholar] [CrossRef]
- Cebi, N.; Arici, M.; Sagdic, O. The famous Turkish rose essential oil: Characterization and authenticity monitoring by FTIR, Raman and GC–MS techniques combined with chemometrics. Food Chem. 2021, 354, 129495. [Google Scholar] [CrossRef]
- Chen, H.; Song, Q.; Tang, G.; Feng, Q.; Lin, L. The combined optimization of Savitzky-Golay smoothing and multiplicative scatter correction for FT-NIR PLS models. Int. Sch. Res. Not. 2013, 2013, 642190. [Google Scholar] [CrossRef]
- Randolph, T.W. Scale-based normalization of spectral data. Cancer Biomark. 2006, 2, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D. The sample, the spectra and the maths-The critical pillars in the development of robust and sound applications of vibrational spectroscopy. Molecules 2020, 25, 3674. [Google Scholar] [CrossRef]
- Cebi, N.; Yilmaz, M.T.; Sagdic, O. A rapid ATR-FTIR spectroscopic method for detection of sibutramine adulteration in tea and coffee based on hierarchical cluster and principal component analyses. Food Chem. 2017, 229, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.A.T.D.; Lopo, M.; Páscoa, R.N.M.J.; Lopes, J.A. A review on the applications of portable near-infrared spectrometers in the agro-food industry. Appl. Spectrosc. 2013, 67, 1215–1233. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, R.; Sayago, A.; Fernández-Recamales, Á. An Overview on the Application of Chemometrics Tools in Food Authenticity and Traceability. Foods 2022, 11, 3940. [Google Scholar] [CrossRef]
- Mukhopadhyay, R. Portable FTIR spectrometers get moving. Anal. Chem. 2004, 76, 369A–372A. [Google Scholar] [CrossRef]
- McVey, C.; Elliott, C.T.; Cannavan, A.; Kelly, S.D.; Petchkongkaew, A.; Haughey, S.A. Portable spectroscopy for high throughput food authenticity screening: Advancements in technology and integration into digital traceability systems. Trends Food Sci. Technol. 2021, 118, 777–790. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.; Aykas, D.P.; Borba, K.R.; Urtubia, A. Miniaturization of optical sensors and their potential for high-throughput screening of foods. Curr. Opin. Food Sci. 2020, 31, 136–150. [Google Scholar] [CrossRef]
- Agilent 4500a FTIR. Available online: https://www.agilent.com/en/product/molecular-spectroscopy/ftir-spectroscopy/ftir-analyzer-packages/ftir-forensics-analyzer#zoom (accessed on 10 February 2023).
- Agilent 4100 Exoscan FTIR. Available online: https://www.agilent.com/en/product/molecular-spectroscopy/ftir-spectroscopy/ftir-compact-portable-systems/4100-exoscan-series-ftir-handheld (accessed on 10 February 2023).
- Agilent 4300 Hand-Held Portable FTIR. Available online: https://www.agilent.com/en/product/molecular-spectroscopy/ftir-spectroscopy/ftir-compact-portable-systems/4300-handheld-ftir (accessed on 10 February 2023).
- Agilent Cary 630 FTIR. Available online: https://www.agilent.com/en/product/molecular-spectroscopy/ftir-spectroscopy/ftir-benchtop-systems/cary-630-ftir-spectrometer (accessed on 10 February 2023).
- Bruker Alpha II Compact. Available online: https://www.bruker.com/en/products-and-solutions/infrared-and-raman/ft-ir-routine-spectrometer/alpha-ii-compact-ft-ir-spectrometer.html (accessed on 10 February 2023).
- Bruker Mobile-IR II. Available online: https://www.bruker.com/en/products-and-solutions/infrared-and-raman/ft-ir-routine-spectrometer/mobile-ir-ii-ft-ir-spectrometer.html (accessed on 10 February 2023).
- Thermo Scientific TruDefender. Available online: https://www.thermofisher.com/order/catalog/product/TRUDEFENDERFTX (accessed on 10 February 2023).
- Rodriguez-Saona, L.E.; Allendorf, M.E. Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. Annu. Rev. Food Sci. Technol. 2011, 2, 467–483. [Google Scholar] [CrossRef] [PubMed]
- Birkel, E.; Rodriguez-Saona, L. Application of a portable hand-held infrared spectrometer for quantitation of trans fat in edible oils. JAOCS J. Am. Oil Chem. Soc. 2011, 88, 1477–1483. [Google Scholar] [CrossRef]
- Mossoba, M.M.; Kramer, J.K.G.; Azizian, H.; Kraft, J.; Delmonte, P.; Kia, A.R.F.; Bueso, F.J.; Rader, J.I.; Lee, J.K. Application of a novel, heated, nine-reflection ATR crystal and a portable FTIR spectrometer to the rapid determination of total Trans fat. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 419–429. [Google Scholar] [CrossRef]
- Mossoba, M.M.; Srigley, C.T.; Farris, S.; Kramer, J.K.G.; Chirtel, S.; Rader, J. Evaluation of the Performance of a Portable Mid-Infrared Analyzer for the Rapid Determination of Total Trans Fat in Fast Food. JAOCS J. Am. Oil Chem. Soc. 2014, 91, 1651–1663. [Google Scholar] [CrossRef]
- Mossoba, M.M.; Srigley, C.T.; Kramer, J.K.G. Portable FTIR analyzers for the rapid determination of total trans fat. Lipid Technol. 2015, 27, 11–13. [Google Scholar] [CrossRef]
- Allendorf, M.; Subramanian, A.; Rodriguez-Saona, L. Application of a hand-held portable mid-infrared sensor for monitoring oil oxidative stability. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 79–88. [Google Scholar] [CrossRef]
- Maurer, N.E.; Hatta-Sakoda, B.; Pascual-Chagman, G.; Rodriguez-Saona, L.E. Characterization and authentication of a novel vegetable source of omega-3 fatty acids, sacha inchi (Plukenetia volubilis L.) oil. Food Chem. 2012, 134, 1173–1180. [Google Scholar] [CrossRef]
- Vongsvivut, J.; Heraud, P.; Zhang, W.; Kralovec, J.A.; McNaughton, D.; Barrow, C.J. Rapid Determination of Protein Contents in Microencapsulated Fish Oil Supplements by ATR-FTIR Spectroscopy and Partial Least Square Regression (PLSR) Analysis. Food Bioprocess Technol. 2014, 7, 265–277. [Google Scholar] [CrossRef]
- Karunathilaka, S.R.; Mossoba, M.M.; Chung, J.K.; Haile, E.A.; Srigley, C.T. Rapid prediction of fatty acid content in Marine Oil Omega-3 dietary supplements using a portable Fourier Transform Infrared (FTIR) Device & Partial Least-Squares Regression (PLSR) analysis. J. Agric. Food Chem. 2017, 65, 224–233. [Google Scholar] [PubMed]
- Karunathilaka, S.R.; Farris, S.; Mossoba, M.M. Rapid Prediction of Low (<1%) trans Fat Content in Edible Oils and Fast Food Lipid Extracts by Infrared Spectroscopy and Partial Least Squares Regression. J. Food Sci. 2018, 83, 2101–2108. [Google Scholar]
- Karunathilaka, S.R.; Choi, S.H.; Mossoba, M.M.; Yakes, B.J.; Brückner, L.; Ellsworth, Z.; Srigley, C.T. Rapid classification and quantification of marine oil omega-3 supplements using ATR-FTIR, FT-NIR and chemometrics. J. Food Compos. Anal. 2019, 77, 9–19. [Google Scholar] [CrossRef]
- Salas-Valerio, W.F.; Aykas, D.P.; Hatta Sakoda, B.A.; Ludeña-Urquizo, F.E.; Ball, C.; Plans, M.; Rodriguez-Saona, L. In-field screening of trans-fat levels using mid- and near-infrared spectrometers for butters and margarines commercialized in the Peruvian market. LWT 2022, 157, 113074. [Google Scholar] [CrossRef]
- Wilkerson, E.D.; Anthon, G.E.; Barrett, D.M.; Sayajon, G.F.G.; Santos, A.M.; Rodriguez-Saona, L.E. Rapid assessment of quality parameters in processing tomatoes using hand-held and benchtop infrared spectrometers and multivariate analysis. J. Agric. Food Chem. 2013, 61, 2088–2095. [Google Scholar] [CrossRef]
- Ayvaz, H.; Santos, A.M.; Moyseenko, J.; Kleinhenz, M.; Rodriguez-Saona, L.E. Application of a Portable Infrared Instrument for Simultaneous Analysis of Sugars, Asparagine and Glutamine Levels in Raw Potato Tubers. Plant Foods Hum. Nutr. 2015, 70, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Ayvaz, H.; Bozdogan, A.; Giusti, M.M.; Mortas, M.; Gomez, R.; Rodriguez-Saona, L.E. Improving the screening of potato breeding lines for specific nutritional traits using portable mid-infrared spectroscopy and multivariate analysis. Food Chem. 2016, 211, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Krähmer, A.; Böttcher, C.; Gudi, G.; Stürtz, M.; Schulz, H. Application of ATR-FTIR spectroscopy for profiling of non-structural carbohydrates in onion (Allium cepa L.) bulbs. Food Chem. 2021, 360, 129978. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Du, C.; Zheng, S.; Du, Y. In Situ Monitoring of Nitrate Content in Leafy Vegetables Using Attenuated Total Reflectance − Fourier-Transform Mid-infrared Spectroscopy Coupled with Machine Learning Algorithm. Food Anal. Methods 2021, 14, 2237–2248. [Google Scholar] [CrossRef]
- Limm, W.; Karunathilaka, S.R.; Yakes, B.J.; Mossoba, M.M. A portable mid-infrared spectrometer and a non-targeted chemometric approach for the rapid screening of economically motivated adulteration of milk powder. Int. Dairy J. 2018, 85, 177–183. [Google Scholar] [CrossRef]
- Dashti, A.; Weesepoel, Y.; Müller-Maatsch, J.; Parastar, H.; Kobarfard, F.; Daraei, B.; Yazdanpanah, H. Assessment of meat authenticity using portable Fourier transform infrared spectroscopy combined with multivariate classification techniques. Microchem. J. 2022, 181. [Google Scholar] [CrossRef]
- Aykas, D.P.; Menevseoglu, A. A rapid method to detect green pea and peanut adulteration in pistachio by using portable FT-MIR and FT-NIR spectroscopy combined with chemometrics. Food Control 2021, 121, 107670. [Google Scholar] [CrossRef]
- Manfredi, M.; Robotti, E.; Quasso, F.; Mazzucco, E.; Calabrese, G.; Marengo, E. Fast classification of hazelnut cultivars through portable infrared spectroscopy and chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 189, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Ayvaz, H. Quality Control of Honey Using New Generation Infrared Spectrometers. Turk. J. Agric. Food Sci. Technol. 2017, 5, 326–334. [Google Scholar] [CrossRef]
- Barnaba, F.E.; Bellincontro, A.; Mencarelli, F. Portable NIR-AOTF spectroscopy combined with winery FTIR spectroscopy for an easy, rapid, in-field monitoring of Sangiovese grape quality. J. Sci. Food Agric. 2014, 94, 1071–1077. [Google Scholar] [CrossRef]
- Cavaglia, J.; Giussani, B.; Mestres, M.; Puxeu, M.; Busto, O.; Ferré, J.; Boqué, R. Early detection of undesirable deviations in must fermentation using a portable FTIR-ATR instrument and multivariate analysis. J. Chemom. 2019, 33, e3162. [Google Scholar] [CrossRef]
- Rossell, C.A. Authentication of Andean Flours Using a Benchtop FT-IR System and a Portable FT-IR Spectrometer. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2013. [Google Scholar]
- Zhu, K.; Aykas, D.P.; Anderson, N.; Ball, C.; Plans, M.; Rodriguez-Saona, L. Nutritional quality screening of oat groats by vibrational spectroscopy using field-portable instruments. J. Cereal Sci. 2022, 107, 103520. [Google Scholar] [CrossRef]
- Menevseoglu, A.; Aykas, D.P.; Adal, E. Non-targeted approach to detect green pea and peanut adulteration in pistachio by using portable FT-IR, and UV–Vis spectroscopy. J. Food Meas. Charact. 2021, 15, 1075–1082. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cebi, N.; Bekiroglu, H.; Erarslan, A.; Rodriguez-Saona, L. Rapid Sensing: Hand-Held and Portable FTIR Applications for On-Site Food Quality Control from Farm to Fork. Molecules 2023, 28, 3727. https://doi.org/10.3390/molecules28093727
Cebi N, Bekiroglu H, Erarslan A, Rodriguez-Saona L. Rapid Sensing: Hand-Held and Portable FTIR Applications for On-Site Food Quality Control from Farm to Fork. Molecules. 2023; 28(9):3727. https://doi.org/10.3390/molecules28093727
Chicago/Turabian StyleCebi, Nur, Hatice Bekiroglu, Azime Erarslan, and Luis Rodriguez-Saona. 2023. "Rapid Sensing: Hand-Held and Portable FTIR Applications for On-Site Food Quality Control from Farm to Fork" Molecules 28, no. 9: 3727. https://doi.org/10.3390/molecules28093727
APA StyleCebi, N., Bekiroglu, H., Erarslan, A., & Rodriguez-Saona, L. (2023). Rapid Sensing: Hand-Held and Portable FTIR Applications for On-Site Food Quality Control from Farm to Fork. Molecules, 28(9), 3727. https://doi.org/10.3390/molecules28093727