13C CPMAS NMR as an Alternative Method to Verify the Quality of Dietary Supplements Containing Curcumin
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Noorafshan, A.; Ashkani-Esfahani, S. A review of therapeutic effects of curcumin. Curr. Pharm. Des. 2013, 19, 2032–2046. [Google Scholar]
- Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M. Curcumin and health. Molecules 2016, 21, 264. [Google Scholar] [CrossRef]
- Li, N.; Tian-Hao, L.; Jing-Ze, Y.; Chen-Xi, L.; Yang, L.; Yue-Ying, W.; Zhong-Shan, Y.; Jia-Li, Y. Curcumin and curcumol inhibit NF-κB and TGF-β1/smads signaling pathways in CSE-treated RAW246. 7 cells. Evid. -Based Complement. Altern. Med. 2019, 2019, 3035125 . [Google Scholar] [CrossRef] [Green Version]
- Vasanthkumar, T.; Hanumanthappa, M.; Lakshminarayana, R. Curcumin and capsaicin modulates LPS induced expression of COX-2, IL-6 and TGF-β in human peripheral blood mononuclear cells. Cytotechnology 2019, 71, 963–976. [Google Scholar] [CrossRef]
- Banno, A.; Reddy, A.T.; Lakshmi, S.P.; Reddy, R.C. PPARs: Key regulators of airway inflammation and potential therapeutic targets in asthma. Nucl. Recept. Res. 2018, 5, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, T.; Zhihong, C.; Guihua, C.; Daoxin, W.; Shuo, T.; Huojin, D.; Jing, W.; Shengjin, L.; Jian, L.; Jin, T.; et al. Curcumin attenuates asthmatic airway inflammation and mucus hypersecretion involving a PPARγ-dependent NF-κB signaling pathway in vivo and in vitro. Mediat. Inflamm. 2019, 2019, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Daim, M.M.; Abdou, R.H. Protective effects of diallyl sulfide and curcumin separately against thallium-induced toxicity in rats. Cell J. 2015, 17, 379. [Google Scholar] [PubMed]
- Al-Rubaei, Z.; Mohammad, T.U.; Ali, L.K. Effects of local curcumin on oxidative stress and total antioxidant capacity in vivo study. Pak. J. Biol. Sci. 2014, 17, 1237–1241. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jia, L.; Shanshan, L.; Yi, L.; Xiangxiang, W.; Baolin, L.; Qiang, F.; Shiping, M. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicol. Appl. Pharmacol. 2015, 286, 53–63. [Google Scholar] [CrossRef]
- Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef] [Green Version]
- Stenzel, A.; Żuryń, A.; Grzanka, A.A.; Grzanka, A. Cykliny jako markery chorób nowotworowych. Nowotwory. J. Oncol. 2012, 62, 115–122. [Google Scholar]
- Byun, S.Y.; Kim, D.B.; Kim, E. Curcumin ameliorates the tumor-enhancing effects of a high-protein diet in an azoxymethane-induced mouse model of colon carcinogenesis. Nutr. Res. 2015, 35, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Kumar, R.; Tyagi, A.; Kohaar, I.; Hedau, S.; Bharti, A.C.; Sarker, S.; Dey, D.; Saluja, D.; Das, B. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer. Ecancermedicalscience 2015, 9, 525. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, X.; Zeng, S.; Zhang, X.; Zhao, J.; Zhang, X.; Chen, X.; Yang, W.; Yang, Y.; Dong, Z.; et al. The natural polyphenol curcumin induces apoptosis by suppressing STAT3 signaling in esophageal squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2018, 37, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, P.; Hoidal, J.R.; Mukherjee, T.K. Recent Advances in Curcumin Treated Non-Small Cell Lung Cancers: An Impetus of Pleiotropic Traits and Nanocarrier Aided Delivery. Curr. Med. Chem. 2021, 28, 3061–3106. [Google Scholar] [CrossRef]
- Bayet-Robert, M.; Kwiatowski, F.; Leheurteur, M.; Gachon, F.; Planchat, E.; Abrial, C.; Mouret-Reynier, M.A.; Durando, X.; Barthomeuf, C.; Chollet, P. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol. Ther. 2010, 9, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Kanai, M.; Yoshimura, K.; Asada, M.; Imaizumi, A.; Suzuki, C.; Matsumoto, S.; Nishimura, T.; Mori, Y.; Masui, T.; Kawaguchi, Y.; et al. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother. Pharmacol. 2011, 68, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Pastorelli, D.; Fabricio, A.S.C.; Giovanis, P.; D’Ippolito, S.; Fiduccia, P.; Soldà, C.; Buda, A.; Sperti, C.; Bardini, R.; Da Dalt, G.; et al. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol. Res. 2018, 132, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Kunnumakkara, A.B.; Harsha, C.; Banik, K.; Vikkurthi, R.; Sailo, B.L.; Bordoloi, D.; Gupta, S.C.; Aggarwalet, B.B. Is curcumin bioavailability a problem in humans: Lessons from clinical trials. Expert Opin. Drug Metab. Toxicol. 2019, 15, 705–733. [Google Scholar] [CrossRef]
- European Food Safety Authority. Refined exposure assessment for curcumin (E 100). EFSA J. 2014, 12, 3876. [Google Scholar] [CrossRef]
- FDA, FDA’s review of the physicochemical characteristics, safety, effectiveness, and historical use in compounding of curcumin presented to the Pharmacy Compounding Advisory Committee in October 2015 (“FDA’s curcumin review”).
- Górnicka, J.; Mika, M.; Wróbleska, O.; Siudem, P.; Paradowska, K. Methods to Improve the Solubility of Curcumin from Turmeric. Life 2023, 13, 207. [Google Scholar] [CrossRef]
- Dwyer, J.T.; Coates, P.M.; Smith, M.J. Dietary supplements: Regulatory challenges and research resources. Nutrients 2018, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Fibigr, J.; Šatínský, D.; Solich, P. Current trends in the analysis and quality control of food supplements based on plant extracts. Anal. Chim. Acta 2018, 1036, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dudek, M.K.; Kaźmierski, S.; Potrzebowski, M.J. Fast and very fast MAS solid state NMR studies of pharmaceuticals. Annu. Rep. NMR Spectrosc. 2021, 103, 97–189. [Google Scholar] [CrossRef]
- Li, M.; Xu, W.; Su, Y. Solid-state NMR spectroscopy in pharmaceutical sciences. Trends Anal. Chem. 2021, 135, 116152. [Google Scholar] [CrossRef]
- Mathew, R.; Uchman, K.A.; Gkoura, L.; Pickard, C.J.; Baias, M. Identifying aspirin polymorphs from combined DFT-based crystal structure prediction and solid-state NMR. Magn. Reson. Chem. 2020, 58, 1018–1025. [Google Scholar] [CrossRef] [Green Version]
- Szeleszczuk, Ł.; Pisklak, D.M.; Gubica, T.; Matjakowska, K.; Kaźmierski, S.; Zielińska-Pisklak, M. Application of combined solid-state NMR and DFT calculations for the study of piracetam polymorphism. Solid State Nucl. Magn. Reson. 2019, 97, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Czernek, J.; Brus, J. Polymorphic forms of valinomycin investigated by NMR crystallography. Int. J. Mol. Sci. 2020, 21, 4907. [Google Scholar] [CrossRef]
- Dezena, R.M. Ritonavir polymorphism: Analytical chemistry approach to problem solving in the pharmaceutical industry. Brazil. J. Anal. Chem. 2020, 7, 12–17. [Google Scholar]
- Bauer, J.; Spanton, S.; Henry, R.; Quick, J.; Dziki, W.; Porter, W.; Morris, J. Ritonavir: An extraordinary example of conformational polymorphism. Pharm. Res. 2001, 18, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska-Balcerzak, K.; Nartowska, J.; Wawer, I.; Siudem, P.; Paradowska, K. Spirostanol sapogenins and saponins from Convallaria majalis L. structural characterization by 2D NMR, theoretical GIAO DFT calculations and molecular modeling. Molecules 2021, 26, 2999. [Google Scholar] [CrossRef] [PubMed]
- Siudem, P.; Paradowska, K.; Bukowicki, J. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations. J. Mol. Struct. 2017, 1146, 773–781. [Google Scholar] [CrossRef]
- Siudem, P.; Bukowicki, J.; Wawer, I.; Paradowska, K. Structural studies of two capsaicinoids: Dihydrocapsaicin and nonivamide. 13 C and 15 N MAS NMR supported by genetic algorithm and GIAO DFT calculations. RSC Adv. 2020, 10, 18082–18092. [Google Scholar] [CrossRef]
- Presti, D.; Pedone, A.; Menziani, M.C. Unraveling the polymorphism of [(p-cymene) Ru (κN-INA) Cl2] through dispersion-corrected DFT and NMR GIPAW calculations. Inorg. Chem. 2014, 53, 7926–7935. [Google Scholar] [CrossRef] [PubMed]
- Marín-Luna, M.; Alkorta, I.; Elguero, J. A theoretical NMR study of selected benzazoles: Comparison of GIPAW and GIAO-PCM (DMSO) calculations. Magn. Reson. Chem. 2018, 56, 164–171. [Google Scholar] [CrossRef]
- The Cambridge Structural Database. Available online: https://www.ccdc.cam.ac.uk/ (accessed on 8 March 2023).
- Cui, Z.; Yao, L.; Ye, J.; Wang, Z.; Hu, Y. Solubility measurement and thermodynamic modelling of curcumin in twelve pure solvents and three binary solvents at different temperature (T= 278.15–323.15 K). J. Mol. Liq. 2021, 338, 116795. [Google Scholar] [CrossRef]
- Sanphui, P.; Goud, N.R.; Khandavilli, U.R.; Bhanoth, S.; Nangia, A. New polymorphs of curcumin. Chem. Comm. 2011, 47, 5013–5015. [Google Scholar] [CrossRef]
- Matlinska, M.A.; Wasylishen, R.E.; Bernard, G.M.; Terskikh, V.V.; Brinkmann, A.; Michaelis, V.K. Capturing elusive polymorphs of curcumin: A structural characterization and computational study. Cryst. Growth Design 2018, 18, 5556–5563. [Google Scholar] [CrossRef]
- Kolev, T.M.; Velcheva, E.A.; Stamboliyska, B.A.; Spiteller, M. DFT and experimental studies of the structure and vibrational spectra of curcumin. Int. J. Quantum Chem. 2005, 102, 1069–1079. [Google Scholar] [CrossRef]
- Byard, S.J.; Jackson, S.L.; Smail, A.; Bauer, M.; Apperley, D.C. Studies on the crystallinity of a pharmaceutical development drug substance. J. Pharm. Sci. 2005, 94, 1321–1335. [Google Scholar] [CrossRef]
- Pisklak, D.M.; Zielińska-Pisklak, M.A.; Szeleszczuk, Ł.; Wawer, I. 13C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment. J. Pharm. Biomed. Anal. 2016, 122, 81–89. [Google Scholar] [CrossRef]
- Peram, M.R.; Jalalpure, S.S.; Joshi, S.A.; Palkar, M.B.; Diwan, P.V. Single robust RP-HPLC analytical method for quantification of curcuminoids in commercial turmeric products, Ayurvedic medicines, and nanovesicular systems. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 487–498. [Google Scholar] [CrossRef]
- Heffernan, C.; Ukrainczyk, M.; Gamidi, R.K.; Hodnett, B.K.; Rasmuson, Å.C. Extraction and purification of curcuminoids from crude curcumin by a combination of crystallization and chromatography. Org. Process. Res. Dev. 2017, 21, 821–826. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Ghosh, R.; Charcosset, C. Extraction, purification and applications of curcumin from plant materials-A comprehensive review. Trends Food Sci. Technol. 2021, 112, 419–430. [Google Scholar] [CrossRef]
- Ukrainczyk, M.; Hodnett, B.K.; Rasmuson, A.C. Process parameters in the purification of curcumin by cooling crystallization. Org. Process. Res. Dev. 2016, 20, 1593–1602. [Google Scholar] [CrossRef]
- Bruzell, E.M.; Morisbak, E.; Tønnesen, H.H. Studies on curcumin and curcuminoids. XXIX. Photoinduced cytotoxicity of curcumin in selected aqueous preparations. Photochem. Photobiol. Sci. 2005, 4, 523–530. [Google Scholar] [CrossRef]
- The Food and Drug Administration. Available online: https://www.fda.gov/media/130730/download/ (accessed on 29 March 2023).
- Sorng, S.; Balayssac, S.; Danoun, S.; Assemat, G.; Mirre, A.; Cristofoli, V.; Le Lamer, A.C.; Jullian, V.; Gilard, V.; Fabre, N.; et al. Quality assessment of Curcuma dietary supplements: Complementary data from LC-MS and 1H NMR. J. Pharm. Biomed. Anal. 2022, 212, 114631. [Google Scholar] [CrossRef] [PubMed]
- Girme, A.; Saste, G.; Balasubramaniam, A.K.; Pawar, S.; Ghule, C.; Hingorani, L. Assessment of Curcuma longa extract for adulteration with synthetic curcumin by analytical investigations. J. Pharm. Biomed. Anal. 2020, 191, 113603. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.J.; Refson, K.; Payne, M.C.Z. First principles methods using CASTEP. Für Krist. -Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- BIOVIA Materials Studio. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/ (accessed on 9 February 2023).
- Koelling, D.D.; Harmon, B.N. Technique for relativistic spin-polarized calculations. J. Phys. C Solid State Phys. 1977, 10, 3107–3114. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. M. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. M. Phys. Rev. Lett. 2009, 102, 073005. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 6, 6671–6687. [Google Scholar] [CrossRef] [PubMed]
- Ortmann, F.; Bechstedt, F.; Schmidt, W.G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B. 2006, 73, 205101. [Google Scholar] [CrossRef] [Green Version]
- Hammer, B.; Hansen, L.B.; Norskov, J.K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B. 1999, 59, 7413–7421. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Cohen, R.E. More accurate generalized gradient approximation for solids. Phys. Rev. B. 2006, 73, 235116. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B. 1981, 23, 5048–5079. [Google Scholar] [CrossRef] [Green Version]
- Ceperley, D.M.; Alder, B.J. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 1980, 45, 566–569. [Google Scholar] [CrossRef] [Green Version]
- Pickard, C.J.; Mauri, F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B. 2001, 63, 245101. [Google Scholar] [CrossRef] [Green Version]
Ethanol | Acetonitrile | Isopropanol | |
---|---|---|---|
Solubility (g/L) | |||
Curcumin | 3.9 | 7.2 | 0.91 |
Demethoxycurcumin | 45 | 26 | 16.2 |
Bisdemethoxycurcumin | 53 | 11 | 8.2 |
Functional | a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | Volume (Å3) |
---|---|---|---|---|---|---|---|
GGA PBESOL | 12.375 | 7.567 | 20.771 | 90 | 90.510 | 90 | 1945.03 |
LDA CA-PZ | 12.178 | 6.765 | 19.572 | 90 | 94.745 | 90 | 1607.00 |
LDA CA-PZ OBS | 11.970 | 5.975 | 18.671 | 90 | 96.386 | 90 | 1327.06 |
GGA PBE | 12.838 | 8.394 | 21.171 | 90 | 89.149 | 90 | 2281.16 |
GGA PBE TS | 12.625 | 6.983 | 19.985 | 90 | 94.826 | 90 | 1755.64 |
GGA PBE Grimme | 12.533 | 6.824 | 19.891 | 90 | 95.137 | 90 | 1694.48 |
GGA RPBE | 13.479 | 9.988 | 22.124 | 90 | 86.774 | 90 | 2973.81 |
GGA PW91 | 13.001 | 8.631 | 21.321 | 90 | 88.326 | 90 | 2391.67 |
GGA PW91 OBS | 12.273 | 6.523 | 19.207 | 90 | 96.289 | 90 | 1528.42 |
GGA WC | 12.433 | 9.070 | 21.419 | 90 | 86.695 | 90 | 2411.54 |
C Atom Number | Experiment | Polymorph I | Polymorph II | Polymorph II * | Polymorph III |
---|---|---|---|---|---|
1 | 98.6 | 97.9 | 105.3 | 107.5 | 105.6 |
2 | 186.8 | 181.0 | 183.0 | 180.1 | 180.3 |
2’ | 182.4 | 174.4 | 171.8 | 172.9 | 171.9 |
3 | 122.8 | 122.5 | 120.1 | 119.6 | 121.0 |
3’ | 122.8 | 118.9 | 118.4 | 118.0 | 114.9 |
4 | 140.2 | 139.9 | 137.9 | 138.9 | 138.0 |
4’ | 140.2 | 138.7 | 135.2 | 136.5 | 138.1 |
5 | 128.8 | 126.3 | 125.1 | 122.7 | 121.6 |
5’ | 129.7 | 125.7 | 125.9 | 124.6 | 124.5 |
6 | 124.8 | 122.7 | 113.0 | 114.5 | 114.3 |
6’ | 124.8 | 120.1 | 112.7 | 114.5 | 113.1 |
7 | 114.1 | 109.2 | 110.0 | 112.0 | 114.4 |
7’ | 114.9 | 112.1 | 111.9 | 111.5 | 109.6 |
8 | 148.1 | 151.3 | 146.3 | 148.9 | 147.7 |
8’ | 148.1 | 149.5 | 145.1 | 146.8 | 147.4 |
9 | 148.1 | 145.7 | 144.2 | 145.8 | 145.7 |
9’ | 148.1 | 147.0 | 144.6 | 144.4 | 144.8 |
10 | 108.2 | 104.8 | 109.5 | 114.4 | 113.5 |
10’ | 109.8 | 112.1 | 111.9 | 111.5 | 109.6 |
11 | 54.9 | 49.8 | 51.0 | 52.2 | 51.4 |
11’ | 56.8 | 52.3 | 49.7 | 54.1 | 52.6 |
MAE | 3.25 | 4.83 | 4.66 | 4.68 |
C Atom Number | δEXP-δCALC I | δEXP-δCALC II | δEXP-δCALC II * | δEXP-δCALC III |
---|---|---|---|---|
1 | 0.7 | −6.7 | −8.9 | −7 |
2 | 5.8 | 3.8 | 6.7 | 6.5 |
2’ | 8 | 10.6 | 9.5 | 10.5 |
3 | 0.3 | 2.7 | 3.2 | 1.8 |
3’ | 3.9 | 4.4 | 4.8 | 7.9 |
4 | 0.3 | 2.3 | 1.3 | 2.2 |
4’ | 1.5 | 5 | 3.7 | 2.1 |
5 | 2.5 | 3.7 | 6.1 | 7.2 |
5’ | 4 | 3.8 | 5.1 | 5.2 |
6 | 2.1 | 11.8 | 10.3 | 10.5 |
6’ | 4.7 | 12.1 | 10.3 | 11.7 |
7 | 4.9 | 4.1 | 2.1 | −0.3 |
7’ | 2.8 | 3 | 3.4 | 5.3 |
8 | −3.2 | 1.8 | −0.8 | 0.4 |
8’ | −1.4 | 3 | 1.3 | 0.7 |
9 | 2.4 | 3.9 | 2.3 | 2.4 |
9’ | 1.1 | 3.5 | 3.7 | 3.3 |
10 | 3.4 | −1.3 | −6.2 | −5.3 |
10’ | −2.3 | −2.1 | −1.7 | 0.2 |
11 | 5.1 | 3.9 | 2.7 | 3.5 |
11’ | 4.5 | 7.1 | 2.7 | 4.2 |
No. | Form | Declared Content |
---|---|---|
S1 | Capsule | 250 mg turmeric rhizome extract (curcumin min. 70%); 2.5 mg black pepper extract (piperine 95%) |
S2 | Capsule | 350 mg turmeric rhizome extract (266 mg curcumin); 5 mg black pepper extract (4.75 mg piperine) |
S3 | Capsule | 332 mg curcumin (95%) |
S4 | Tablet | 300 mg curcumin (95%); 5 mg piperine (95%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siudem, P.; Szeleszczuk, Ł.; Zielińska, A.; Paradowska, K. 13C CPMAS NMR as an Alternative Method to Verify the Quality of Dietary Supplements Containing Curcumin. Molecules 2023, 28, 3442. https://doi.org/10.3390/molecules28083442
Siudem P, Szeleszczuk Ł, Zielińska A, Paradowska K. 13C CPMAS NMR as an Alternative Method to Verify the Quality of Dietary Supplements Containing Curcumin. Molecules. 2023; 28(8):3442. https://doi.org/10.3390/molecules28083442
Chicago/Turabian StyleSiudem, Paweł, Łukasz Szeleszczuk, Agnieszka Zielińska, and Katarzyna Paradowska. 2023. "13C CPMAS NMR as an Alternative Method to Verify the Quality of Dietary Supplements Containing Curcumin" Molecules 28, no. 8: 3442. https://doi.org/10.3390/molecules28083442
APA StyleSiudem, P., Szeleszczuk, Ł., Zielińska, A., & Paradowska, K. (2023). 13C CPMAS NMR as an Alternative Method to Verify the Quality of Dietary Supplements Containing Curcumin. Molecules, 28(8), 3442. https://doi.org/10.3390/molecules28083442