Fabrication and Properties of the Multifunctional Rapid Wound Healing Panax notoginseng@Ag Electrospun Fiber Membrane
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the PN@8 wt%Ag-2 h Core/Shell Fiber Membrane
2.2. The Swelling Ratio of Prepared Nanofiber Membranes
2.3. Antibacterial Results of the PN@Ag Electrospun Nanofiber Membrane
2.4. Cytotoxicity of Electrospun Nanofiber Membranes
2.5. In Vivo Wound Healing in Sprague Dawley Mice
3. Experimental Section
3.1. Materials
3.2. Preparation of Electrospun Fiber Membranes
3.3. Characterizations
3.4. Antibacterial Evaluation Assay
3.5. Cytotoxicity of Electrospun Nanofiber Membrane
3.6. Establishment of Wounds in Mice and Wound Healing In Vivo
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Singer, A.J. Healing Mechanisms in Cutaneous Wounds: Tipping the Balance. Tissue Eng. Part B Rev. 2022, 28, 1151–1167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.W.; Liu, S.Y.; Jia, Y.; Zou, M.L.; Teng, Y.Y.; Chen, Z.H.; Li, Y.; Guo, D.; Wu, J.J.; Yuan, Z.D.; et al. Insight into the Role of DPP-4 in Fibrotic Wound Healing. Biomed. Pharmacother. 2022, 151, 113143. [Google Scholar] [CrossRef] [PubMed]
- Forss, J.R. Does Exudate Viscosity Affect its Rate of Absorption into Wound Dressings? J. Wound Care 2022, 31, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Wang, J.; Liu, Z.; Mao, J.; Zhao, B.; Mao, X.; Zhang, L.; Cheng, L.; Zhang, Y.; Sun, X.; et al. Secretory Fluid-Aggregated Janus Electrospun Short Fiber Scaffold for Wound Healing. Small 2022, 18, e2200799. [Google Scholar] [CrossRef]
- Da Silva, L.P.; Reis, R.L.; Correlo, V.M.; Marques, A.P. Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annu. Rev. Biomed. Eng. 2019, 21, 145–169. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Wang, R.; Liu, J.; Zhang, W.; Liu, Z.; Lou, X.; Nie, H.; Wang, H.; Mo, X.; Abd-Elhamid, A.I.; et al. Incorporation of Magnesium Oxide Nanoparticles into Electrospun Membranes Improves Pro-angiogenic Activity and Promotes Diabetic Wound Healing. Biomater. Adv. 2021, 133, 112609. [Google Scholar] [CrossRef]
- Yu, B.; He, C.; Wang, W.; Ren, Y.; Yang, J.; Guo, S.; Zheng, Y.; Shi, X. Asymmetric Wettable Composite Wound Dressing Prepared by Electrospinning with Bioinspired Micropatterning Enhances Diabetic Wound Healing. ACS Appl. Bio Mater. 2020, 3, 5383–5394. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021, 15, 12687–12722. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, J.; Feng, W.; Xu, B.; Zhang, K.; Ma, G.; Li, Y.; Yang, M.; Xu, F.J. Glycosaminoglycan-Based Hydrogel Delivery System Regulates the Wound Microenvironment to Rescue Chronic Wound Healing. ACS Appl. Mater. Interfaces 2022, 14, 31737–31750. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, Z.; Zhang, N.; Gao, W.; Li, J.; Pu, Y.; He, B.; Xie, J. A Mg2+/Polydopamine Composite Hydrogel for the Acceleration of Infected Wound Healing. Bioact. Mater. 2022, 15, 203–213. [Google Scholar] [CrossRef]
- Zhao, P.; Feng, Y.; Zhou, Y.; Tan, C.; Liu, M. Gold@Halloysite Nanotubes-Chitin Composite Hydrogel with Antibacterial and Hemostatic Activity for Wound Healing. Bioact. Mater. 2023, 20, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Gruppuso, M.; Turco, G.; Marsich, E.; Porrelli, D. Polymeric Wound Dressings, an Insight into Polysaccharide-based Electrospun Membranes. Appl. Mater. Today 2021, 24, 101148. [Google Scholar] [CrossRef]
- Juncos Bombin, A.D.; Dunne, N.J.; McCarthy, H.O. Electrospinning of Natural Polymers for the Production of Nanofibres for Wound Healing Applications. Mater. Sci. Eng. C 2020, 114, 110994. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Cui, C.; Sun, S.; Wu, S.; Chen, S.; Ma, J.; Li, C.M. Electrospun ZnO-Loaded Chitosan/PCL Bilayer Membranes with Spatially Designed Structure for Accelerated Wound Healing. Carbohydr. Polym. 2022, 282, 119131. [Google Scholar] [CrossRef]
- Asghari, F.; Rabiei Faradonbeh, D.; Malekshahi, Z.V.; Nekounam, H.; Ghaemi, B.; Yousefpoor, Y.; Ghanbari, H.; Faridi-Majidi, R. Hybrid PCL/Chitosan-PEO Nanofibrous Scaffolds Incorporated with A. euchroma Extract for Skin Tissue Engineering Application. Carbohydr. Polym. 2022, 278, 118926. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Li, Y.; Li, X.; Wu, Y.; Tang, K.; Liu, J.; Zheng, X.; Wan, G. Injectable Antibacterial Cellulose Nanofiber/Chitosan Aerogel with Rapid Shape Recovery for Noncompressible Hemorrhage. Int. J. Biol. Macromol. 2020, 154, 1185–1193. [Google Scholar] [CrossRef]
- Li, Y.J.; Wei, S.C.; Chu, H.W.; Jian, H.J.; Anand, A.; Nain, A.; Huang, Y.F.; Chang, H.T.; Huang, C.C.; Lai, J.Y. Poly-quercetin-based NanoVelcro as a Multifunctional Wound Dressing for Effective Treatment of Chronic Wound Infections. Chem. Eng. J. 2022, 437, 135315. [Google Scholar] [CrossRef]
- Jiang, P.; Huang, L.; Wang, J.; Li, Q.; Mu, H. Carboxymethyl Chitosan-based Multifunctional Hydrogels Incorporated with Photothermal Therapy against Drug-Resistant Bacterial Wound Infection. Int. J. Biol. Macromol. 2022, 209, 452–463. [Google Scholar] [CrossRef]
- Kumar, S.; Basumatary, I.B.; Sudhani, H.P.K.; Bajpai, V.K.; Chen, L.; Shukla, S.; Mukherjee, A. Plant Extract Mediated Silver Nanoparticles and Their Applications as Antimicrobials and in Sustainable Food Packaging: A state-of-the-art review. Trends Food Sci. Technol. 2021, 112, 651–666. [Google Scholar] [CrossRef]
- Komal; Sonia; Kukreti, S.; Kaushik, M. Exploring the Potential of Environment Friendly Silver Nanoparticles for DNA Interaction: Physicochemical Approach. Photochem. Photobiol. 2019, 194, 158–165. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef]
- Ren, X.; Zhu, Y.; Xie, L.; Zhang, M.; Gao, L.; He, H. Yunnan Baiyao Diminishes Lipopolysaccharide-induced Inflammation in Osteoclasts. J. Food Biochem. 2020, 44, e13182. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Chang, B.T.; Chen, R.; Wei, Y.J.; Gong, Q.J.; Yu, D.; Zhang, Y.; Han, X.; Yang, H.B.; Tang, S.J.; et al. Research Advances in Pharmacology, Safety, and Clinical Applications of Yunnan Baiyao, a Traditional Chinese Medicine Formula. Front. Pharmacol. 2021, 12, 773185. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Xie, J.; Xin, N.; Wang, Z. Panax notoginseng Saponins Promote Wound Repair of Anterior Cruciate Ligament through Phosphorylation of PI3K, AKT and ERK. J. Clin. Exp. Hepatol. 2015, 8, 441–449. [Google Scholar]
- Zhang, C.J.; Zhang, S.; Wang, L.X.; Kang, S.; Ma, J.B.; Liu, S.A.; Hu, Y.H.; Zhang, F.; Sun, T.S.; Dong, Y.X.; et al. The RIG-I Signal Pathway Mediated Panax notoginseng Saponin Anti-Inflammatory Effect in Ischemia Stroke. Evid.-Based Complement. Altern. Med. 2021, 2021, 8878428. [Google Scholar] [CrossRef]
- Zhu, T.; Xie, W.J.; Wang, L.; Jin, X.B.; Meng, X.B.; Sun, G.B.; Sun, X.B. Notoginsenoside R1 Activates the NAMPT-NAD+-SIRT1 Cascade to Promote Postischemic Angiogenesis by Modulating Notch Signaling. Biomed. Pharmacother. 2021, 140, 111693. [Google Scholar] [CrossRef]
- Zhong, J.; Lu, W.; Zhang, J.; Huang, M.; Lyu, W.; Ye, G.; Deng, L.; Chen, M.; Yao, N.; Li, Y.; et al. Notoginsenoside R1 Activates the Ang2/Tie2 Pathway to Promote Angiogenesis. Phytomedicine 2020, 78, 153302. [Google Scholar] [CrossRef]
- Kong, B.; Liu, R.; Guo, J.; Lu, L.; Zhou, Q.; Zhao, Y. Tailoring micro/nano-fibers for biomedical applications. Bioact. Mater. 2023, 19, 328–347. [Google Scholar] [CrossRef]
- Afshar, A.; Gultekinoglu, M.; Edirisinghe, M. Binary Polymer Systems for Biomedical Applications. Int. Mater. Rev. 2022, 13, 1–41. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, M.; Zhu, T.; Xiong, H.; Zhu, L.M. A Careob-like Nanofibers with a Sustained Drug Release Profile for Promoting Skin Wound Repair and Inhibiting Hypertrophic scar. Compos. B. Eng. 2022, 236, 109790. [Google Scholar] [CrossRef]
- Luraghi, A.; Peri, F.; Moroni, L. Electrospinning for Drug Delivery Applications: A review. J. Contr. Release 2021, 334, 463–484. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, G.; Zhao, Y.; Zhou, M.; Zhong, A.; Sun, J. Promotion of Skin Regeneration through Coaxial Electrospun Fibers Loaded with Basic Fibroblast Growth Factor. Adv. Compos. Mater. 2022, 5, 1111–1125. [Google Scholar] [CrossRef]
- Hao, D.; Swindell, H.S.; Ramasubramanian, L.; Liu, R.; Lam, K.S.; Farmer, D.L.; Wang, A. Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified with Mesenchymal Stem Cell-derived Extracellular Vesicles for Improved Vascularization. Front. Bioeng. Biotechnol. 2020, 8, 633. [Google Scholar] [CrossRef] [PubMed]
- Nanditha, C.K.; Kumar, G.S.V. Bioactive Peptides Laden Nano and Micro-Sized Particles Enriched ECM Inspired Dressing for Skin Regeneration in Diabetic Wounds. Mater. Today Bio 2022, 14, 100235. [Google Scholar] [CrossRef]
- Deshmukh, S.; Kathiresan, M.; Kulandainathan, M.A. A Review on Biopolymer-Derived Electrospun Nanofibers for Biomedical and Antiviral Applications. Biomater. Sci. 2022, 10, 4424–4442. [Google Scholar] [CrossRef]
- Yang, Y.; Du, Y.; Zhang, J.; Zhang, H.; Guo, B. Structural and Functional Design of Electrospun Nanofibers for Hemostasis and Wound Healing. Adv. Fiber Mater. 2022, 4, 1027–1057. [Google Scholar] [CrossRef]
- Cui, S.S.; Sun, X.; Li, K.; Gou, D.X.; Zhou, Y.F.; Hu, J.L.; Liu, Y.C. Polylactide Nanofibers Delivering Doxycycline for Chronic Wound Treatment. Mater. Sci. Eng. C 2019, 104, 109745. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, R.; Song, W.; Liu, L.; Li, J. One-step Method to Prepare Core-Shell Magnetic Nanocomposite Encapsulating Silver Nanoparticles with Superior Catalytic and Antibacterial Activity. J. Colloid Interface Sci. 2022, 607, 1730–1740. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Fang, C.; Cheng, Y.; Tan, T.; Han, H. In Situ Synthesis and Properties of Ag NPs/Carboxymethyl Cellulose/Starch Composite Films for Antibacterial Application. Polym. Compos. 2020, 41, 838–847. [Google Scholar] [CrossRef]
- Calabrese, G.; Petralia, S.; Franco, D.; Nocito, G.; Fabbi, C.; Forte, L.; Guglielmino, S.; Squarzoni, S.; Traina, F.; Conoci, S. A New Ag-Nanostructured Hydroxyapatite Porous Scaffold: Antibacterial Effect and Cytotoxicity Study. Mater. Sci. Eng. C 2021, 118, 111394. [Google Scholar] [CrossRef]
- Abduraimova, A.; Molkenova, A.; Duisembekova, A.; Mulikova, T.; Kanayeva, D.; Atabaev, T.S. Cetyltrimethylammonium Bromide (CTAB)-Loaded SiO2-Ag Mesoporous Nanocomposite as an Efficient Antibacterial Agent. Nanomaterials 2021, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dong, X.; Shafiq, M.; Myles, G.; Radacsi, N.; Mo, X. Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering. Adv. Fiber Mater. 2022, 4, 959–986. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, D.; Gao, N.; Yuan, L.; Hu, W.; Cui, F.; Tian, Y.; Shi, W.; Ma, S.; Zhu, G. Porous Cationic Electrospun Fibers with Sufficient Adsorption Sites for Effective and Continuous 99TcO4− Uptake. Adv. Funct. Mater. 2022, 32, 2200618. [Google Scholar] [CrossRef]
- Yin, J.; Xu, L.; Ahmed, A. Batch Preparation and Characterization of Electrospun Porous Polylactic Acid-Based Nanofiber Membranes for Antibacterial Wound Dressing. Adv. Fiber Mater. 2022, 4, 832–844. [Google Scholar] [CrossRef]
- Ferreira, P.G.; Ferreira, V.F.; da Silva, F.D.; Freitas, C.S.; Pereira, P.R.; Paschoalin, V.M. Chitosans and Nanochitosans: Recent Advances in Skin Protection, Regeneration, and Repair. Pharmaceutics 2022, 14, 1307. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wu, Y. Recent Advances of Chitosan-Based Nanoparticles for Biomedical and Biotechnological Applications. Int. J. Biol. Macromol. 2022, 203, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Chen, M.; Duan, D.; Liu, W.; Cui, W.; Li, L. Effectiveness of Moist Dressings in Wound Healing after Surgical Suturing: A Bayesian Network Meta-Analysis of Randomised Controlled Trials. Int. Wound J. 2022, 20, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Shi, C.; Guo, T.; Zhang, K.; Cui, S.; Chen, L.; Yang, F.; Chen, J. Multifunctional Gel Films of Marine Polysaccharides Cross-Linked with Poly-Metal Ions for Wound Healing. Pharmaceuticals 2022, 15, 750. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, Y.; Lun, X.; Sheng, H.; Yan, A. Effects of Wound Dressing Based on the Combination of Silver@curcumin Nanoparticles and Electrospun Chitosan Nanofibers on Wound Healing. Bioengineered 2022, 13, 4328–4339. [Google Scholar] [CrossRef]
Weight before Moisture Absorption M0 (g) | Weight After Moisture Absorption M1 (g) | Difference Value ΔM (g) | Swelling Ratio (%) | Average Swelling Ratio (%) |
---|---|---|---|---|
0.029 | 0.045 | 0.016 | 55.17 | 57.74 |
0.030 | 0.048 | 0.018 | 60.00 | |
0.031 | 0.049 | 0.018 | 58.06 |
Weight before Moisture Absorption M0 (g) | Weight after Moisture Absorption M1 (g) | Difference Value ΔM (g) | Swelling Ratio (%) | Average Swelling Ratio (%) |
---|---|---|---|---|
0.029 | 0.087 | 0.058 | 200.0 | 199.87 |
0.030 | 0.087 | 0.057 | 190.0 | |
0.031 | 0.096 | 0.065 | 209.6 |
PN in the Electrospun Core Solution (g) | AgNO3 in the Electrospun Shell Solution (g) | The Mass of CS in the Electrospun Core Solution (g) | The Irradiation Time of 254 nm Ultraviolet (h) | Sample Name |
---|---|---|---|---|
0.08 | 0.12 | 0.12 | 2 | PN@8 wt%Ag-2 h |
0.08 | 0 | 0.12 | 0 | PCL@PN |
0 | 0.12 | 0.12 | 2 | PVP@Ag |
0.08 | 0.09 | 0.12 | 2 | PN@6 wt%Ag-2 h |
0.08 | 0.15 | 0.12 | 2 | PN@10 wt%Ag-2 h |
0.08 | 0.12 | 0 | 2 | PN@8 wt%Ag-NCS |
0 | 0 | 0.12 | 0 | Blank membrane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Liu, S.; Li, S.; Shao, X.; Zhang, P.; Yao, Q. Fabrication and Properties of the Multifunctional Rapid Wound Healing Panax notoginseng@Ag Electrospun Fiber Membrane. Molecules 2023, 28, 2972. https://doi.org/10.3390/molecules28072972
Gao Z, Liu S, Li S, Shao X, Zhang P, Yao Q. Fabrication and Properties of the Multifunctional Rapid Wound Healing Panax notoginseng@Ag Electrospun Fiber Membrane. Molecules. 2023; 28(7):2972. https://doi.org/10.3390/molecules28072972
Chicago/Turabian StyleGao, Zhaoju, Songlin Liu, Shangfei Li, Xinzhe Shao, Pingping Zhang, and Qingqiang Yao. 2023. "Fabrication and Properties of the Multifunctional Rapid Wound Healing Panax notoginseng@Ag Electrospun Fiber Membrane" Molecules 28, no. 7: 2972. https://doi.org/10.3390/molecules28072972
APA StyleGao, Z., Liu, S., Li, S., Shao, X., Zhang, P., & Yao, Q. (2023). Fabrication and Properties of the Multifunctional Rapid Wound Healing Panax notoginseng@Ag Electrospun Fiber Membrane. Molecules, 28(7), 2972. https://doi.org/10.3390/molecules28072972