Structural Characterization, In Vitro Digestion Property, and Biological Activity of Sweet Corn Cob Polysaccharide Iron (III) Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Chemical and Monosaccharide Compositions
2.2. SEM-EDS Analysis
2.3. Ultraviolet (UV) Spectroscopy Analysis
2.4. Fourier Transform Infrared (FT-IR) Spectroscopy Analysis
2.5. XPS Analysis
2.6. Congo Red Test
2.7. X-ray Diffraction Analysis
2.8. Thermal Gravimetric Analysis
2.9. Determination of Simulated Digestion In Vitro
2.10. Determination of Antioxidant Activity In Vitro
2.11. Determination of Hypoglycemic Activity In Vitro
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of the Sweet Corn Cob Polysaccharide-Iron (III) Complex
3.3. Characterization of the Sweet Corn Cob Polysaccharide-Iron (III) Complex
3.3.1. Determination of the Chemical and Monosaccharide Compositions
3.3.2. SEM-EDS Analysis
3.3.3. Ultraviolet (UV) Spectroscopy Analysis
3.3.4. Fourier Transform Infrared (FT-IR) Spectroscopy Analysis
3.3.5. XPS Analysis
3.3.6. Congo Red Test
3.3.7. X-ray Diffraction Analysis
3.3.8. Thermal Stability Assay
3.4. Determination of Simulated Digestion In Vitro
3.5. Determination of Antioxidant Activity In Vitro
3.5.1. 2,2-Diphenyl-1-picryl-hydrazyl (DPPH) Radical Scavenging Activity
3.5.2. Hydroxyl Radical Scavenging Activity
3.5.3. 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic Acid) (ABTS) Radical Scavenging Activity
3.6. Determination of Hypoglycemic Activity In Vitro
3.6.1. α-Glucosidase Inhibitory Activity
3.6.2. α-Amylase Inhibitory Activity
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milto, I.V.; Suhodolo, I.V.; Prokopieva, V.D.; Klimenteva, T.K. Molecular and Cellular Bases of Iron Metabolism in Humans. Biochem. 2016, 81, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Puig, S.; Ramos-Alonso, L.; Romero, A.M.; Martínez-Pastor, M.T. The elemental role of iron in DNA synthesis and repair. Met. Integr. Biometal Sci. 2017, 9, 1483–1500. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.L.; Ghosh, M.C.; Ollivierre, H.; Li, Y.; Rouault, T.A. Ferroportin deficiency in erythroid cells causes serum iron deficiency and promotes hemolysis due to oxidative stress. Blood 2018, 132, 2078–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaith, M.M.; El-Boshy, M.; Almasmoum, H.; Abdelghany, A.H.; Azzeh, F.S.; Almaimani, R.A.; Idris, S.A.J.; Mahbub, A.A.; BaSalamah, M.A.; Elzubeir, M.E.; et al. Deferasirox and vitamin D3 co-therapy mitigates iron-induced renal injury by enhanced modulation of cellular anti-inflammatory, anti-oxidative stress, and iron regulatory pathways in rat. J. Trace Elem. Med. Biol. 2022, 74, 127085. [Google Scholar] [CrossRef]
- Werner, T.; Wagner, S.J.; Martínez, I.; Walter, J.; Chang, J.S.; Clavel, T.; Kisling, S.; Schuemann, K.; Haller, D. Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut 2011, 60, 325–333. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, S.; Li, M.; Zhang, R.; Zhang, H.; Zheng, Y.; Zhang, D.; Wu, L. Structural characterization and biological activities of polysaccharide iron complex synthesized by plant polysaccharides: A review. Front. Nutr. 2022, 9, 1013067. [Google Scholar] [CrossRef]
- Yu, S.; Jiang, J.; Li, W. Co-cultured Lepista sordida and Pholiota nameko polysaccharide-iron(iii) chelates exhibit good antioxidant activity. RSC Adv. 2020, 10, 27259–27265. [Google Scholar] [CrossRef]
- Liu, S.; Shi, X.; Xiang, W.; Jin, Z.; Jia, Y.; Zhang, Y.; Zeng, L.; Chen, J.; Huang, X.; Xu, L. Bioactivities and physicochemical properties of crude polysaccharides from mulberry twigs, agricultural by-products. Ind. Crop. Prod. 2023, 193, 116191. [Google Scholar] [CrossRef]
- Revilla, P.; Anibas, C.M.; Tracy, W.F. Sweet Corn Research around the World 2015–2020. Agronomy 2021, 11, 534. [Google Scholar] [CrossRef]
- Tiffany, L.; Niamh, H.; Maria, J. Valorisation of sweet corn (Zea mays) cob by extraction of valuable compounds. Int. J. Food Sci. Technol. 2019, 54, 1240–1246. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.Q.; Xiu, W.Y.; Wang, X.; Yu, S.; Luo, Y.; Gu, X. Structural characterization and in vitro antioxidant and hypoglycemic activities of degraded polysaccharides from sweet corncob. J. Cereal Sci. 2022, 108, 103579. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.; Sun, M.; Duan, Y.; Wang, L.; Yu, N.; Peng, D.; Chen, W.; Wang, Y. Preparation, characterization, antioxidant and antianemia activities of Poria cocos polysaccharide iron (III) complex. Heliyon 2023, 9, e12819. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Su, C.; Wen, C.; Wen, C.; Gong, Y.; You, Y.; Zhao, J.; Han, Y.; Song, S.; et al. Characterization and digestion features of a novel polysaccharide-Fe(III) complex as an iron supplement. Carbohydr. Polym. 2020, 249, 116812. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Luan, L.; Zhang, Y.; Liu, F.; Ye, X.; Hou, Z. A comparison study on polysaccharides extracted from Rosa sterilis S.D.Shi using different methods: Structural and in vitro fermentation characterizations. Food Chem. X 2023, 17, 100533. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, X. Production of a codonopsis polysaccharide iron complex and evaluation of its properties. Int. J. Biol. Macromol. 2020, 162, 1227–1240. [Google Scholar] [CrossRef]
- Peng, Y.; Jiang, H.; Zhang, J.; Wu, Y.; Zhang, J.; Zhou, J.; Chen, Y. Synthesis, characterization and antioxidant activity of a new polysaccharide-iron (III) from Vaccinium bracteatum thunb leaves. J. Food Meas. Charact. 2022, 16, 3768–3781. [Google Scholar] [CrossRef]
- Peng, Y.; Jiang, H.; Wu, Y.; Zhang, J.; Chen, Y. Preparation, characterization and antioxidant activity of a novel polysaccharide-iron (III) from Flammulina velutipes scraps. Arab. J. Chem. 2022, 15, 104190. [Google Scholar] [CrossRef]
- Xu, L.; Meng, Y.; Liu, Y.; Meng, Q.; Zhang, Z.; Li, J.; Lu, Q. A novel iron supplements preparation from Grifola frondosa polysaccharide and assessment of antioxidant, lymphocyte proliferation and complement fixing activities. Int. J. Biol. Macromol. 2018, 108, 1148–1157. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, R.; Wu, L.; Zhang, D.; Zheng, Y. Structural characteristics and antioxidant activity of polysaccharide-iron complex from Glehniae Radix. Int. J. Food Prop. 2020, 23, 894–907. [Google Scholar] [CrossRef]
- Ni, J.; Chen, H.; Zhang, C.; Luo, Q.; Qin, Y.; Yang, Y.; Chen, Y. Characterization of Alpinia officinarum Hance polysaccharide and its immune modulatory activity in mice. Food Funct. 2022, 13, 2228–2237. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Huang, D.; Zhao, L.; Cao, C.; Chen, G. Preparation and in vitro absorption studies of a novel polysaccharide-iron (III) complex from Flammulina velutipes. Int. J. Biol. Macromol. 2019, 132, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Biruck, D.; Mallavarapu, M.; Chen, Z.; Ravi, N. Green synthesis of zero valent iron nanoparticle using mango peel extract and surface characterization using XPS and GC-MS. Heliyon 2019, 5, e01750. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Tian, J.; Pan, Y.; Li, Z.; Zhou, Z.; Pan, Z.; Tai, H.; Xing, Y. Structural Characterization and Biological Activity of Polysaccharides from Stems of Houttuynia cordata. Foods 2022, 11, 3622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, C.; Fu, X. Fructus mori L. polysaccharide-iron chelates formed by self-embedding with iron(iii) as the core exhibit good antioxidant activity. Food Funct. 2019, 10, 3150–3160. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, H.; Liu, Y.; Qin, Z.; Liu, H.; Ma, Y.; Wang, X. Isolation and structural characterization of cell wall polysaccharides from sesame kernel. LWT 2022, 163, 113574. [Google Scholar] [CrossRef]
- Jalaleldeen, K.M.; Amer, A.M.; Mohamed, I.A.M.; Ma, M.; Wang, H. Preparation, deproteinization, characterization, and antioxidant activity of polysaccharide from Medemia argun fruit. Int. J. Biol. Macromol. 2020, 155, 919–926. [Google Scholar] [CrossRef]
- Yuan, S.; Dong, P.; Ma, H.; Liang, S.; Li, L.; Zhang, X. Antioxidant and Biological Activities of the Lotus Root Polysaccharide-iron (III) Complex. Molecules 2022, 27, 7106. [Google Scholar] [CrossRef]
- Gao, W.; Huang, Y.; He, R.; Zeng, X. Synthesis and characterization of a new soluble soybean polysaccharide-iron(III) complex using ion exchange column. Int. J. Biol. Macromol. 2018, 108, 1242–1247. [Google Scholar] [CrossRef]
- Liu, T.; Liu, T.; Liu, H.; Fan, H.; Chen, B.; Wang, D.; Zhang, Y.; Sun, F. Preparation and Characterization of a Novel Polysaccharide-iron(III) Complex in Auricularia auricula Potentially Used as an Iron Supplement. BioMed Res. Int. 2019, 2019, 6416941. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Tao, Y.; Li, M.; Zhang, W.; Fan, Y.; Yong, Q. Synthesis and Characterization of an Antioxidative Galactomannan–Iron(III) Complex from Sesbania Seed. Polymers 2018, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Cheng, S.; Qi, G.; Yang, Z.; Yin, S.; Chen, G. Antimicrobial and antioxidant activities of Flammulina velutipes polysacchrides and polysaccharide-iron(III) complex. Carbohydr. Polym. 2017, 161, 26–32. [Google Scholar] [CrossRef]
- Huang, G.; Mei, X.; Hu, J. The Antioxidant Activities of Natural Polysaccharides. Curr. Drug Targets 2017, 18, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Yao, X.; Xu, K.; Wu, K.; Chen, X.; Liu, N.; Katsuyoshi, N.; Glyn, O.P.; Jiang, F. Trivalent iron induced gelation in Artemisia sphaerocephala Krasch. polysaccharide. Int. J. Biol. Macromol. 2020, 144, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Gu, S.; Pan, L.; Sun, H.; Gong, E.; Zhu, Z.; Wen, T.; Daba, G.; Elkhateeb, W. Structure analysis and antioxidant activity of polysaccharide-iron (III) from Cordyceps militaris mycelia. Int. J. Biol. Macromol. 2021, 178, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Cao, J.; Liu, R.; Chen, H. Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran. Food Chem. 2021, 341, 128218. [Google Scholar] [CrossRef]
- Zhao, M.; Bai, J.; Bu, X.; Yin, Y.; Wang, L.; Yang, Y.; Xu, Y. Characterization of selenized polysaccharides from Ribes nigrum L. and its inhibitory effects on α-amylase and α-glucosidase. Carbohydr. Polym. 2021, 259, 117729. [Google Scholar] [CrossRef]
- Li, X.; Jiang, F.; Liu, M.; Qu, Y.; Lan, Z.; Dai, X.; Huang, C.; Yue, X.; Zhao, S.; Pan, X.; et al. Synthesis, Characterization, and Bioactivities of Polysaccharide Metal Complexes: A Review. J. Agric. Food Chem. 2022, 70, 6922–6942. [Google Scholar] [CrossRef]
- Wang, X.; Xiu, W.; Han, Y.; Xie, J.; Zhang, K.; Zhou, K.; Ma, Y. Structural characterization of a novel polysaccharide from sweet corncob that inhibits glycosylase in STZ-induced diabetic rats. Glycoconj. J. 2022, 39, 413–427. [Google Scholar] [CrossRef]
- Shi, J.; Cheng, C.; Zhao, H.; Jing, J.; Gong, N.; Lu, W. In vivo anti-radiation activities of the Ulva pertusa polysaccharides and polysaccharide–iron(III) complex. Int. J. Biol. Macromol. 2013, 60, 341–346. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, J.; Chen, Y.; Ma, Y.; Yang, Q.; Fan, Y.; Fu, C.; Limsila, B.; Li, R.; Liao, W. Extraction, structural characterization and antioxidant activity of turmeric polysaccharides. LWT 2022, 154, 112805. [Google Scholar] [CrossRef]
- Lu, Q.; Xu, L.; Meng, Y.; Liu, Y.; Li, J.; Zu, Y.; Zhu, M. Preparation and characterization of a novel Astragalus membranaceus polysaccharide-iron (III) complex. Int. J. Biol. Macromol. 2016, 93, 208–216. [Google Scholar] [CrossRef]
- Han, L.; Song, H.; Fu, L.; Li, J.; Yang, L.; Liu, H. Effect of extraction method on the chemical profiles and bioactivities of soybean hull polysaccharides. Food Sci. Nutr. 2021, 9, 5928–5938. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, F.; Li, F.; Zhao, C.; Wang, H.; Yu, H.; Bie, S.; Suo, T.; Li, Z.; Li, G.; et al. Quality differentiation method of similar phytomedicines with high sugar content based on the sugar-marker: Taking Schisandrae Chinensis Fructus and Schisandrae Sphenantherae Fructus as an example. Arab. J. Chem. 2022, 15, 103727. [Google Scholar] [CrossRef]
- Liu, X.; Xu, S.; Ding, X.; Yue, D.; Bian, J.; Zhang, X.; Zhang, G.; Gao, P. Structural characteristics of Medicago Sativa L. Polysaccharides and Se-modified polysaccharides as well as their antioxidant and neuroprotective activities. Int. J. Biol. Macromol. 2020, 147, 1099–1106. [Google Scholar] [CrossRef]
- Rizvi, A.; Saghir, K.M. Putative Role of Bacterial Biosorbent in Metal Sequestration Revealed by SEM-EDX and FTIR. Indian J. Microbiol. 2019, 59, 246–249. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Xu, L.; Wu, Q.; Wang, Q.; Kong, W.; Liang, J.; Yao, J.; Zhang, J. Synthesis and structural features of phosphorylated Artemisia sphaerocephala polysaccharide. Carbohydr. Polym. 2018, 181, 19–26. [Google Scholar] [CrossRef]
- Zhang, F.; Zheng, J.; Li, Z.; Cai, Z.; Wang, F.; Yang, D. Purification, Characterization, and Self-Assembly of the Polysaccharide from Allium schoenoprasum. Foods 2021, 10, 1352. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, C.; Han, Z.; Chen, Z.; Wei, X.; Wang, Y. Comparative analysis of existence form for selenium and structural characteristics in artificial selenium-enriched and synthetic selenized green tea polysaccharides. Int. J. Biol. Macromol. 2020, 154, 1408–1418. [Google Scholar] [CrossRef]
- Zhu, J.; Tan, Z.; Zhang, Z.; Shi, X. Characterization on structure and bioactivities of a novel exopolysaccharide from Lactobacillus curvatus SJTUF 62116. Int. J. Biol. Macromol. 2022, 210, 504–517. [Google Scholar] [CrossRef]
- Zhu, K.; Yao, S.; Zhang, Y.; Liu, Q.; Xu, F.; Wu, G.; Dong, W.; Tan, L. Effects of in vitro saliva, gastric and intestinal digestion on the chemical properties, antioxidant activity of polysaccharide from Artocarpus heterophyllus Lam. (Jackfruit) Pulp. Food Hydrocoll. 2019, 87, 952–959. [Google Scholar] [CrossRef]
- Golovchenko, V.; Popov, S.; Smirnov, V.; Khlopin, V.; Vityazev, F.; Naranmandakh, S.; Dmitrenok, A.S.; Shashkov, A.S. Polysaccharides of Salsola passerina: Extraction, Structural Characterization and Antioxidant Activity. Int. J. Mol. Sci. 2022, 23, 13175. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, C.T.; Mejía, G.J.C.; Puertas, M.; Miguel, Á. Lentinula edodes, a Novel Source of Polysaccharides with Antioxidant Power. Antioxidants 2022, 11, 1770. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Peng, F.; Xie, Y.; Wang, H.; Wu, J.; Liu, C.; Yang, Y. Optimization Extraction and Antioxidant Activity of Crude Polysaccharide from Chestnut Mushroom (Agrocybe aegerita) by Accelerated Solvent Extraction Combined with Response Surface Methodology (ASE-RSM). Molecules 2022, 27, 2380. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Wang, D.; Wu, N.; Wang, K.; Zhang, Y. Preparation, chemical structure and α-glucosidase inhibitory activity of sulfated polysaccharide from Grifola frondosa. J. Funct. Foods 2022, 98, 105289. [Google Scholar] [CrossRef]
- Al-Nabulsi, A.A.; Jaradat, Z.W.; Al, Q.F.R.; Elsalem, L.; Osaili, T.M.; Olaimat, A.N.; Esposito, G.; Liu, S.Q.; Ayyash, M.M. Characterization and bioactive properties of exopolysaccharides produced by Streptococcus thermophilus and Lactobacillus bulgaricus isolated from labaneh. LWT 2022, 167, 113817. [Google Scholar] [CrossRef]
Samples | SCCP | SCCP-Fe-A | SCCP-Fe-B | SCCP-Fe-C | SCCP-Fe-D |
---|---|---|---|---|---|
Total carbohydrates (%) | 72.91 ± 0.19 | 74.21 ± 2.37 * | 72.52 ± 4.29 | 73.36 ± 3.08 | 71.27 ± 2.85 |
Uronic acid (%) | 9.58 ± 0.12 | 4.21 ± 0.35 ** | 3.16 ± 0.26 ** | 2.01 ± 0.13 ** | 2.96 ± 0.34 ** |
Protein (%) | 1.16 ± 0.05 | 1.26 ± 0.17 | 1.04 ± 0.22 | 0.97 ± 0.14 | 1.07 ± 0.19 |
Fe (%) | 0.07 ± 0.01 | 12.75 ± 1.26 ** | 15.67 ± 1.48 ** | 21.09 ± 2.29 ** | 14.82 ± 1.31 ** |
pH | 6.85 ± 0.13 | 6.91 ± 0.12 | 6.92 ± 0.23 | 6.92 ± 0.18 | 6.90 ± 0.15 |
Monosaccharide compositions (mol %) | |||||
Man | 4.613 | 1.504 | 2.437 | 2.946 | 2.770 |
Glc | 66.609 | 65.822 | 63.368 | 62.482 | 61.644 |
Gal | 10.135 | 12.890 | 12.561 | 12.770 | 12.433 |
Ara | 7.157 | 13.391 | 13.523 | 12.548 | 12.857 |
Fuc | 5.878 | 1.200 | 2.438 | 2.682 | 3.543 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiu, W.; Wang, X.; Yu, S.; Na, Z.; Li, C.; Yang, M.; Ma, Y. Structural Characterization, In Vitro Digestion Property, and Biological Activity of Sweet Corn Cob Polysaccharide Iron (III) Complexes. Molecules 2023, 28, 2961. https://doi.org/10.3390/molecules28072961
Xiu W, Wang X, Yu S, Na Z, Li C, Yang M, Ma Y. Structural Characterization, In Vitro Digestion Property, and Biological Activity of Sweet Corn Cob Polysaccharide Iron (III) Complexes. Molecules. 2023; 28(7):2961. https://doi.org/10.3390/molecules28072961
Chicago/Turabian StyleXiu, Weiye, Xin Wang, Shiyou Yu, Zhiguo Na, Chenchen Li, Mengyuan Yang, and Yongqiang Ma. 2023. "Structural Characterization, In Vitro Digestion Property, and Biological Activity of Sweet Corn Cob Polysaccharide Iron (III) Complexes" Molecules 28, no. 7: 2961. https://doi.org/10.3390/molecules28072961
APA StyleXiu, W., Wang, X., Yu, S., Na, Z., Li, C., Yang, M., & Ma, Y. (2023). Structural Characterization, In Vitro Digestion Property, and Biological Activity of Sweet Corn Cob Polysaccharide Iron (III) Complexes. Molecules, 28(7), 2961. https://doi.org/10.3390/molecules28072961