Efficient Diesel Desulfurization by Novel Amphiphilic Polyoxometalate-Based Hybrid Catalyst at Room Temperature
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Optimization of ODS System
2.3. Comparison of Desulfurization Performance of Three Hybrid Catalysts Based [SMo12O40]2−
2.4. Catalyst Recovery
2.5. Oxidative Desulfurization of Real Diesel
2.6. The Mechanism of Oxidative Desulfurization Using SMo12O402−-Organic Hybrid Catalysts
3. Experimental
3.1. Synthesis of Catalysts
3.2. Characterization
3.3. Oxidative Desulfurization Process for Model Oil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Yang, Z.; Li, S.; Jin, Q.; Zhao, J. Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts. J. Ind. Eng. Chem. 2020, 82, 1–16. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, W.-W.; Dolo, A.; Zhang, H. An amphiphilic catalyst based on sandwich-type polyoxometalate for deep desulfurization of fuels in ionic liquid. RSC Adv. 2016, 6, 71–76. [Google Scholar] [CrossRef]
- Yashnik, S.A.; Kerzhentsev, M.A.; Salnikov, A.V.; Ismagilov, Z.R.; Bourane, A.; Koseoglu, O.R. Cu-Zn-Al-O Catalysts for the Oxidative Desulfurization of Dibenzothiophene, a Typical Sulfur-Containing Compound of the Diesel Fraction. Kinet. Catal. 2015, 56, 4–75. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, A.; Wang, Y.; Wang, H.; Gui, J. Heterogeneous oxidative desulfurization of diesel oil by hydrogen peroxide: Catalysis of an amphipathic hybrid material supported on SiO2. Chem. Eng. J. 2014, 245, 65–70. [Google Scholar] [CrossRef]
- Yang, R.T.; Hernandez-Maldonado, A.J.; Yang, F.H. Desulfurization of transportation fuels with zeolites under ambient conditions. Science 2003, 301, 5629–5681. [Google Scholar] [CrossRef]
- Song, C.; Ma, X.L. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl. Catal. B-Environ. 2003, 41, 1–2-38. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, Z.; Fang, Z.; Liu, B.; Huang, K. Synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose in ethanol catalyzed by MCM-41 supported phosphotungstic acid. J. Ind. Eng. Chem. 2014, 20, 4–84. [Google Scholar] [CrossRef]
- Jin, T.; Yang, Q.; Meng, C.; Xu, J.; Liu, H.; Hu, J.; Ling, H. Promoting desulfurization capacity and separation efficiency simultaneously by the novel magnetic Fe3O4@PAA@MOF-199. RSC Adv. 2014, 4, 41902–41909. [Google Scholar] [CrossRef]
- Yang, H.; Jiang, B.; Sun, Y.; Zhang, L.; Sun, Z.; Wang, J.; Tantai, X. Polymeric cation and isopolyanion ionic self-assembly: Novel thin-layer mesoporous catalyst for oxidative desulfurization. Chem. Eng. J. 2017, 317, 32–41. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, J.; Zhang, D.; Sun, Y.; Han, B.; Tang, N.; Zhao, J.; Li, K. Deep Catalytic Oxidative Desulfurization of Model Fuel Based on Modified Iron Porphyrins in Ionic Liquids: Anionic Ligand Effect. ACS Sustain. Chem. Eng. 2017, 5, 3–5. [Google Scholar] [CrossRef]
- Bej, S.K. Revamping of diesel hydrodesulfurizers: Options available and future research needs. Fuel Process. Technol. 2004, 85, 13–17. [Google Scholar] [CrossRef]
- Francisco, M.; Arce, A.; Soto, A. Ionic liquids on desulfurization of fuel oils. Fluid Phase Equilibria 2010, 294, 1–2-48. [Google Scholar] [CrossRef]
- Mondal, S.; Hangun-Balkir, Y.; Alexandrova, L.; Link, D.; Howard, B.; Zandhuis, P.; Cugini, A.; Horwitz, C.P.; Collins, T.J. Oxidation of sulfur components in diesel fuel using Fe-TAML (R) catalysts and hydrogen peroxide. Catal. Today 2006, 116, 4–61. [Google Scholar] [CrossRef]
- Gao, S.; Chen, X.; Xi, X.; Abro, M.; Afzal, W.; Abro, R.; Yu, G. Coupled Oxidation-Extraction Desulfurization: A Novel Evaluation for Diesel Fuel. ACS Sustain. Chem. Eng. 2019, 7, 6–8. [Google Scholar] [CrossRef]
- Li, L.; Lu, Y.; Meng, H.; Li, C. Lipophilicity of amphiphilic phosphotungstates matters in catalytic oxidative desulfurization of oil by H2O2. Fuel 2019, 253, 802–810. [Google Scholar] [CrossRef]
- Rajendran, A.; Cui, T.-Y.; Fan, H.-X.; Yang, Z.-F.; Feng, J.; Li, W.-Y. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. J. Mater. Chem. A 2020, 8, 2246–2285. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Ahmed, O.U.; Al-Wahaibi, T.; Al-Wahaibi, Y.; AlNashef, I.M. Deep oxidative desulfurization of liquid fuels. Rev. Chem. Eng. 2014, 30, 4–78. [Google Scholar] [CrossRef]
- Ma, X.L.; Velu, S.; Kim, J.H.; Song, C.S. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications. Appl. Catal. B-Environ. 2005, 56, 134–147. [Google Scholar] [CrossRef]
- Hossain, M.N.; Park, H.C.; Choi, H.S. A Comprehensive Review on Catalytic Oxidative Desulfurization of Liquid Fuel Oil. Catalysts 2019, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Dehkordi, A.M.; Kiaei, Z.; Sobati, M.A. Oxidative desulfurization of simulated light fuel oil and untreated kerosene. Fuel Process. Technol. 2009, 90, 3–45. [Google Scholar] [CrossRef]
- Craven, M.; Xiao, D.; Kunstmann-Olsen, C.; Kozhevnikova, E.F.; Blanc, F.; Steiner, A.; Kozhevnikov, I.V. Oxidative desulfurization of diesel fuel catalyzed by polyoxometalate immobilized on phosphazene-functionalized silica. Appl. Catal. B-Environ. 2018, 231, 82–91. [Google Scholar] [CrossRef]
- Campos-Martin, J.M.; Capel-Sanchez, M.C.; Perez-Presas, P.; Fierro, J.L.G. Oxidative processes of desulfurization of liquid fuels. J. Chem. Technol. Biotechnol. 2010, 85, 7–90. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Li, H.; Zhu, W.; He, L.; Shu, H.; Lu, J. Deep desulfurization of fuels catalyzed by surfactant-type decatungstates using H2O2 as oxidant. Fuel 2009, 88, 3–6. [Google Scholar] [CrossRef]
- Lei, P.X.; Chen, C.C.; Yang, J.; Ma, W.H.; Zhao, J.C.; Zang, L. Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation. Environ. Sci. Technol. 2005, 39, 21–74. [Google Scholar] [CrossRef]
- Chen, Y.; Song, H.; Meng, H.; Lu, Y.; Li, C.; Lei, Z.; Chen, B. Polyethylene glycol oligomers as green and efficient extractant for extractive catalytic oxidative desulfurization of diesel. Fuel Process. Technol. 2017, 158, 20–25. [Google Scholar] [CrossRef]
- Kozhevnikov, I.V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev. 1998, 98, 1–98. [Google Scholar] [CrossRef]
- Tang, N.; Jiang, Z.; Li, C. Oxidation of refractory sulfur-containing compounds with molecular oxygen catalyzed by vanadoperiodate. Green Chem. 2015, 17, 2–20. [Google Scholar] [CrossRef]
- Izarova, N.V.; Pope, M.T.; Kortz, U. Noble Metals in Polyoxometalates. Angew. Chem.-Int. Ed. 2012, 51, 38–510. [Google Scholar] [CrossRef]
- Himeno, S.; Takamoto, M.; Santo, R.; Ichimura, A. Redox Properties and Basicity of Keggin-Type Polyoxometalate Complexes. Bull. Chem. Soc. Jpn. 2005, 78, 1–100. [Google Scholar] [CrossRef]
- Ruther, T.; Hultgren, V.M.; Timko, B.P.; Bond, A.M.; Jackson, W.R.; Wedd, A.G. Electrochemical investigation of photooxidation processes promoted by sulfo-polyoxometalates: Coupling of photochemical and electrochemical processes into an effective catalytic cycle. J. Am. Chem. Soc. 2003, 125, 33–43. [Google Scholar] [CrossRef]
- Zhang, J.; Bond, A.M.; MacFarlane, D.R.; Forsyth, S.A.; Pringle, J.M.; Mariotti, A.W.A.; Glowinski, A.F.; Wedd, A.G. Voltammetric studies on the reduction of polyoxometalate anions in ionic liquids. Inorg. Chem. 2005, 44, 14–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.; He, H.; Cheng, Y.; Yang, C.; Zeng, G.; Qiu, L. Performances, kinetics and mechanisms of catalytic oxidative desulfurization from oils. RSC Adv. 2016, 6, 105–169. [Google Scholar] [CrossRef]
- Afsharpour, M.; Amraee, A.R. Synthesis of bio-inspired N-doped SiC and investigation of its synergetic effects on Mo catalysts in oxidative desulfurization reaction. Mol. Catal. 2017, 436, 285–293. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, W.; Li, H.; Jiang, W.; Zhang, M.; Duan, Y.; Chang, Y. Catalytic oxidative desulfurization with a hexatungstate/aqueous H2O2/ionic liquid emulsion system. Green Chem. 2011, 13, 5–6. [Google Scholar] [CrossRef]
- Gao, H.; Guo, C.; Xing, J.; Zhao, J.; Liu, H. Extraction and oxidative desulfurization of diesel fuel catalyzed by a Bronsted acidic ionic liquid at room temperature. Green Chem. 2010, 12, 1220–1224. [Google Scholar] [CrossRef]
- Zhang, Y.; Lue, H.; Wang, L.; Zhang, Y.; Liu, P.; Han, H.; Jiang, Z.; Li, C. The oxidation of benzothiophene using the Keggin-type lacunary polytungstophosphate as catalysts in emulsion. J. Mol. Catal. A—Chem. 2010, 332, 1–2-64. [Google Scholar] [CrossRef]
- Nisar, A.; Zhuang, J.; Wang, X. Construction of Amphiphilic Polyoxometalate Mesostructures as a Highly Efficient Desulfurization Catalyst. Adv. Mater. 2011, 23, 1130–1135. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Z.; Hou, W.; Wang, Q.; Wang, J. Polyoxometalate-based phase transfer catalysis for liquid-solid organic reactions: A review. Catal. Sci. Technol. 2015, 5, 9–35. [Google Scholar] [CrossRef]
- Li, C.; Jiang, Z.X.; Gao, J.B.; Yang, Y.X.; Wang, S.J.; Tian, F.P.; Sun, F.; Sun, X.; Ying, P.; Han, C. Ultra-deep desulfurization of diesel: Oxidation with a recoverable catalyst assembled in emulsion. Chemistry 2004, 10, 9–80. [Google Scholar] [CrossRef]
- Lu, H.Y.; Gao, J.B.; Jiang, Z.X.; Jing, F.; Yang, Y.X.; Wang, G.; Li, C. Ultra-deep desulfurization of diesel by selective oxidation with C18H37N(CH3)(3) (4) H2NaPW10O36 catalyst assembled in emulsion droplets. J. Catal. 2006, 239, 2–75. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, G.; Zeng, D.; Tang, Y.; Wang, M.; Li, Y. Oxidative desulfurization of diesel fuel using amphiphilic quaternary ammonium phosphomolybdate catalysts. Fuel Process. Technol. 2009, 90, 12–42. [Google Scholar] [CrossRef]
- Ribeiro, S.O.; Juliao, D.; Cunha-Silva, L.; Domingues, V.F.; Valenca, R.; Ribeiro, J.C.; de Castro, B.; Balula, S.S. Catalytic oxidative/extractive desulfurization of model and untreated diesel using hybrid based zinc-substituted polyoxometalates. Fuel 2016, 166, 268–275. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, W.; Li, H.; Zhang, M.; Jiang, W.; Chen, G.; Han, C. Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels. Fuel Process. Technol. 2011, 92, 10–18. [Google Scholar] [CrossRef]
- Yang, S.; Hao, Y.; Wang, J.; Wang, H.; Zheng, Y.; Tian, H.; Liu, Y.; Sun, B. Selective catalytic dehydration of furfuryl alcohol to 2,2’-difurfuryl ether using a polyoxometalate catalyst. Sci. Rep. 2017, 7, 12954. [Google Scholar] [CrossRef] [Green Version]
- Mirante, F.; Dias, L.; Silva, M.; Ribeiro, S.O.; Corvo, M.C.; de Castro, B.; Granadeiro, C.M.; Balula, S.S. Efficient heterogeneous polyoxometalate-hybrid catalysts for the oxidative desulfurization of fuels. Catal. Commun. 2018, 104, 1–8. [Google Scholar] [CrossRef]
- Lu, H.; Deng, C.; Ren, W.; Yang, X. Oxidative desulfurization of model diesel using (C4H9)(4)N (6)Mo7O24 as a catalyst in ionic liquids. Fuel Process. Technol. 2014, 119, 87–91. [Google Scholar] [CrossRef]
- Li, D.-P.; Hu, X.-L.; Zhao, Y.-M.; Guan, P.; Yu, J.-Y. Study of Green Solvents 1-butyl-3-methylimidazolium Ionic Liquids’ Structure and Properties. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010. [Google Scholar]
- Cao, J.-X.; Liu, C.-L.; Liao, L.-L. Preparation, characterization and photocatalytic activity of Keggin type of phosphotungstic acid salts. J. Jilin Univ. 2013, 51, 5–8. [Google Scholar]
- Lu, H.; Ren, W.; Wang, H.; Wang, Y.; Chen, W.; Suo, Z. Deep desulfurization of diesel by ionic liquid extraction coupled with catalytic oxidation using an Anderson-type catalyst (C4H9)(4)N (4)NiMo6O24H6. Appl. Catal. A—Gen. 2013, 453, 376–382. [Google Scholar] [CrossRef]
- Qiu, L.; Zou, K.; Xu, G. Investigation on the sulfur state and phase transformation of spent and regenerated S zorb sorbents using XPS and XRD. Appl. Surf. Sci. 2013, 266, 230–234. [Google Scholar] [CrossRef]
- González-Ildelfonso, M.; Escobar, J.; Gordillo-Cruz, E.; del Ángel, P.; Suárez-Toriello, V.A.; De los Reyes, J.A. RuS2-modified NiW/Al2O3 catalysts for refractory 4,6-dimethyl-dibenzothiophene hydrodesulfurization. Mater. Chem. Phys. 2022, 278, 125568. [Google Scholar] [CrossRef]
- Abazari, R.; Esrafili, L.; Morsali, A.; Wu, Y.; Gao, J. PMo12@UiO-67 nanocomposite as a novel non-leaching catalyst with enhanced performance durability for sulfur removal from liquid fuels with exceptionally diluted oxidant. Appl. Catal. B Environ. 2021, 283, 119582. [Google Scholar] [CrossRef]
- Peng, Y.-L.; Liu, J.; Zhang, H.-F.; Luo, D.; Li, D.J.I.C.F. A size-matched POM@ MOF composite catalyst for highly efficient and recyclable ultra-deep oxidative fuel desulfurization. Inorg. Chem. Front. 2018, 5, 7–9. [Google Scholar] [CrossRef]
- Zhang, J.-A.; Pan, M.; Jiang, J.-J.; She, Z.-G.; Fan, Z.-J.; Su, C.-Y. Syntheses, crystal structures and antimicrobial activities of thioether ligands containing quinoline and pyridine terminal groups and their transition metal complexes. Inorg. Chim. Acta 2011, 374, 1–77. [Google Scholar] [CrossRef]
- Xun, S.; Jiang, W.; Guo, T.; He, M.; Ma, R.; Zhang, M.; Zhu, W.; Li, H. Magnetic mesoporous nanospheres supported phosphomolybdate-based ionic liquid for aerobic oxidative desulfurization of fuel. J. Colloid Interface Sci. 2019, 534, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Song, Q.; Zang, S.; Deng, G.; Li, J. Synthesis of polyoxomolybdate-quinoline compounds beads for catalytic oxidative desulfurization. Mol. Catal. 2018, 455, 88–94. [Google Scholar] [CrossRef]
- Zhuang, J.; Hu, B.; Tan, J.; Jin, X. Deep oxidative desulfurization of dibenzothiophene with molybdovanadophosphoric heteropolyacid-based catalysts. Transit. Met. Chem. 2014, 39, 2–20. [Google Scholar] [CrossRef]
- Xu, D.; Zhu, W.; Li, H.; Zhang, J.; Zou, F.; Shi, H.; Yan, Y. Oxidative Desulfurization of Fuels Catalyzed by V2O5 in Ionic Liquids at Room Temperature. Energy Fuels 2009, 23, 12–33. [Google Scholar] [CrossRef]
- Otsuki, S.; Nonaka, T.; Takashima, N.; Qian, W.H.; Ishihara, A.; Imai, T.; Kabe, T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuels 2000, 14, 6–9. [Google Scholar] [CrossRef]
Catalyst | Sulfur Compounds | Conversion (%) | Reaction Conditions | Reference |
---|---|---|---|---|
PMo12@UiO-67 | DBT | 99.50% | O/S = 3.1, 50 °C | [52] |
PW12@UiO-67 | DBT | 99.50% | 70 °C | [53] |
[Bmim]3PMo12O40 | DBT | 100% | O/S = 3, 60 °C | [54] |
[(C8H17)3NCH3]3PMo12O40/γ-Fe2O3@SiO2@mSiO2 | DBT | 100% | 120 °C | [55] |
[C8quin]4Mo8O26 | DBT | 99.2% | 60 °C | [56] |
[TBA]2SMo12O40 | DBT | 99.89% | O/S = 15, 60 °C | This work |
[TBA]2SMo12O40 | BT | 97.06% | O/S = 15, 60 °C | This work |
[TBA]2SMo12O40 | 4,6-DMDBT | 95.20% | O/S = 15, 60 °C | This work |
Catalyst | Initial Sulfur Content | By ODS | By ODS Twice | Total Desulfurization Rate |
---|---|---|---|---|
[TBA]2SMo12O40 | 514.53 | 93.17 | 20.18 | 96.08% |
[BMIM]2SMo12O40 | 514.53 | 115.2 | 41.52 | 91.93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wang, B.; Wang, R.; Kozhevnikov, I.V.; Vladimir, K. Efficient Diesel Desulfurization by Novel Amphiphilic Polyoxometalate-Based Hybrid Catalyst at Room Temperature. Molecules 2023, 28, 2539. https://doi.org/10.3390/molecules28062539
Zhao J, Wang B, Wang R, Kozhevnikov IV, Vladimir K. Efficient Diesel Desulfurization by Novel Amphiphilic Polyoxometalate-Based Hybrid Catalyst at Room Temperature. Molecules. 2023; 28(6):2539. https://doi.org/10.3390/molecules28062539
Chicago/Turabian StyleZhao, Jie, Bingquan Wang, Rui Wang, Ivan V. Kozhevnikov, and Korchak Vladimir. 2023. "Efficient Diesel Desulfurization by Novel Amphiphilic Polyoxometalate-Based Hybrid Catalyst at Room Temperature" Molecules 28, no. 6: 2539. https://doi.org/10.3390/molecules28062539
APA StyleZhao, J., Wang, B., Wang, R., Kozhevnikov, I. V., & Vladimir, K. (2023). Efficient Diesel Desulfurization by Novel Amphiphilic Polyoxometalate-Based Hybrid Catalyst at Room Temperature. Molecules, 28(6), 2539. https://doi.org/10.3390/molecules28062539