Aryl-, Akynyl-, and Alkenylbenziodoxoles: Synthesis and Synthetic Applications
Abstract
:1. Introduction
2. Arylbenziodoxoles
2.1. Synthesis and Structure
2.2. Synthetic Applications
2.2.1. Benzyne Generation by Thermal Decomposition
2.2.2. Nucleophilic Substitution
3. Ethynylbenziodoxoles (EBXs)
3.1. Synthesis and Structure
3.2. Synthetic Applications
3.2.1. Metal-Catalyzed Alkynylation Reactions
Gold Catalysis
Copper Catalysis
Palladium Catalysis
3.2.2. Photocatalysis
3.2.3. Transition Metal-Free Reactions
4. Vinylbenziodoxoles (VBXs)
4.1. Synthesis and Structure
4.1.1. C-VBXs
4.1.2. X-VBXs
- Common approach starting from EBXs
- One-pot approach starting from other iodine (III) reagents
4.2. Synthetic Applications
4.2.1. Metal-Free Reactions
4.2.2. Metal-Catalyzed Reactions
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhdankin, V.V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds; John Wiley and Sons: Chichester, UK, 2013. [Google Scholar]
- Yoshimura, A.; Zhdankin, V.V. Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chem. Rev. 2016, 116, 3328–3435. [Google Scholar] [CrossRef]
- Olofsson, B.; Marek, I.; Rappoport, Z. (Eds.) Patai’s Chemistry of Functional Groups: The Chemistry of Hypervalent Halogen Compounds; Wiley: Chichester, UK, 2019. [Google Scholar]
- Wirth, T. (Ed.) Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Peng, X.; Rahim, A.; Peng, W.; Jiang, F.; Gu, Z.; Wen, S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem. Rev. 2023, 123, 1364–1416. [Google Scholar] [CrossRef] [PubMed]
- Zhdankin, V.V. Iodine Heterocycles. Adv. Heterocycl. Chem. 2015, 115, 1–91. [Google Scholar] [CrossRef]
- Li, Y.; Hari, D.P.; Vita, M.V.; Waser, J. Cyclic Hypervalent Iodine Reagents for Atom-Transfer Reactions: Beyond Trifluoromethylation. Angew. Chem. Int. Ed. 2016, 55, 4436–4454. [Google Scholar] [CrossRef] [Green Version]
- Mironova, I.A.; Kirsch, S.F.; Zhdankin, V.V.; Yoshimura, A.; Yusubov, M.S. Hypervalent Iodine-Mediated Azidation Reactions. Eur. J. Org. Chem. 2022, 2022, e202200754. [Google Scholar] [CrossRef]
- Hari, D.P.; Caramenti, P.; Waser, J. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung. Acc. Chem. Res. 2018, 51, 3212–3225. [Google Scholar] [CrossRef]
- Declas, N.; Pisella, G.; Waser, J. Vinylbenziodoxol(on)es: Synthetic Methods and Applications. Helv. Chim. Acta 2020, 103, e2000191. [Google Scholar] [CrossRef]
- Hyatt, I.F.D.; Dave, L.; David, N.; Kaur, K.; Medard, M.; Mowdawalla, C. Hypervalent iodine reactions utilized in carbon-carbon bond formations. Org. Biomol. Chem. 2019, 17, 7822–7848. [Google Scholar] [CrossRef]
- de Meijere, A.; Diederich, F. (Eds.) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Johansson Seechurn, C.C.C.; Kitching, M.O.; Colacot, T.J.; Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012, 51, 5062–5085. [Google Scholar] [CrossRef]
- Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review. Chem. Rev. 2018, 118, 2249–2295. [Google Scholar] [CrossRef] [PubMed]
- Campeau, L.-C.; Hazari, N. Cross-Coupling and Related Reactions: Connecting Past Success to the Development of New Reactions for the Future. Organometallics 2019, 38, 3–35. [Google Scholar] [CrossRef] [PubMed]
- Suseelan Sarala, A.; Bhowmick, S.; de Carvalho, R.L.; Al-Thabaiti, S.A.; Mokhtar, M.; da Silva, E.N.J.; Maiti, D. Transition-Metal-Catalyzed Selective Alkynylation of C-H Bonds. Adv. Synth. Catal. 2021, 363, 4994–5027. [Google Scholar] [CrossRef]
- Beringer, F.M.; Lillien, I. Diaryliodonium salts. XIII. Salts in which the cations bear carboxyl, hydroxyl, alkoxyl or amino groups. J. Am. Chem. Soc. 1960, 82, 725–731. [Google Scholar] [CrossRef]
- Beringer, F.M.; Huang, S.J. Diaryliodonium salts. XX. Rearrangement and cleavage of 2-aryliodoniobenzoates. Trapping agents for benzyne. J. Org. Chem. 1964, 29, 445–448. [Google Scholar] [CrossRef]
- Fieser, L.F.; Haddadin, M.J. 1,2,3,4-Tetraphenylnaphthalene. (Naphthalene, 1,2,3,4-tetraphenyl-). Org. Synth. 1966, 46, 107–112. [Google Scholar]
- Bonilha, J.B.S.; Petragnani, N.; Toscano, V.G. The reaction of diaryliodonium-2-carboxylates with diaryl ditellurides, diaryl diselenides, or diaryl selenaditellurides. Chem. Ber. 1978, 111, 2510–2516. [Google Scholar] [CrossRef]
- Miller, R.D.; Franz, L.; Fickes, G.N. 2,5-Disubstituted benzotricyclo[4.2.1.02,5]nonanes: Photochemical precursors to substituted bridged o-xylene derivatives. J. Org. Chem. 1985, 50, 3200–3203. [Google Scholar] [CrossRef]
- Merritt, E.A.; Olofsson, B. Synthesis of a Range of Iodine(III) Compounds Directly from Iodoarenes. Eur. J. Org. Chem. 2011, 2011, 3690–3694. [Google Scholar] [CrossRef]
- Yusubov, M.S.; Yusubova, R.Y.; Nemykin, V.N.; Zhdankin, V.V. Preparation and X-ray Structural Study of 1-Arylbenziodoxolones. J. Org. Chem. 2013, 78, 3767–3773. [Google Scholar] [CrossRef]
- Yusubov, M.S.; Soldatova, N.S.; Postnikov, P.S.; Valiev, R.R.; Svitich, D.Y.; Yusubova, R.Y.; Yoshimura, A.; Wirth, T.; Zhdankin, V.V. Reactions of 1-Arylbenziodoxolones with Azide Anion: Experimental and Computational Study of Substituent Effects. Eur. J. Org. Chem. 2018, 2018, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Morrison, G.F.; Hooz, J. Observations related to the preparation of 2-phenyliodoniobenzoate. J. Org. Chem. 1970, 35, 1196–1198. [Google Scholar] [CrossRef]
- Wu, B.; Wu, J.; Yoshikai, N. Benziodoxole Triflate as a Versatile Reagent for Iodo(III)cyclization of Alkynes. Chem. Asian J. 2017, 12, 3123–3127. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Wang, C.; Tan, J.R.; Ho, C.C.; Leon, F.; Garcia, F.; Yoshikai, N. Site-selective aromatic C-H λ3-iodanation with a cyclic iodine(III) electrophile in solution and solid phases. Chem. Sci. 2020, 11, 7356–7361. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Larson, S.M.; Frahm, G.B.; Huss, C.D.; Rohde, G.T.; Nemykin, V.N.; Yusubov, M.S.; Saito, A.; Zhdankin, V.V. Synthesis of arylbenziodoxoles using pseudocyclic benziodoxole triflate and arenes. ARKIVOC 2020, 2020, 35–49. [Google Scholar] [CrossRef]
- Batchelor, R.J.; Birchall, T.; Sawyer, J.F. Crystal structure and iodine-127 Moessbauer spectrum of diphenyliodonium-2-carboxylate hydrate, C13H9IO2.H2O: Secondary vs. hydrogen bonding. Inorg. Chem. 1986, 25, 1415–1420. [Google Scholar] [CrossRef]
- Yoshimura, A.; Shea, M.T.; Guselnikova, O.; Postnikov, P.S.; Rohde, G.T.; Saito, A.; Yusubov, M.S.; Nemykin, V.N.; Zhdankin, V.V. Preparation and structure of phenolic aryliodonium salts. Chem. Commun. 2018, 54, 10363–10366. [Google Scholar] [CrossRef] [PubMed]
- Almasalma, A.A.; Mejia, E. 1-Phenyl-1,2-benziodoxol-3-(1H)-one as Synthon for Phthalide Synthesis through Pd-Free, Base-Free, Sonogashira-Type Coupling Cyclization Reaction. Eur. J. Org. Chem. 2018, 2018, 188–195. [Google Scholar] [CrossRef]
- Yoshimura, A.; Yusubov, M.S.; Zhdankin, V.V. Synthetic applications of pseudocyclic hypervalent iodine compounds. Org. Biomol. Chem. 2016, 14, 4771–4781. [Google Scholar] [CrossRef]
- Koposov, A.Y.; Nemykin, V.N.; Zhdankin, V.V. Intra- and intermolecular interactions in the solid state structure of 2-iodylbenzenesulfonamides: A heptacoordinated organic iodine(v) compound. New J. Chem. 2005, 29, 998–1000. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Yoshimura, A.; Saito, A.; Zhdankin, V.V. Iodonium Salts as Benzyne Precursors. Chem. Eur. J. 2018, 24, 15156–15166. [Google Scholar] [CrossRef] [PubMed]
- Le Goff, E. Aprotic generation of benzyne from diphenyliodonium-2-carboxylate. J. Am. Chem. Soc. 1962, 84, 3786. [Google Scholar] [CrossRef]
- Beringer, F.M.; Huang, S.J. Diaryliodonium salts. XXIII. Effects of substituents on the rearrangement of 2’-aryliodoniobenzoates and their cleavage to benzyne. J. Org. Chem. 1964, 29, 1637–1638. [Google Scholar] [CrossRef]
- Luis, S.V.; Gavina, F.; Ferrer, P.; Safont, V.S.; Torres, M.C.; Burguete, M.I. Nonconcerted pathways in the generation of dehydroarenes by thermal decomposition of diaryliodonium carboxylates. Tetrahedron 1989, 45, 6281–6296. [Google Scholar] [CrossRef]
- Dias, J.R.; Liu, B. A comprehensive study of isoskeletal analogs of dibenzo[a,c]anthracene. Monatsh. Chem. 1990, 121, 13–30. [Google Scholar] [CrossRef]
- Smith, W.B. Addition of benzyne to thiophene-a DFT study. J. Phys. Org. Chem. 2005, 18, 477–480. [Google Scholar] [CrossRef]
- Reinecke, M.G.; Del Mazza, D.; Obeng, M. Thiophenes as Traps for Benzyne. 3. Diaryl Sulfides and the Role of Dipolar Intermediates. J. Org. Chem. 2003, 68, 70–74. [Google Scholar]
- Del Mazza, D.; Reinecke, M.G. Thiophenes as traps for benzyne. 1. The role of the precursor. J. Org. Chem. 1988, 53, 5799–5806. [Google Scholar] [CrossRef]
- Del Mazza, D.; Reinecke, M.G. On the reactivity of thiophene as a trap for benzyne. Heterocycles 1980, 14, 647. [Google Scholar]
- Del Mazza, D.; Reinecke, M.G. 1,3-Cycloaddition of benzyne to thiophenes. J. Chem. Soc. Chem. Commun. 1981, 3, 124–125. [Google Scholar] [CrossRef]
- Reinecke, M.G.; Del Mazza, D. Thiophenes as traps for benzyne. 2. Cycloaddition and ene reactions. J. Org. Chem. 1989, 54, 2142–2146. [Google Scholar]
- Petragnani, N.; Toscano, V.G. Reaction of benzyne with ditellurides, diselenides, and disulfides. Chem. Ber. 1970, 103, 1652–1653. [Google Scholar] [CrossRef]
- Nakayama, J.; Tajiri, T.; Hoshino, M. Insertion of benzyne and substituted benzynes into the S-S bond of diphenyl and di-p-tolyl disulfides yielding the corresponding o-bis(arylthio)benzenes. Bull. Chem. Soc. Jpn. 1986, 59, 2907–2908. [Google Scholar] [CrossRef] [Green Version]
- Schuster, I.I.; Craciun, L.; Ho, D.M.; Pascal, R.A. Synthesis of a strained, air-sensitive, polycyclic aromatic hydrocarbon by means of a new 1,4-benzadiyne equivalent. Tetrahedron 2002, 58, 8875–8882. [Google Scholar] [CrossRef]
- Scherrer, R.A.; Beatty, H.R. Preparation of o-substituted benzoic acids by the copper(II)-catalyzed reaction of diphenyliodonium-2-carboxylate with anilines and other nucleophiles. J. Org. Chem. 1980, 45, 2127–2131. [Google Scholar] [CrossRef]
- Ozerskaya, A.V.; Larkina, M.S.; Podrezova, E.V.; Svitich, D.Y.; Yusubova, R.Y.; Zhdankin, V.V.; Yusubov, M.S. Synthesis of 2-fluorobenzoic acids by nucleophilic fluorination of 1-arylbenziodoxolones. ARKIVOC 2022, vii, 108–125. [Google Scholar] [CrossRef]
- Preshlock, S.; Tredwell, M.; Gouverneur, V. 18F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem. Rev. 2016, 116, 719–766. [Google Scholar] [CrossRef]
- Yusubov, M.S.; Svitich, D.Y.; Larkina, M.S.; Zhdankin, V.V. Applications of iodonium salts and iodonium ylides as precursors for nucleophilic fluorination in Positron Emission Tomography. ARKIVOC 2013, i, 364–395. [Google Scholar] [CrossRef] [Green Version]
- Caramenti, P.; Nicolai, S.; Waser, J. Indole- and Pyrrole-BX: Bench-Stable Hypervalent Iodine Reagents for Heterocycle Umpolung. Chem. Eur. J. 2017, 23, 14702–14706. [Google Scholar] [CrossRef] [Green Version]
- Diederich, F.; Stang, P.J.; Tykwinski, R.R. Acetylene Chemistry: Chemistry, Biology and Material Science; Wiley-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Banerjee, S.; Bhoyare, V.W.; Patil, N.T. Gold and hypervalent iodine(III): Liaisons over a decade for electrophilic functional group transfer reactions. Chem. Commun. 2020, 56, 2677–2690. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Yang, T. Recent synthetic applications of the hypervalent iodine(III) reagents in visible-light-induced photoredox catalysis. Front. Chem. 2020, 8, 551159. [Google Scholar] [CrossRef] [PubMed]
- Brand, J.P.; Waser, J. Electrophilic alkynylation. The dark side of acetylene chemistry. Chem. Soc. Rev. 2012, 41, 4165–4179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Vaillant, F.; Waser, J. Alkynylation of radicals: Spotlight on the “Third Way” to transfer triple bonds. Chem. Sci. 2019, 10, 8909–8923. [Google Scholar] [CrossRef]
- Yoshikai, N. Exploring New Reactions and Syntheses of Trivalent Iodine Compounds. J. Synth. Org. Chem. Jpn. 2022, 80, 1011–1018. [Google Scholar] [CrossRef]
- Kaschel, J.; Werz, D.B. Ethynyl Benziodoxolone (EBX): Installing Alkynes the Reversed Way. Angew. Chem. Int. Ed. 2015, 54, 8876–8878. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, M.; Masaki, Y.; Shiro, M. Synthesis and structure of 1-alkynyl-1,2-benziodoxol-3(1H)-ones. J. Org. Chem. 1991, 56, 5511–5513. [Google Scholar] [CrossRef]
- Brand, J.P.; Chevalley, C.; Scopelliti, R.; Waser, J. Ethynyl Benziodoxolones for the Direct Alkynylation of Heterocycles: Structural Requirement, Improved Procedure for Pyrroles, and Insights into the Mechanism. Chem. Eur. J. 2012, 18, 5655–5666. [Google Scholar] [CrossRef] [Green Version]
- Zhdankin, V.V.; Kuehl, C.J.; Krasutsky, A.P.; Bolz, J.T.; Simonsen, A.J. 1-(Organosulfonyloxy)-3(1H)-1,2-benziodoxoles: Preparation and Reactions with Alkynyltrimethylsilanes. J. Org. Chem. 1996, 61, 6547–6551. [Google Scholar] [CrossRef]
- Zhdankin, V.V.; Persichini, P.J., III; Cui, R.; Jin, Y. A convenient synthesis of alkynyliodonium salts from alkynylboronates and hypervalent iodine reagents. Synlett 2000, 31, 719–721. [Google Scholar]
- Brand, J.P.; Waser, J. Direct alkynylation of thiophenes: Cooperative activation of TIPS-EBX with gold and Broensted acids. Angew. Chem. Int. Ed. 2010, 49, 7304–7307. [Google Scholar] [CrossRef] [Green Version]
- Nicolai, S.; Piemontesi, C.; Waser, J. A Palladium-Catalyzed Aminoalkynylation Strategy towards Bicyclic Heterocycles: Synthesis of (±)-Trachelanthamidine. Angew. Chem. Int. Ed. 2011, 50, 4680–4683. [Google Scholar] [CrossRef] [Green Version]
- Fernandez Gonzalez, D.; Brand, J.P.; Waser, J. Ethynyl-1,2-benziodoxol-3(1H)-one (EBX): An Exceptional Reagent for the Ethynylation of Keto, Cyano, and Nitro Esters. Chem. Eur. J. 2010, 16, 9457–9461. [Google Scholar] [CrossRef] [Green Version]
- Fernandez Gonzalez, D.; Brand, J.P.; Mondiere, R.; Waser, J. Ethynylbenziodoxolones (EBX) as Reagents for the Ethynylation of Stabilized Enolates. Adv. Synth. Catal. 2013, 355, 1631–1639. [Google Scholar] [CrossRef] [Green Version]
- Dixon, L.I.; Carroll, M.A.; Gregson, T.J.; Ellames, G.J.; Harrington, R.W.; Clegg, W. Unprecedented regiochemical control in the formation of aryl[1,2-a]imidazopyridines from alkynyliodonium salts: Mechanistic insights. Org. Biomol. Chem. 2013, 11, 5877–5884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aubineau, T.; Cossy, J. Chemoselective alkynylation of N-sulfonylamides versus amides and carbamates—Synthesis of tetrahydropyrazines. Chem. Commun. 2013, 49, 3303–3305. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. Visible-Light-Induced Chemoselective Deboronative Alkynylation under Biomolecule-Compatible Conditions. J. Am. Chem. Soc. 2014, 136, 2280–2283. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhang, G.; Chen, Y. Dual hypervalent iodine(III) reagents and photoredox catalysis enable decarboxylative ynonylation under mild conditions. Angew. Chem. Int. Ed. 2015, 54, 7872–7876. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Zhang, F.; Huang, H.; Chen, Y. Visible-Light-Induced Alkoxyl Radical Generation Enables Selective C(sp3)–C(sp3) Bond Cleavage and Functionalizations. J. Am. Chem. Soc. 2016, 138, 1514–1517. [Google Scholar] [CrossRef]
- Shimbo, D.; Shibata, A.; Yudasaka, M.; Maruyama, T.; Tada, N.; Uno, B.; Itoh, A. Synthesis of cis-β-Amidevinyl Benziodoxolones from the Ethynyl Benziodoxolone–Chloroform Complex and Sulfonamides. Org. Lett. 2019, 21, 9769–9773. [Google Scholar] [CrossRef]
- Caspers, L.D.; Finkbeiner, P.; Nachtsheim, B.J. Direct Electrophilic C-H Alkynylation of Unprotected 2-Vinylanilines. Chem. Eur. J. 2017, 23, 2748–2752. [Google Scholar] [CrossRef]
- Székely, A.; Péter, Á.; Aradi, K.; Tolnai, G.L.; Novák, Z. Gold-Catalyzed Direct Alkynylation of Azulenes. Org. Lett. 2017, 19, 954–957. [Google Scholar] [CrossRef]
- Göbel, D.; Clamor, N.; Nachtsheim, B.J. Regioselective ortho-functionalization of bromofluorenecarbaldehydes using TMPMgCl·LiCl. Org. Biomol. Chem. 2018, 16, 4071–4075. [Google Scholar] [CrossRef]
- Amos, S.G.E.; Nicolai, S.; Gagnebin, A.; Le Vaillant, F.; Waser, J. Metal-Free Electrophilic Alkynylation of Sulfenate Anions with Ethynylbenziodoxolone Reagents. J. Org. Chem. 2019, 84, 3687–3701. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wang, P. Ynonylation of Acyl Radicals by Electroinduced Homolysis of 4-Acyl-1,4-dihydropyridines. Org. Lett. 2021, 23, 4960–4965. [Google Scholar] [CrossRef]
- Bouma, M.J.; Olofsson, B. General one-pot synthesis of alkynyliodonium salts and alkynyl benziodoxolones from aryl iodides. Chem. Eur. J. 2012, 18, 14242–14245. [Google Scholar] [CrossRef] [PubMed]
- Hari, D.P.; Caramenti, P.; Schouwey, L.; Chang, M.; Nicolai, S.; Bachert, D.; Wright, T.; Orella, C.; Waser, J. One-Pot Synthesis of 1-[(Triisopropylsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one (TIPS-EBX): Process Safety Assessment and Impact of Impurities on Product Stability. Org. Process. Res. Dev. 2020, 24, 106–110. [Google Scholar] [CrossRef]
- Borrel, J.; Waser, J. Tosyloxybenziodoxolone: A Platform for Performing the Umpolung of Alkynes in One-Pot Transformations. Org. Lett. 2022, 24, 142–146. [Google Scholar] [CrossRef]
- Sun, X.; Guo, X.-Q.; Chen, L.-M.; Kang, T.-R. Synthesis, Characterization of Spirocyclic λ3-Iodanes and Their Application to Prepare 4,1-Benzoxazepine-2,5-diones and 1,3-Diynes. Chem. Eur. J. 2021, 27, 4312–4316. [Google Scholar] [CrossRef]
- Li, J.; Zhou, C.; Liang, H.; Guo, X.-Q.; Chen, L.-M.; Kang, T.-R. Direct One-Pot Construction of Diaryl Thioethers and 1,3-Diynes through a Copper(I)-Catalyzed Reaction of λ3-Iodanes with Thiophenols. Eur. J. Org. Chem. 2022, 2022, e202200613. [Google Scholar] [CrossRef]
- Le Du, E.; Waser, J. Recent progress in alkynylation with hypervalent iodine reagents. Chem. Commun. 2023, 59, 1589–1604. [Google Scholar] [CrossRef]
- Brand, J.P.; Charpentier, J.; Waser, J. Direct Alkynylation of Indole and Pyrrole Heterocycles. Angew. Chem. Int. Ed. 2009, 48, 9346–9349. [Google Scholar] [CrossRef] [Green Version]
- Ariafard, A. A Density Functional Theory (DFT) Mechanistic Study of Gold(I)-Catalyzed Alkynylation of the Indole and Pyrrole Substrates, Using a Hypervalent Iodine Reagent. ACS Catal. 2014, 4, 2896–2907. [Google Scholar] [CrossRef]
- Yang, Y.; Antoni, P.; Zimmer, M.; Sekine, K.; Mulks, F.F.; Hu, L.; Zhang, L.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Dual Gold/Silver Catalysis Involving Alkynylgold(III) Intermediates Formed by Oxidative Addition and Silver-Catalyzed C-H Activation for the Direct Alkynylation of Cyclopropenes. Angew. Chem. Int. Ed. 2019, 58, 5129–5133. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Eberle, L.; Mulks, F.F.; Wunsch, J.F.; Zimmer, M.; Rominger, F.; Rudolph, M.; Hashmi, A.S.K. Trans Influence of Ligands on the Oxidation of Gold(I) Complexes. J. Am. Chem. Soc. 2019, 141, 17414–17420. [Google Scholar] [CrossRef] [PubMed]
- Hari Babu, M.; Dwivedi, V.; Kant, R.; Sridhar Reddy, M. Palladium-Catalyzed Regio- and Stereoselective Cross-Addition of Terminal Alkynes to Ynol Ethers and Synthesis of 1,4-Enyn-3-ones. Angew. Chem. Int. Ed. 2015, 54, 3783–3786. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Ambegave, S.B.; Mule, R.D.; Senthilkumar, B.; Patil, N.T. Gold-Catalyzed Alkynylative Meyer-Schuster Rearrangement. Org. Lett. 2020, 22, 4792–4796. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Huang, Y. Direct α-Vinylidenation of Aldehydes and Subsequent Cascade: Gold and Amine Catalysts Work Synergistically. Angew. Chem. Int. Ed. 2013, 52, 14219–14223. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Huang, Y. A General Synthesis of Ynones from Aldehydes via Oxidative C-C bond Cleavage under Aerobic Conditions. J. Am. Chem. Soc. 2014, 136, 12233–12236. [Google Scholar] [CrossRef]
- Banerjee, S.; Senthilkumar, B.; Patil, N.T. Gold-Catalyzed 1,2-Oxyalkynylation of N-Allenamides with Ethylnylbenziodoxolones. Org. Lett. 2019, 21, 180–184. [Google Scholar] [CrossRef]
- Liu, Y.; Dietl, M.C.; Han, C.; Rudolph, M.; Rominger, F.; Kraemer, P.; Hashmi, A.S.K. Synthesis of Amide Enol 2-Iodobenzoates by the Regio- and Stereoselective Gold-Catalyzed Acyloxyalkynylation of Ynamides with Hypervalent Iodine Reagents. Org. Lett. 2022, 24, 7101–7106. [Google Scholar] [CrossRef]
- Hari, D.P.; Waser, J. Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds with Hypervalent Iodine Reagents. J. Am. Chem. Soc. 2016, 138, 2190–2193. [Google Scholar] [CrossRef] [Green Version]
- Hari, D.P.; Waser, J. Enantioselective Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds. J. Am. Chem. Soc. 2017, 139, 8420–8423. [Google Scholar] [CrossRef] [Green Version]
- Borrel, J.; Pisella, G.; Waser, J. Copper-Catalyzed Oxyalkynylation of C-S Bonds in Thiiranes and Thietanes with Hypervalent Iodine Reagents. Org. Lett. 2020, 22, 422–427. [Google Scholar] [CrossRef]
- Pisella, G.; Gagnebin, A.; Waser, J. Three-Component Reaction for the Synthesis of Highly Functionalized Propargyl Ethers. Chem. Eur. J. 2020, 26, 10199–10204. [Google Scholar] [CrossRef]
- Ramirez, N.P.; Pisella, G.; Waser, J. Cu(I)-Catalyzed gem-Aminoalkynylation of Diazo Compounds: Synthesis of Fluorinated Propargylic Amines. J. Org. Chem. 2021, 86, 10928–10938. [Google Scholar] [CrossRef]
- Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Gold-Catalyzed Cascade Cyclization of (Azido)ynamides: An Efficient Strategy for the Construction of Indoloquinolines. Org. Lett. 2014, 16, 3138–3141. [Google Scholar] [CrossRef]
- Takai, R.; Shimbo, D.; Tada, N.; Itoh, A. Ligand-enabled copper-catalyzed N-alkynylation of sulfonamide with alkynyl benziodoxolone: Synthesis of amino acid-derived ynamide. J. Org. Chem. 2021, 86, 4699–4713. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, R.; Usui, S.; Tada, N.; Itoh, A. Late-stage diversification strategy for synthesizing ynamides through copper-catalyzed diynylation and azide-alkyne cycloaddition. Chem. Commun. 2023, 59, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Brand, J.P.; Waser, J. Synthesis of 1-[(triisopropylsilyl)ethynyl]-1λ3,2-benziodoxol-3(1H)-one and alkynylation of indoles, thiophenes, and anilines. Synthesis 2012, 44, 1155–1158. [Google Scholar] [CrossRef]
- Tolnai, G.L.; Ganss, S.; Brand, J.P.; Waser, J. C2-Selective Direct Alkynylation of Indoles. Org. Lett. 2013, 15, 112–115. [Google Scholar] [CrossRef] [Green Version]
- Nicolai, S.; Erard, S.; Gonzalez, D.F.; Waser, J. Pd-Catalyzed Intramolecular Oxyalkynylation of Alkenes with Hypervalent Iodine. Org. Lett. 2010, 12, 384–387. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Wu, J.; Yoshikai, N. Palladium-Catalyzed Condensation of N-Aryl Imines and Alkynylbenziodoxolones to Form Multisubstituted Furans. J. Am. Chem. Soc. 2014, 136, 11598–11601. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yoshikai, N. Modular synthesis of multisubstituted furans through palladium-catalyzed three-component condensation of alkynylbenziodoxoles, carboxylic acids, and imines. Angew. Chem. Int. Ed. 2015, 54, 11107–11111. [Google Scholar] [CrossRef] [PubMed]
- Ariafard, A. Computational Mechanistic Study of Palladium(II)-Catalyzed Carboxyalkynylation of an Olefin Using an Iodine(III) Oxidant Reagent. Organometallics 2014, 33, 7318–7324. [Google Scholar] [CrossRef]
- Li, X.; Chen, P.; Liu, G. Palladium-catalyzed intermolecular alkynylcarbonylation of unactivated alkenes: Easy access to β-alkynylcarboxylic esters. Chem. Commun. 2022, 58, 2544–2547. [Google Scholar] [CrossRef]
- Feng, C.; Loh, T.-P. Rhodium-Catalyzed C-H Alkynylation of Arenes at Room Temperature. Angew. Chem. Int. Ed. 2014, 53, 2722–2726. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Qi, Z.; Yu, S.; Li, X. Rh(III)- and Ir(III)-Catalyzed C-H Alkynylation of Arenes under Chelation Assistance. J. Am. Chem. Soc. 2014, 136, 4780–4787. [Google Scholar] [CrossRef]
- Collins, K.D.; Lied, F.; Glorius, F. Preparation of conjugated 1,3-enynes by Rh(III)-catalysed alkynylation of alkenes via C-H activation. Chem. Commun. 2014, 50, 4459–4461. [Google Scholar] [CrossRef]
- Ai, W.; Wu, Y.; Tang, H.; Yang, X.; Yang, Y.; Li, Y.; Zhou, B. Rh(III)- or Ir(III)-catalyzed ynone synthesis from aldehydes via chelation-assisted C-H bond activation. Chem. Commun. 2015, 51, 7871–7874. [Google Scholar] [CrossRef]
- Wang, H.; Xie, F.; Qi, Z.; Li, X. Iridium- and Rhodium-Catalyzed C-H Activation and Formyl Alkynylation of Benzaldehydes under Chelation-Assistance. Org. Lett. 2015, 17, 920–923. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Cheng, X.; Li, C. Silver-Catalyzed Decarboxylative Alkynylation of Aliphatic Carboxylic Acids in Aqueous Solution. J. Am. Chem. Soc. 2012, 134, 14330–14333. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shao, X.; Wang, H.; Zhai, H. New reactivity of ethynyl benziodoxolone: Modulating iron-catalyzed dehydration of propargyl alcohols. Org. Chem. Front. 2017, 4, 409–412. [Google Scholar] [CrossRef]
- Li, Y.; Waser, J. Platinum-catalyzed domino reaction with benziodoxole reagents for accessing benzene-alkynylated indoles. Angew. Chem. Int. Ed. 2015, 54, 5438–5442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, X.; Jiang, Y.-Y.; Liu, Y.; Bi, S. Mechanistic Study on Platinum-Catalyzed Domino Reaction of Benziodoxole and Pyrrole Homopropargylic Ethers for Indole Synthesis. Organometallics 2017, 36, 2843–2852. [Google Scholar] [CrossRef]
- Li, Y.; Gryn’ova, G.; Saenz, F.; Jeanbourquin, X.; Sivula, K.; Corminboeuf, C.; Waser, J. Heterotetracenes: Flexible Synthesis and in Silico Assessment of the Hole-Transport Properties. Chem. Eur. J. 2017, 23, 8058–8065. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Jia, K.; Chen, Y.; Chen, Y. Investigations of alkynylbenziodoxole derivatives for radical alkynylations in photoredox catalysis. Beilstein J. Org. Chem. 2018, 14, 1215–1221. [Google Scholar] [CrossRef]
- Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Decarboxylative Alkynylation and Carbonylative Alkynylation of Carboxylic Acids Enabled by Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2015, 54, 11196–11199. [Google Scholar] [CrossRef]
- Le Vaillant, F.; Courant, T.; Waser, J. Room-Temperature Decarboxylative Alkynylation of Carboxylic Acids Using Photoredox Catalysis and EBX Reagents. Angew. Chem. Int. Ed. 2015, 54, 11200–11204. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Garza-Sanchez, R.A.; Tlahuext-Aca, A.; Glorius, F. Alkynylation of Csp2 (O)-H Bonds Enabled by Photoredox-Mediated Hydrogen-Atom Transfer. Angew. Chem. Int. Ed. 2017, 56, 14723–14726. [Google Scholar] [CrossRef]
- Liu, X.; Yu, L.; Luo, M.; Zhu, J.; Wei, W. Radical-Induced Metal-Free Alkynylation of Aldehydes by Direct C-H Activation. Chem. Eur. J. 2015, 21, 8745–8749. [Google Scholar] [CrossRef]
- Tan, H.; Li, H.; Ji, W.; Wang, L. Sunlight-driven decarboxylative alkynylation of α-keto acids with bromoacetylenes by hypervalent iodine reagent catalysis: A facile approach to ynones. Angew. Chem. Int. Ed. 2015, 54, 8374–8377. [Google Scholar] [CrossRef]
- Wang, H.; Guo, L.-N.; Wang, S.; Duan, X.-H. Decarboxylative Alkynylation of α-Keto Acids and Oxamic Acids in Aqueous Media. Org. Lett. 2015, 17, 3054–3057. [Google Scholar] [CrossRef]
- Zhang, R.-Y.; Xi, L.-Y.; Zhang, L.; Chen, S.-Y.; Yu, X.-Q. Metal-free synthesis of ynones via direct C-H alkynylation of aldehydes with ethynylbenziodoxolones. Tetrahedron 2015, 71, 6176–6182. [Google Scholar] [CrossRef]
- Liu, B.; Lim, C.-H.; Miyake, G.M. Light-Driven Intermolecular Charge Transfer Induced Reactivity of Ethynylbenziodoxol(on)e and Phenols. J. Am. Chem. Soc. 2018, 140, 12829–12835. [Google Scholar] [CrossRef] [PubMed]
- He, S.-D.; Guo, X.-Q.; Li, J.; Zhang, Y.-C.; Chen, L.-M.; Kang, T.-R. Base-Promoted Reaction of Phenols with Spirocylic λ3-Iodanes: Access to Both 2-Iodovinyl Aryl Ethers and Diaryl Ethers. Eur. J. Org. Chem. 2022, 2022, e202200516. [Google Scholar] [CrossRef]
- Voutyritsa, E.; Garreau, M.; Kokotou, M.G.; Triandafillidi, I.; Waser, J.; Kokotos, C.G. Photochemical Functionalization of Heterocycles with EBX Reagents: C-H Alkynylation versus Deconstructive Ring Cleavage. Chem. Eur. J. 2020, 26, 14453–14460. [Google Scholar] [CrossRef]
- Amos, S.G.E.; Nicolai, S.; Waser, J. Photocatalytic Umpolung of N- and O-substituted alkenes for the synthesis of 1,2-amino alcohols and diols. Chem. Sci. 2020, 11, 11274–11279. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, S.; Chen, Y. Selective C(sp3)-C(sp3) Cleavage/Alkynylation of Cycloalkylamides Enables Aminoalkyne Synthesis with Hypervalent Iodine Reagents. ACS Catal. 2021, 11, 10565–10573. [Google Scholar] [CrossRef]
- Shou, J.-Y.; Xu, X.-H.; Qing, F.-L. The radical reaction of ethynylbenziodoxolone (EBX) reagents with pentafluorosulfanyl chloride: New approach to SF5-substituted alkynes. J. Fluorine Chem. 2022, 261–262, 110018. [Google Scholar] [CrossRef]
- Savoie, P.R.; Welch, J.T. Preparation and utility of organic pentafluorosulfanyl-containing compounds. Chem. Rev. 2015, 115, 1130–1190. [Google Scholar] [CrossRef]
- Haufe, G. Synthesis and application of pentafluorosulfanylation reagents and derived aliphatic SF5-containing building blocks. Tetrahedron 2022, 109, 132656. [Google Scholar] [CrossRef]
- Chan, J.M.W. Pentafluorosulfanyl group: An emerging tool in optoelectronic materials. J. Mater. Chem. C 2019, 7, 12822–12834. [Google Scholar] [CrossRef]
- Meanwell, N.A. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. J. Med. Chem. 2018, 61, 5822–5880. [Google Scholar] [CrossRef] [PubMed]
- Altomonte, S.; Zanda, M. Synthetic chemistry and biological activity of pentafluorosulphanyl (SF5) organic molecules. J. Fluorine Chem. 2012, 143, 57–93. [Google Scholar] [CrossRef] [Green Version]
- Frei, R.; Wodrich, M.D.; Hari, D.P.; Borin, P.-A.; Chauvier, C.; Waser, J. Fast and Highly Chemoselective Alkynylation of Thiols with Hypervalent Iodine Reagents Enabled through a Low Energy Barrier Concerted Mechanism. J. Am. Chem. Soc. 2014, 136, 16563–16573. [Google Scholar] [CrossRef]
- Abegg, D.; Frei, R.; Cerato, L.; Prasad Hari, D.; Wang, C.; Waser, J.; Adibekian, A. Proteome-Wide Profiling of Targets of Cysteine-reactive Small Molecules by using Ethynyl Benziodoxolone Reagents. Angew. Chem. Int. Ed. 2015, 54, 10852–10857. [Google Scholar] [CrossRef] [PubMed]
- Adusumalli, S.R.; Bernardes, G.J.L. Ethynylbenziodoxolone Reactivity in Cysteine Bioconjugation. Chem 2019, 5, 1932–1934. [Google Scholar] [CrossRef]
- Tessier, R.; Ceballos, J.; Guidotti, N.; Simonet-Davin, R.; Fierz, B.; Waser, J. “Doubly Orthogonal” Labeling of Peptides and Proteins. Chem 2019, 5, 2243–2263. [Google Scholar] [CrossRef]
- Liu, B.; Alegre-Requena, J.V.; Paton, R.S.; Miyake, G.M. Unconventional Reactivity of Ethynylbenziodoxolone Reagents and Thiols: Scope and Mechanism. Chem. Eur. J. 2020, 26, 2386–2394. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, J.-H.; Li, W.; Wen, L.-R. Metal-Free Direct Construction of 2-(Oxazol-5-yl)phenols from N-Phenoxyamides and Alkynylbenziodoxolones via Sequential [3,3]-Rearrangement/Cyclization. Org. Lett. 2018, 20, 7694–7698. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Lin, C.-D.; Wang, J.-H.; Wen, L.-R. One Base for Two Shots: Metal-Free Substituent-Controlled Synthesis of Two Kinds of Oxadiazine Derivatives from Alkynylbenziodoxolones and Amidoximes. J. Org. Chem. 2019, 84, 6904–6915. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, A.; Shibata, A.; Kano, T.; Kumai, Y.; Kawakami, R.; Esaki, H.; Fukushima, K.; Tada, N.; Itoh, A. Synthesis of 4-Imidazolidinones from Diamides and Ethynyl Benziodoxolones via Double Michael-Type Addition: Ethynyl Benziodoxolones as Electrophilic Ynol Synthons. Org. Lett. 2022, 24, 8859–8863. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Das, M.K.; Chaudhuri, S.; Bisai, A. Transition-Metal Free Oxidative Alkynylation of 2-Oxindoles with Ethynylbenziodoxolone (EBX) Reagents. J. Org. Chem. 2018, 83, 403–421. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-C.; Chen, P.; Chen, Z.; Ouyang, Q.; Liang, H.-P.; Du, W.; Chen, Y.-C. Organocatalytic Enantioselective 1,3-Difunctionalizations of Morita-Baylis-Hillman Carbonates. Org. Lett. 2018, 20, 6279–6283. [Google Scholar] [CrossRef]
- Meng, B.; Shi, Q.; Meng, Y.; Chen, J.; Cao, W.; Wu, X. Asymmetric catalytic alkynylation of thiazolones and azlactones for synthesis of quaternary α-amino acid precursors. Org. Biomol. Chem. 2021, 19, 5087–5092. [Google Scholar] [CrossRef]
- Chu, L.-F.; Yao, Y.; Lu, C.-D. Stereoselective Electrophilic α-Alkynylation of α,α-Disubstituted N-tert-Butanesulfinyl Ketimines for Construction of Less Accessible Acyclic Quaternary Stereocenters. Org. Lett. 2022, 24, 9135–9140. [Google Scholar] [CrossRef]
- Kitamura, T.; Fukuoka, T.; Fujiwara, Y. Synthesis of novel vinylbenziodoxolones from alkynyl(o-carboxyphenyl)iodonium salts. Synlett 1996, 1996, 659–660. [Google Scholar] [CrossRef]
- Wu, J.; Deng, X.; Hirao, H.; Yoshikai, N. Pd-Catalyzed Conversion of Alkynyl-λ3-iodanes to Alkenyl-λ3-iodanes via Stereoselective 1,2-Iodine(III) Shift/1,1-Hydrocarboxylation. J. Am. Chem. Soc. 2016, 138, 9105–9108. [Google Scholar] [CrossRef] [Green Version]
- Stridfeldt, E.; Seemann, A.; Bouma, M.J.; Dey, C.; Ertan, A.; Olofsson, B. Synthesis, Characterization and Unusual Reactivity of Vinylbenziodoxolones-Novel Hypervalent Iodine Reagents. Chem. Eur. J. 2016, 22, 16066–16070. [Google Scholar] [CrossRef]
- Boelke, A.; Caspers, L.D.; Nachtsheim, B.J. NH2-Directed C-H Alkenylation of 2-Vinylanilines with Vinylbenziodoxolones. Org. Lett. 2017, 19, 5344–5347. [Google Scholar] [CrossRef]
- Pisella, G.; Gagnebin, A.; Waser, J. Copper-Catalyzed Oxyvinylation of Diazo Compounds. Org. Lett. 2020, 22, 3884–3889. [Google Scholar] [CrossRef] [PubMed]
- Castoldi, L.; Di Tommaso, E.M.; Reitti, M.; Graefen, B.; Olofsson, B. Electrophilic Vinylation of Thiols under Mild and Transition Metal-Free Conditions. Angew. Chem. Int. Ed. 2020, 59, 15512–15516. [Google Scholar] [CrossRef] [PubMed]
- Sajith, P.K.; Suresh, C.H. Trans and Cis Influences in Hypervalent Iodine(III) Complexes: A DFT Study. Inorg. Chem. 2013, 52, 6046–6054. [Google Scholar] [CrossRef]
- Ochiai, M.; Sueda, T.; Miyamoto, K.; Kiprof, P.; Zhdankin, V.V. trans influence on hypervalent bonding of aryl l3-iodanes: Their stabilities and isodesmic reactions of benziodoxolones and benziodazolones. Angew. Chem. Int. Ed. 2006, 45, 8203–8206. [Google Scholar] [CrossRef]
- Ochiai, M.; Oshima, K.; Masaki, Y. Stereoselective synthesis of highly labile (Z)-b-alkylvinylphenyliodonium perchlorates. J. Chem. Soc. Chem. Commun. 1991, 13, 869–870. [Google Scholar] [CrossRef]
- Fujita, M.; Lee, H.J.; Okuyama, T. Stereochemical Inversion in the Vinylic Substitution of Boronic Esters To Give Iodonium Salts: Participation of the Internal Oxy Group. Org. Lett. 2006, 8, 1399–1401. [Google Scholar] [CrossRef] [PubMed]
- Laskar, R.A.; Ding, W.; Yoshikai, N. Iodo(III)-Meyer-Schuster Rearrangement of Propargylic Alcohols Promoted by Benziodoxole Triflate. Org. Lett. 2021, 23, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Moran, W.J.; Rodriguez, A. Hypoiodous acid initiated rearrangement of tertiary propargylic alcohols to α-iodoenones. Org. Biomol. Chem. 2012, 10, 8590–8592. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, J. One-Pot Synthesis of α-Iodo-Substituted α,β-Unsaturated Aldehydes from Propargylic Alcohols. J. Org. Chem. 2007, 72, 4993–4996. [Google Scholar] [CrossRef]
- Puri, S.; Thirupathi, N.; Sridhar Reddy, M. Iodo Meyer-Schuster Rearrangement of 3-Alkoxy-2-yn-1-ols for β-Mono (Exclusively Z-Selective)-/Disubstituted α-Iodo-α,β-Unsaturated Esters. Org. Lett. 2014, 16, 5246–5249. [Google Scholar] [CrossRef]
- Zhu, H.-T.; Fan, M.-J.; Yang, D.-S.; Wang, X.-L.; Ke, S.; Zhang, C.-Y.; Guan, Z.-H. An iodine-promoted Meyer-Schuster rearrangement for the synthesis of α-iodo unsaturated ketones. Org. Chem. Front. 2015, 2, 506–509. [Google Scholar] [CrossRef]
- Caramenti, P.; Declas, N.; Tessier, R.; Wodrich, M.D.; Waser, J. Stereoselective synthesis of alkyl-, aryl-, vinyl- and alkynyl-substituted Z-enamides and enol ethers. Chem. Sci. 2019, 10, 3223–3230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ura, T.; Shimbo, D.; Yudasaka, M.; Tada, N.; Itoh, A. Synthesis of Phenol-Derived cis-Vinyl Ethers Using Ethynyl Benziodoxolone. Chem. Asian J. 2020, 15, 4000–4004. [Google Scholar] [CrossRef] [PubMed]
- Shimbo, D.; Maruyama, T.; Tada, N.; Itoh, A. N-Alkenylation of hydroxamic acid derivatives with ethynyl benziodoxolone to synthesize cis-enamides through vinyl benziodoxolones. Org. Biomol. Chem. 2021, 19, 2442–2447. [Google Scholar] [CrossRef]
- Wu, J.; Deng, X.; Yoshikai, N. Stereocontrolled Synthesis of Halovinylbenziodoxoles by Hydro- and Iodochlorination of Ethynylbenziodoxoles. Chem. Eur. J. 2019, 25, 7839–7842. [Google Scholar] [CrossRef]
- Chai, J.; Ding, W.; Wu, J.; Yoshikai, N. Fluorobenziodoxole-BF3 Reagent for Iodo(III)etherification of Alkynes in Ethereal Solvent. Chem. Asian J. 2020, 15, 2166–2169. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Chai, J.; Wang, C.; Wu, J.; Yoshikai, N. Stereoselective Access to Highly Substituted Vinyl Ethers via trans-Difunctionalization of Alkynes with Alcohols and Iodine(III) Electrophile. J. Am. Chem. Soc. 2020, 142, 8619–8624. [Google Scholar] [CrossRef]
- Chai, J.; Ding, W.; Wang, C.; Ito, S.; Wu, J.; Yoshikai, N. Ritter-type iodo(III)amidation of unactivated alkynes for the stereoselective synthesis of multisubstituted enamides. Chem. Sci. 2021, 12, 15128–15133. [Google Scholar] [CrossRef]
- Kikuchi, J.; Maesaki, K.; Sasaki, S.; Wang, W.; Ito, S.; Yoshikai, N. Stereoselective Synthesis of β-Alkoxy-β-amido Vinylbenziodoxoles via Iodo(III)etherification of Ynamides. Org. Lett. 2022, 24, 6914–6918. [Google Scholar] [CrossRef]
- Wang, C.-S.; Tan, P.S.L.; Ding, W.; Ito, S.; Yoshikai, N. Regio- and Stereoselective Synthesis of Enol Carboxylate, Phosphate, and Sulfonate Esters via Iodo(III)functionalization of Alkynes. Org. Lett. 2022, 24, 430–434. [Google Scholar] [CrossRef]
- Wu, J.; Xu, K.; Hirao, H.; Yoshikai, N. Pd-Catalyzed, Ligand-Enabled Stereoselective 1,2-Iodine(III) Shift/1,1-Carboxyalkynylation of Alkynylbenziodoxoles. Chem. Eur. J. 2017, 23, 1521–1525. [Google Scholar] [CrossRef]
- Wodrich, M.D.; Caramenti, P.; Waser, J. Alkynylation of Thiols with Ethynylbenziodoxolone (EBX) Reagents: α- or β- π-Addition? Org. Lett. 2016, 18, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, T.; Furuki, R.; Taniguchi, H.; Stang, P.J. Stereoselective anti-addition of iodosylbenzene.trifluoromethanesulfonic acid to terminal alkynes. Preparation of E-[b-(trifluoromethanesulfonyloxy)vinyl]iodonium triflates. Tetrahedron Lett. 1990, 31, 703–704. [Google Scholar] [CrossRef]
- Yoshimura, A.; Huss, C.D.; Liebl, M.; Rohde, G.T.; Larson, S.M.; Frahm, G.B.; Luedtke, M.W.; Schumacher, T.J.; Gardner, Z.S.; Zhdankin, V.V.; et al. Preparation, Structure, and Reactivity of Pseudocyclic β-Trifluorosulfonyloxy Vinylbenziodoxolone Derivatives. Adv. Synth. Catal. 2021, 363, 3365–3371. [Google Scholar] [CrossRef]
- Yoshimura, A.; Huss, C.D.; Saito, A.; Kitamura, T.; Zhdankin, V.V. 2-Iodosylbenzoic acid activated by trifluoromethanesulfonic anhydride: Efficient oxidant and electrophilic reagent for preparation of iodonium salts. New J. Chem. 2021, 45, 16434–16437. [Google Scholar] [CrossRef]
- Ochiai, M.; Shu, T.; Nagaoka, T.; Kitagawa, Y. a-Vinylation of 1,3-Dicarbonyl Compounds with Alkenyl(aryl)iodonium Tetrafluoroborates: Effects of Substituents on the Aromatic Ring and of Radical Inhibitors. J. Org. Chem. 1997, 62, 2130–2138. [Google Scholar] [CrossRef]
- Castoldi, L.; Rajkiewicz, A.A.; Olofsson, B. Transition metal-free and regioselective vinylation of phosphine oxides and H-phosphinates with VBX reagents. Chem. Commun. 2020, 56, 14389–14392. [Google Scholar] [CrossRef]
- Di Tommaso, E.M.; Norrby, P.-O.; Olofsson, B. Explaining Regiodivergent Vinylations with Vinylbenziodoxolones. Angew. Chem. Int. Ed. 2022, 61, e202206347. [Google Scholar] [CrossRef]
- Davies, J.; Sheikh, N.S.; Leonori, D. Photoredox Imino Functionalizations of Olefins. Angew. Chem. Int. Ed. 2017, 56, 13361–13365. [Google Scholar] [CrossRef] [Green Version]
- Declas, N.; Waser, J. Access to Vinyl Ethers and Ketones with Hypervalent Iodine Reagents as Oxy-Allyl Cation Synthetic Equivalents. Angew. Chem. Int. Ed. 2020, 59, 18256–18260. [Google Scholar] [CrossRef]
- Deagostino, A.; Tivola, P.B.; Prandi, C.; Venturello, P. A short and efficient new synthesis of γ-halo-substituted α,β-unsaturated acetals and carbonyl compounds. Synlett 1999, 1999, 1841–1843. [Google Scholar] [CrossRef]
- Pawliczek, M.; Schneider, T.F.; Maass, C.; Stalke, D.; Werz, D.B. Formal anti-Carbopalladation Reactions of Non-Activated Alkynes: Requirements, Mechanistic Insights, and Applications. Angew. Chem. Int. Ed. 2015, 54, 4119–4123. [Google Scholar] [CrossRef] [PubMed]
- Chary, B.C.; Kim, S.-G.; Shin, D.-S.; Lee, P.-H. A regio- and stereoselective synthesis of trisubstituted alkenes via gold(I)-catalyzed hydrophosphoryloxylation of haloalkynes. Chem. Commun. 2011, 47, 7851–7853. [Google Scholar] [CrossRef]
- Martin, R.; Rivero, M.R.; Buchwald, S.L. Domino Cu-catalyzed C-N coupling/hydroamidation: A highly efficient synthesis of nitrogen heterocycles. Angew. Chem. Int. Ed. 2006, 45, 7079–7082. [Google Scholar] [CrossRef]
- Xu, H.; Gu, S.; Chen, W.; Li, D.; Dou, J. TBAF-mediated reactions of 1,1-dibromo-1-alkenes with thiols and amines and regioselective synthesis of 1,2-heterodisubstituted alkenes. J. Org. Chem. 2011, 76, 2448–2458. [Google Scholar] [CrossRef]
- Feng, C.; Feng, D.; Loh, T.-P. Rhodium(III)-catalyzed olefinic C-H alkynylation of enamides at room temperature. Chem. Commun. 2014, 50, 9865–9868. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, B.; Litvinov, D.N.; Kang, J.; Bettale, J.D.; Castle, S.L. Stereoselective Additions of Thiyl Radicals to Terminal Ynamides. Org. Lett. 2010, 12, 2650–2652. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Reynaga, P.; Carrillo, A.K.; Van Nieuwenhze, M.S. Decarbonylative approach to the synthesis of enamides from amino acids: Stereoselective synthesis of the (Z)-aminovinyl-D-cysteine unit of mersacidin. Org. Lett. 2012, 14, 1030–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, J.A.; Subasinghege Don, V.; Kumar, R.; Taylor, C.M. Influence of Sulfur on Acid-Mediated Enamide Formation. Org. Lett. 2017, 19, 5146–5149. [Google Scholar] [CrossRef]
Entry | Starting EBX | Nucleophile | Conditions | Products and Yields |
---|---|---|---|---|
1 [140] | R = Me; 2X =O | 10 mol% 1,1,3,3-tetramethyl guanidine; THF, rt | ||
2 [143] | R = Me, tBu, TIPS, Ph, alkyl, incl. functional groups: N3, OH, alkene, alkyne, sugar, purine, etc.; 2X = O | Y = Ph, Bn, proteins, peptides | 10 mM Tris pH 8.2 (2% v/v DMSO); rt | |
3 [74] | R = H; 2X = O; as chloroform complex | R1 = aryl, alkyl, vinyl, 2-furyl-CH2-, 2-pyridyl-CH2-, MeCO2CH2-, etc.4 EWG = Ts, Nos, Ms, Tf | 10 mol% K2CO3; IPA or IPA/MeCN (1:1), rt, Ar | |
4 [169] | R = H; 2X = O; as acetonitrile complex | R1CO = residues of aromatic and aliphatic carboxylic acid, amino acid, pharmaceutical, and natural products | 1M aq. K2CO3 (20 mol%); DCE or IPA, rt, Ar | |
5 [167] | R = H, alkyl, cycloalkyl, Ph, etc. 2X = O | R1 = Ts, Ms, Nos; R2 = 4-Me, 3,5-Br2, 2,3,4,5,6-F5 | 10 mol% Cs2CO3; EtOH, rt, air | |
6 [153] | R = aryl, alkyl, alkyne, alkene; X = CF3 | R1 = Ph, 4-MeOC6H4, 4-ClC6H4, 2-MeC6H4, Mes, 2-thienyl, 2-furyl, Me, tBu, MeCH(NHBoc) | 10 mol% [Pd(2-methylallyl)(OAc)]2, cod; tBuOMe, rt, 12 h | |
7 [153,176] | ||||
8 [176] | R = aryl, alkyl, alkyne, alkene; X = CF3 (2.4 eq.) | R1 = Ph, 4-MeOC6H4, 4-ClC6H4, 2-MeC6H4, 2-thienyl, Me, tBu, MeCH(NHBoc) | 10 mol% Pd(OAc)2, 15 mol% octahydrophenazine; toluene, rt, 24 h | |
9 [168] | R = H; 2X = O; as acetonitrile complex | R1 = H, EDG, EWG, complex molecules | 10 mol% NaHCO3; EtOH/H2O (9:1 v/v), rt, dark, 1 h | |
10 [170] | R = aryl, Me, Bu, BnOCH2, ethenyl; X = CF3 | Py·HCl (2.0 eq.) or ICl (2.0 eq.) | EtOAc, 50 °C, 24 h or DCM, rt, 30 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mironova, I.A.; Noskov, D.M.; Yoshimura, A.; Yusubov, M.S.; Zhdankin, V.V. Aryl-, Akynyl-, and Alkenylbenziodoxoles: Synthesis and Synthetic Applications. Molecules 2023, 28, 2136. https://doi.org/10.3390/molecules28052136
Mironova IA, Noskov DM, Yoshimura A, Yusubov MS, Zhdankin VV. Aryl-, Akynyl-, and Alkenylbenziodoxoles: Synthesis and Synthetic Applications. Molecules. 2023; 28(5):2136. https://doi.org/10.3390/molecules28052136
Chicago/Turabian StyleMironova, Irina A., Dmitrii M. Noskov, Akira Yoshimura, Mekhman S. Yusubov, and Viktor V. Zhdankin. 2023. "Aryl-, Akynyl-, and Alkenylbenziodoxoles: Synthesis and Synthetic Applications" Molecules 28, no. 5: 2136. https://doi.org/10.3390/molecules28052136
APA StyleMironova, I. A., Noskov, D. M., Yoshimura, A., Yusubov, M. S., & Zhdankin, V. V. (2023). Aryl-, Akynyl-, and Alkenylbenziodoxoles: Synthesis and Synthetic Applications. Molecules, 28(5), 2136. https://doi.org/10.3390/molecules28052136