Fabrication, Facilitating Gas Permeability, and Molecular Simulations of Porous Hypercrosslinked Polymers Embedding 6FDA-Based Polyimide Mixed-Matrix Membranes
Abstract
:1. Introduction
2. Results and Discussion
2.1. SEM Images of HCPs and PI Membranes
2.2. FT-IR Spectra of PI Membranes
2.3. Mechanical Strength of PI Membranes
2.4. Gas Separation Performance
2.5. Analysis of Gas Separation Process
3. Experimental Section
3.1. Materials and Chemicals
3.2. Preparation of PI MMMs
3.2.1. Synthesis of Hypercrosslinked Polymers (HCPs)
3.2.2. Synthesis of 6FDA-Based PI
3.2.3. Preparation of PI MMMs
3.3. Characterization
3.4. Evaluation of Gas Separation Performance
3.5. Molecular Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
HCPs | Hypercrosslinked polymers |
6FDA | Hexafluoroisopropylidene diphthalic anhydride |
DAPI | Diaminophyenylindane |
DMAc | Dimethylacetamide |
TEA | Trimethylamine |
PI | Polyimide |
MMMs | Mixed-matrix membranes |
References
- Liu, Z.; Liu, Y.; Qiu, W.; Koros, W.J. Molecularly Engineered 6FDA-Based Polyimide Membranes for Sour Natural Gas Separation. Angew. Chem. Int. Ed. 2020, 59, 14877–14883. [Google Scholar] [CrossRef] [PubMed]
- Xin, Q.; Zhang, X.; Shao, W.; Li, H.; Zhang, Y. COF-based MMMs with light-responsive properties generating unexpected surface segregation for efficient SO2/N2 separation. J. Membr. Sci. 2023, 665, 121109. [Google Scholar] [CrossRef]
- Liu, G.; Li, N.; Miller, S.J.; Kim, D.; Yi, S.; Labreche, Y.; Koros, W.J. Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation. Angew. Chem. Int. Edit. 2016, 55, 13754–13758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, C.; Wang, L.; Dong, J.; Gai, D.; Wang, W.; Nguyen, T.S.; Yavuz, C.T.; Zou, X.; Zhu, G. Basic Alkylamine Functionalized PAF-1 Hybrid Membrane with High Compatibility for Superior CO2 Separation from Flue Gas. Adv. Funct. Mater. 2022, 33, 2210091. [Google Scholar] [CrossRef]
- Sahoo, R.; Mondal, S.; Mukherjee, D.; Das, M.C. Metal–Organic Frameworks for CO2 Separation from Flue and Biogas Mixtures. Adv. Funct. Mater. 2022, 32, 2207197. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Ding, J.; Gong, L.; Krishna, R.; Ran, Y.; Chen, L.; Luo, F. Th-MOF showing six-fold imide-sealed pockets for middle-size-separation of propane from natural gas. Nano Res. 2023, 16, 3287–3293. [Google Scholar] [CrossRef]
- Matsumiya, N.; Teramoto, M.; Kitada, S.; Matsuyama, H. Evaluation of energy consumption for separation of CO2 in flue gas by hollow fiber facilitated transport membrane module with permeation of amine solution. Sep. Purif. Technol. 2005, 46, 26–32. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Wu, H.; Tian, Z.; Xin, Q.; He, G.; Peng, D.; Chen, S.; Yin, Y.; Jiang, Z.; et al. Advances in high permeability polymer-based membrane materials for CO2 separations. Energ. Environ. Sci. 2016, 9, 1863–1890. [Google Scholar] [CrossRef]
- Pérez-Francisco, J.M.; Santiago-García, J.L.; Loría-Bastarrachea, M.I.; Paul, D.R.; Freeman, B.D.; Aguilar-Vega, M. CMS membranes from PBI/PI blends: Temperature effect on gas transport and separation performance. J. Membr. Sci. 2019, 597, 117703. [Google Scholar] [CrossRef]
- Moghadam, F.; Kamio, E.; Yoshioka, T.; Matsuyama, H. New approach for the fabrication of double-network ion-gel membranes with high CO2/N2 separation performance based on facilitated transport. J. Membr. Sci. 2017, 530, 166–175. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Li, Y.; Wang, S.; Guo, R.; Jiang, Z.; Wu, C.; Xin, Q.; Lu, X. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. J. Membr. Sci. 2014, 465, 78–90. [Google Scholar] [CrossRef]
- Sun, J.; Li, Q.; Chen, G.; Duan, J.; Liu, G.; Jin, W. MOF-801 incorporated PEBA mixed-matrix composite membranes for CO2 capture. Sep. Purif. Technol. 2019, 217, 229–239. [Google Scholar] [CrossRef]
- Duan, K.; Wang, J.; Zhang, Y.; Liu, J. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. J. Membr. Sci. 2018, 572, 588–595. [Google Scholar] [CrossRef]
- Nik, O.G.; Chen, X.Y.; Kaliaguine, S. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. J. Membr. Sci. 2012, 413-414, 48–61. [Google Scholar] [CrossRef]
- Farrokhara, M.; Dorosti, F. New high permeable polysulfone/ionic liquid membrane for gas separation. Chin. J. Chem. Eng. 2020, 28, 2301–2311. [Google Scholar] [CrossRef]
- Ishaq, S.; Tamime, R.; Bilad, M.R.; Khan, A.L. Mixed matrix membranes comprising of polysulfone and microporous Bio-MOF-1: Preparation and gas separation properties. Sep. Purif. Technol. 2018, 210, 442–451. [Google Scholar] [CrossRef]
- Mubashir, M.; Fong, Y.Y.; Leng, C.T.; Keong, L.K.; Jusoh, N. Study on the effect of process parameters on CO2/CH4 binary gas separation performance over NH2-MIL-53(Al)/cellulose acetate hollow fiber mixed matrix membrane. Polym. Test. 2019, 81, 106223. [Google Scholar] [CrossRef]
- Hou, T.; Shu, L.; Guo, K.; Zhang, X.-F.; Zhou, S.; He, M.; Yao, J. Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation. Cellulose 2020, 27, 3277–3286. [Google Scholar] [CrossRef]
- Ma, X.; Abdulhamid, M.; Miao, X.; Pinnau, I. Facile Synthesis of a Hydroxyl-Functionalized Tröger’s Base Diamine: A New Building Block for High-Performance Polyimide Gas Separation Membranes. Macromolecules 2017, 50, 9569–9576. [Google Scholar] [CrossRef]
- Abdulhamid, M.A.; Ma, X.; Miao, X.; Pinnau, I. Synthesis and characterization of a microporous 6FDA-polyimide made from a novel carbocyclic pseudo Tröger’s base diamine: Effect of bicyclic bridge on gas transport properties. Polymer 2017, 130, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Swaidan, R.; Ghanem, B.; Al-Saeedi, M.; Litwiller, E.; Pinnau, I. Role of Intrachain Rigidity in the Plasticization of Intrinsically Microporous Triptycene-Based Polyimide Membranes in Mixed-Gas CO2/CH4 Separations. Macromolecules 2014, 47, 7453–7462. [Google Scholar] [CrossRef]
- Sanaeepur, H.; Amooghin, A.E.; Bandehali, S.; Moghadassi, A.; Matsuura, T.; Van der Bruggen, B. Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering. Prog. Polym. Sci. 2019, 91, 80–125. [Google Scholar] [CrossRef]
- Kratochvil, A.M.; Koros, W.J. Decarboxylation-Induced Cross-Linking of a Polyimide for Enhanced CO2 Plasticization Resistance. Macromolecules 2008, 41, 7920–7927. [Google Scholar] [CrossRef]
- Cho, Y.J.; Park, H.B. High Performance Polyimide with High Internal Free Volume Elements. Macromol. Rapid Commun. 2011, 32, 579–586. [Google Scholar] [CrossRef] [PubMed]
- TLow, B.T.; Chung, T.S.; Chen, H.; Jean, Y.-C.; Pramoda, K.P. Tuning the Free Volume Cavities of Polyimide Membranes via the Construction of Pseudo-Interpenetrating Networks for Enhanced Gas Separation Performance. Macromolecules 2009, 42, 7042–7054. [Google Scholar] [CrossRef]
- Liu, G.; Labreche, Y.; Chernikova, V.; Shekhah, O.; Zhang, C.; Belmabkhout, Y.; Eddaoudi, M.; Koros, W.J. Zeolite-like MOF nanocrystals incorporated 6FDA-polyimide mixed-matrix membranes for CO2/CH4 separation. J. Membr. Sci. 2018, 565, 186–193. [Google Scholar] [CrossRef]
- Jusoh, Y.N.; Lau, K.K.; Azmi Shariff, M. Enhanced gas separation performance using mixed matrix membranes containing zeolite T and 6FDA-durene polyimide. J. Membr. Sci. 2017, 525, 175–186. [Google Scholar] [CrossRef]
- Japip, S.; Wang, H.; Xiao, Y.; Chung, T.S. Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. J. Membr. Sci. 2014, 467, 162–174. [Google Scholar] [CrossRef]
- Hu, C.-C.; Cheng, P.-H.; Chou, S.-C.; Lai, C.-L.; Huang, S.-H.; Tsai, H.-A.; Hung, W.-S.; Lee, K.-R. Separation behavior of amorphous amino-modified silica nanoparticle/polyimide mixed matrix membranes for gas separation. J. Membr. Sci. 2019, 595, 117542. [Google Scholar] [CrossRef]
- Hasebe, S.; Aoyama, S.; Tanaka, M.; Kawakami, H. CO2 separation of polymer membranes containing silica nanoparticles with gas permeable nano-space. J. Membr. Sci. 2017, 536, 148–155. [Google Scholar] [CrossRef]
- Kang, Z.; Peng, Y.; Qian, Y.; Yuan, D.; Addicoat, M.A.; Heine, T.; Hu, Z.; Tee, L.; Guo, Z.; Zhao, D. Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO2 Separation. Chem. Mater. 2016, 28, 1277–1285. [Google Scholar] [CrossRef]
- Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés I Xamena, F.X.; Gascon, J. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2014, 14, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Xu, K.; Xiang, L.; Dong, X.; Han, Y.; Wang, C.; Sun, L.-B.; Pan, Y. Enhanced CO2/CH4 separation performance of mixed-matrix membranes through dispersion of sorption-selective MOF nanocrystals. J. Membr. Sci. 2018, 563, 360–370. [Google Scholar] [CrossRef]
- Fan, Y.; Yu, H.; Xu, S.; Shen, Q.; Ye, H.; Li, N. Zn(II)-modified imidazole containing polyimide/ZIF-8 mixed matrix membranes for gas separations. J. Membr. Sci. 2019, 597, 117775. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Martin-Gil, V.; Perfilov, V.; Sysel, P.; Fila, V. Investigation of a new co-polyimide, 6FDA-bisP and its ZIF-8 mixed matrix membranes for CO2/CH4 separation. Sep. Purif. Technol. 2018, 207, 523–534. [Google Scholar] [CrossRef]
- Lin, R.; Ge, L.; Liu, S.; Rudolph, V.; Zhu, Z. Mixed-Matrix Membranes with Metal–Organic Framework-Decorated CNT Fillers for Efficient CO2 Separation. ACS Appl. Mater. Interfaces 2015, 7, 14750–14757. [Google Scholar] [CrossRef]
- Lin, R.; Ge, L.; Diao, H.; Rudolph, V.; Zhu, Z. Propylene/propane selective mixed matrix membranes with grape-branched MOF/CNT filler. J. Mater. Chem. A 2016, 4, 6084–6090. [Google Scholar] [CrossRef]
- Cheng, Y.; Tavares, S.R.; Doherty, C.M.; Ying, Y.; Sarnello, E.; Maurin, G.; Hill, M.R.; Li, T.; Zhao, D. Enhanced Polymer Crystallinity in Mixed-Matrix Membranes Induced by Metal–Organic Framework Nanosheets for Efficient CO2 Capture. ACS Appl. Mater. Interfaces 2018, 10, 43095–43103. [Google Scholar] [CrossRef]
- Tan, L.; Tan, B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chem. Soc. Rev. 2017, 46, 3322–3356. [Google Scholar] [CrossRef]
- Lau, C.H.; Mulet, X.; Konstas, K.; Doherty, C.M.; Sani, M.-A.; Separovic, F.; Hill, M.R.; Wood, C.D. Hypercrosslinked Additives for Ageless Gas-Separation Membranes. Angew. Chem. Int. Ed. 2016, 55, 1998–2001. [Google Scholar] [CrossRef]
- Álvarez, C.; Lozano, Á.E.; Juan-y-Seva, M.; de la Campa, J. Gas separation properties of aromatic polyimides with bulky groups. Comparison of experimental and simulated results. J. Membr. Sci. 2020, 602, 117959. [Google Scholar] [CrossRef]
- Hu, J.; Cai, H.; Ren, H.; Wei, Y.; Xu, Z.; Liu, H.; Hu, Y. Mixed-Matrix Membrane Hollow Fibers of Cu3(BTC)2 MOF and Polyimide for Gas Separation and Adsorption. Ind. Eng. Chem. Res. 2010, 49, 12605–12612. [Google Scholar] [CrossRef]
- Tong, H.; Hu, C.; Yang, S.; Ma, Y.; Guo, H.; Fan, L. Preparation of fluorinated polyimides with bulky structure and their gas separation performance correlated with microstructure. Polymer 2015, 69, 138–147. [Google Scholar] [CrossRef]
- Li, W.; Samarasinghe, S.; Bae, T.-H. Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8. J. Ind. Eng. Chem. 2018, 67, 156–163. [Google Scholar] [CrossRef]
- Li, H.; Tuo, L.; Yang, K.; Jeong, H.-K.; Dai, Y.; He, G.; Zhao, W. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid. J. Membr. Sci. 2016, 511, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Sang, Y.; Huang, J. Benzimidazole-based hyper-cross-linked poly(ionic liquid)s for efficient CO2 capture and conversion. Chem. Eng. J. 2020, 385, 123973. [Google Scholar] [CrossRef]
- Jadhav, A.H.; Thorat, G.M.; Lee, K.; Lim, A.C.; Kang, H.; Seo, J.G. Effect of anion type of imidazolium based polymer supported ionic liquids on the solvent free synthesis of cycloaddition of CO2 into epoxide. Catal. Today 2016, 265, 56–67. [Google Scholar] [CrossRef]
- Zhao, Y.; Yao, C.; Chen, G.; Yuan, Q. Highly efficient synthesis of cyclic carbonate with CO2catalyzed by ionic liquid in a microreactor. Green Chem. 2012, 15, 446–452. [Google Scholar] [CrossRef]
- Buyukcakir, O.; Je, S.H.; Choi, D.S.; Talapaneni, S.N.; Seo, Y.; Jung, Y.; Polychronopoulou, K.; Coskun, A. Porous cationic polymers: The impact of counteranions and charges on CO2 capture and conversion. Chem. Commun. 2015, 52, 934–937. [Google Scholar] [CrossRef]
- Butnaru, I.; Constantin, C.-P.; Asandulesa, M.; Wolińska-Grabczyk, A.; Jankowski, A.; Szeluga, U.; Damaceanu, M.-D. Insights into molecular engineering of membranes based on fluorinated polyimide-polyamide miscible blends which do not obey the trade-off rule. Sep. Purif. Technol. 2019, 233, 116031. [Google Scholar] [CrossRef]
- Bas, C.; Mercier, R.; Dauwe, C.; Albérola, N.D. Microstructural parameters controlling gas permeability and permselectivity in polyimide membranes. J. Membr. Sci. 2010, 349, 25–34. [Google Scholar] [CrossRef]
- Mondal, J.; Kundu, S.K.; Ng, W.K.H.; Singuru, R.; Borah, P.; Hirao, H.; Zhao, Y.; Bhaumik, A. Fabrication of Ruthenium Nanoparticles in Porous Organic Polymers: Towards Advanced Heterogeneous Catalytic Nanoreactors. Chem.-A Eur. J. 2015, 21, 19016–19027. [Google Scholar] [CrossRef]
- Wang, K.; Jia, Z.; Yang, X.; Wang, L.; Gu, Y.; Tan, B. Acid and base coexisted heterogeneous catalysts supported on hypercrosslinked polymers for one-pot cascade reactions. J. Catal. 2017, 348, 168–176. [Google Scholar] [CrossRef]
- Dose, M.E.; Chwatko, M.; Hubacek, I.; Lynd, N.A.; Paul, D.R.; Freeman, B.D. Thermally cross-linked diaminophenylindane (DAPI) containing polyimides for membrane based gas separations. Polymer 2019, 161, 16–26. [Google Scholar] [CrossRef]
Membrane | Density/g/cm3 | Occupied Volume/Å3 | d-Spacing/Å | FFVsim |
---|---|---|---|---|
PI | 1.5358 | 399,765 | 5.576 | 0.1892 |
HCPs-0.02/PI | 1.4853 | 409,900 | 5.597 | 0.1994 |
HCPs-0.04 /PI | 1.4204 | 403,126 | 5.690 | 0.2498 |
HCPs-0.06 /PI | 1.3808 | 427,388 | 5.705 | 0.2299 |
HCPs-0.08 /PI | 1.3553 | 442,792 | 5.460 | 0.2200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Peng, L.; Li, Y.; Du, Y.; Chen, Z.; Li, W.; Duan, C.; Yuan, B.; Yan, S.; Kawi, S. Fabrication, Facilitating Gas Permeability, and Molecular Simulations of Porous Hypercrosslinked Polymers Embedding 6FDA-Based Polyimide Mixed-Matrix Membranes. Molecules 2023, 28, 2028. https://doi.org/10.3390/molecules28052028
Song C, Peng L, Li Y, Du Y, Chen Z, Li W, Duan C, Yuan B, Yan S, Kawi S. Fabrication, Facilitating Gas Permeability, and Molecular Simulations of Porous Hypercrosslinked Polymers Embedding 6FDA-Based Polyimide Mixed-Matrix Membranes. Molecules. 2023; 28(5):2028. https://doi.org/10.3390/molecules28052028
Chicago/Turabian StyleSong, Chaohua, Longfei Peng, Yinhui Li, Yawei Du, Zan Chen, Weixin Li, Cuijia Duan, Biao Yuan, Shuo Yan, and Sibudjing Kawi. 2023. "Fabrication, Facilitating Gas Permeability, and Molecular Simulations of Porous Hypercrosslinked Polymers Embedding 6FDA-Based Polyimide Mixed-Matrix Membranes" Molecules 28, no. 5: 2028. https://doi.org/10.3390/molecules28052028
APA StyleSong, C., Peng, L., Li, Y., Du, Y., Chen, Z., Li, W., Duan, C., Yuan, B., Yan, S., & Kawi, S. (2023). Fabrication, Facilitating Gas Permeability, and Molecular Simulations of Porous Hypercrosslinked Polymers Embedding 6FDA-Based Polyimide Mixed-Matrix Membranes. Molecules, 28(5), 2028. https://doi.org/10.3390/molecules28052028