Differentiation of Mountain- and Garden-Cultivated Ginseng with Different Growth Years Using HS-SPME-GC-MS Coupled with Chemometrics
Abstract
:1. Introduction
2. Results
2.1. Components Identification from MCG5-,10-,15-years and GCG5-,10-,15-years
2.2. Multivariate Statistical Analysis for MCG5–15-years and GCG5–15-years
2.2.1. Principal Component Analysis (PCA)
2.2.2. Chemo-Markers Discovery for Distinguishing MCG5–15-years and GCG5–15-years
2.3. Multivariate Statistical Analysis for MCG with 5-,10-,15-Growth Years
2.3.1. PCA
2.3.2. Chemo-Markers Discovery for Distinguishing MCG with 5-, 10-, 15-Growth Years
2.4. Multivariate Statistical Analysis for GCG with 5-,10-,15-Growth Years
2.4.1. PCA
2.4.2. Chemo-Markers Discovery for Distinguishing GCG with 5-, 10-, 15-Growth Years
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Sample Preparation and HS-SPME-GC-MS Analysis
4.3. Identification and Semi-Quantitative of Volatile Compounds
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
BPI | Based Peak Intensity |
GCG | Garden-Cultivated Ginseng |
GC-MS | gas chromatography-mass spectrometry |
HS-SPME-GC-MS | headspace solid-phase microextraction gas chromatography mass spectrometry |
I.S. | Internal standard |
MCG | Mountain-Cultivated Ginseng |
MS | mass spectrometry |
OPLS-DA | orthogonal partial least squares-discriminant analysis |
PCA | principal component analysis |
UHPLC | ultra-high performance liquid chromatograph |
VIP | Variable importance for the projection |
WG | Wild Ginseng |
References
- Jia, L.; Zhao, Y. Current evaluation of the millennium phytomedicine—Ginseng (I): Etymology, pharmacognosy, phytochemistry, market and regulations. Curr. Med. Chem. 2009, 16, 2475–2484. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, Y.; Yang, P.; Tong, M.; Xing, L.; Zhang, Q.; Bi, K.; Li, Q. An Integrated Mutually Oriented “Chemical Profiling-Pharmaceutical Effect” Strategy for Screening Discriminating Markers of Underlying Hepatoprotective Effects to Distinguish Garden-Cultivated from Mountain-Cultivated Ginseng. Molecules 2021, 26, 5456. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, P.; Yang, W.; Zhao, C.; Zhang, L.; Zhang, J.; Qin, Y.; Xu, H.; Huang, L. Characterization of the Components and Pharmacological Effects of Mountain-Cultivated Ginseng and Garden Ginseng Based on the Integrative Pharmacology Strategy. Front. Pharmacol. 2021, 12, 659954. [Google Scholar] [CrossRef] [PubMed]
- Wawrosch, C.; Zotchev, S.B. Production of bioactive plant secondary metabolites through in vitro technologies-status and outlook. Appl. Microbiol. Biotechnol. 2021, 105, 6649–6668. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, S.; Chen, H.; Deng, X.; Zhang, L.; Xu, H.; Yang, H. TCMIP v2.0 Powers the Identification of Chemical Constituents Available in Xinglou Chengqi Decoction and the Exploration of Pharmacological Mechanisms Acting on Stroke Complicated With Tanre Fushi Syndrome. Front. Pharmacol. 2021, 12, 598200. [Google Scholar] [CrossRef]
- Tsugawa, H.; Rai, A.; Saito, K.; Nakabayashi, R. Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat. Prod. Rep. 2021, 38, 1729–1759. [Google Scholar] [CrossRef]
- Li, F.; Lv, C.; Li, Q.; Wang, J.; Song, D.; Liu, P.; Zhang, D.; Lu, J. Chemical and bioactive comparison of flowers of Panax ginseng Meyer, Panax quinquefolius L., and Panax notoginseng Burk. J. Ginseng Res. 2017, 41, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Chen, B.; Jiang, M.; Wang, H.; Hu, Y.; Wang, H.; Xu, X.; Gao, X.; Yang, W. Integrating Enhanced Profiling and Chemometrics to Unveil the Potential Markers for Differentiating among the Leaves of Panax ginseng, P. quinquefolius, and P. notoginseng by Ultra-High Performance Liquid Chromatography/Ion Mobility-Quadrupole Time-of-Flight Mass Spectrometry. Molecules 2022, 27, 5549. [Google Scholar]
- Jia, L.; Zuo, T.; Zhang, C.; Li, W.; Wang, H.; Hu, Y.; Wang, X.; Qian, Y.; Yang, W.; Yu, H. Simultaneous Profiling and Holistic Comparison of the Metabolomes among the Flower Buds of Panax ginseng, Panax quinquefolius, and Panax notoginseng by UHPLC/IM-QTOF-HDMSE-Based Metabolomics Analysis. Molecules 2019, 24, 2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, W.-T.; Li, L.-Y.; Rui, W.-J.; Diao, Z.-W.; Zhuang, G.-D.; Chen, X.-M.; Qian, Z.-M.; Wang, S.-M.; Tang, D.; Ma, H.-Y. Non-targeted metabolomic analysis of variation of volatile fractions of ginseng from different habitats by HS-SPME-GC-MS coupled with chemometrics. Anal. Methods 2022, 14, 3583–3597. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Wang, Y.; Abozeid, A.; Zu, Y.-G.; Zhang, X.-N.; Tang, Z.-H. GC-MS Metabolomic Analysis to Reveal the Metabolites and Biological Pathways Involved in the Developmental Stages and Tissue Response of Panax ginseng. Molecules 2017, 22, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuai, M.; Yang, Y.; Bai, F.; Cao, L.; Hou, R.; Peng, C.; Cai, H. Geographical origin of American ginseng (Panax quinquefolius L.) based on chemical composition combined with chemometric. J. Chromatogr. A 2022, 1676, 463284. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-E.; Seo, S.-H.; Kim, E.-J.; Park, D.-H.; Park, K.-M.; Cho, S.-S.; Son, H.-S. Metabolomic Approach for Discrimination of Cultivation Age and Ripening Stage in Ginseng Berry Using Gas Chromatography-Mass Spectrometry. Molecules 2019, 24, 3837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.J.; Qiu, J.F.; Wang, Y.T.; Wan, J.B. Discrimination of Three Panax Species Based on Differences in Volatile Organic Compounds Using a Static Headspace GC-MS-Based Metabolomics Approach. Am. J. Chin. Med. 2016, 44, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Wang, Y.; Abozeid, A.; Zu, Y.G.; Tang, Z.H. The integration of GC-MS and LC-MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation. J. Pharm. Biomed. Anal. 2017, 135, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Jiao, C.; Li, H.; Ma, Y.; Jiao, L.; Liu, S. LC-MS based metabolic and metabonomic studies of Panax ginseng. Phytochem. Anal. 2018, 29, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wang, J.; Xu, J.F.; Tang, F.; Chen, L.; Tan, Y.Z.; Rao, C.L.; Ao, H.; Peng, C. Panax ginseng and its ginsenosides: Potential candidates for the prevention and treatment of chemotherapy-induced side effects. J. Ginseng Res. 2021, 45, 617–630. [Google Scholar] [CrossRef]
- Liu, H.; Lu, X.; Hu, Y.; Fan, X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol. Res. 2020, 161, 105263. [Google Scholar] [CrossRef]
- Xu, H.-Y.; Zhang, Y.-Q.; Liu, Z.-M.; Chen, T.; Lv, C.-Y.; Tang, S.; Zhang, X.-B.; Zhang, W.; Li, Z.-Y.; Zhou, R.-R. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 2019, 47, D976–D982. [Google Scholar] [CrossRef]
- Li, C.; Qin, Y.; Yang, Q.; You, J.; Liu, Z.; Han, J.; Li, E.; Zhang, C. Multivariate quantitative analysis of quality trend based on non-volatile characteristic components in different Panax notoginseng samples using HPLC. J. Pharm. Biomed. Anal. 2020, 182, 113127. [Google Scholar] [CrossRef]
- Holopainen, J.K.; Gershenzon, J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 2010, 15, 176–184. [Google Scholar] [CrossRef]
- Bao, X.; Zhou, W.; Xu, L.; Zheng, Z. A meta-analysis on plant volatile organic compound emissions of different plant species and responses to environmental stress. Environ. Pollut. 2022, 318, 120886. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Tian, P.; Zhang, F.; Qin, H.; Miao, H.; Chen, Q.; Hu, Z.; Cao, L.; Wang, M.; Gu, X.; et al. Integrative Analyses of Nontargeted Volatile Profiling and Transcriptome Data Provide Molecular Insight into VOC Diversity in Cucumber Plants (Cucumis sativus). Plant Physiol. 2016, 172, 603–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Zhang, H.; Li, X.; Zhang, F.; Liu, C.; Du, Y.; Gao, X.; Zhang, Z.; Zhang, X.; Hou, Z.; et al. Intergrative metabolomic and transcriptomic analyses unveil nutrient remobilization events in leaf senescence of tobacco. Sci. Rep. 2017, 7, 12126. [Google Scholar] [CrossRef] [Green Version]
- Vavoura, M.V.; Karabagias, I.K.; Kosma, I.S.; Badeka, A.V.; Kontominas, M.G. Characterization and Differentiation of Fresh Orange Juice Variety Based on Conventional Physicochemical Parameters, Flavonoids, and Volatile Compounds Using Chemometrics. Molecules 2022, 27, 6166. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Cui, C.; Zhang, S.; Zhu, J.; Peng, C.; Cai, H.; Yang, X.; Hou, R. Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea. Food Chem. 2021, 360, 130033. [Google Scholar] [CrossRef] [PubMed]
No. | Compounds | MCG | GCG | ||||
---|---|---|---|---|---|---|---|
5 Years | 10 Years | 15 Years | 5 Years | 10 Years | 15 Years | ||
1 | Hexanal | 876.31 ± 179.70 | 1160.22 ± 322.97 | 2551.47 ± 1154.39 | 6282.94 ± 1163.54 | 2298.02 ± 168.66 | 3768.41 ± 803.90 |
2 | 1-Hexanol | 92.22 ± 32.58 | 175.40 ± 151.51 | 239.00 ± 180.35 | 145.17 ± 37.86 | 141.65 ± 14.87 | 161.44 ± 56.51 |
3 | Heptanal | 69.98 ± 14.63 | 75.35 ± 18.87 | 147.29 ± 51.59 | 411.09 ± 77.96 | 143.42 ± 14.94 | 170.35 ± 24.52 |
4 | α-Pinene | 20.21 ± 5.29 | 27.26 ± 7.75 | 26.40 ± 5.88 | 27.06 ± 22.33 | 24.01 ± 16.46 | 14.61 ± 8.86 |
5 | Camphene | 4.56 ± 1.31 | 6.98 ± 1.74 | 6.19 ± 1.01 | 6.94 ± 3.90 | 5.30 ± 3.60 | 3.53 ± 1.81 |
6 | (E)-2-Heptenal | 18.50 ± 3.32 | 37.36 ± 19.97 | 84.60 ± 19.39 | 144.75 ± 16.18 | 58.22 ± 7.25 | 75.36 ± 12.78 |
7 | Benzaldehyde | 36.45 ± 2.43 | 27.73 ± 6.52 | 94.85 ± 27.53 | 210.09 ± 48.35 | 60.35 ± 9.45 | 80.37 ± 13.16 |
8 | β-Pinene | 20.73 ± 6.04 | 33.19 ± 16.01 | 43.18 ± 49.36 | 63.98 ± 90.64 | 39.60 ± 47.11 | 39.70 ± 28.40 |
9 | Octanal | 36.07 ± 5.10 | 52.50 ± 12.61 | 97.95 ± 30.42 | 293.63 ± 41.48 | 96.77 ± 10.99 | 120.21 ± 21.23 |
10 | (E)-(3,3-Dimethylcyclohexylidene)-acetaldehyde | 32.58 ± 13.39 | 37.40 ± 16.23 | 28.28 ± 8.95 | 18.06 ± 7.82 | 9.71 ± 4.92 | 13.23 ± 5.32 |
11 | 4-Methylcyclohex-3-ene-1-carbaldehyde | 2.35 ± 0.82 | 2.50 ± 0.79 | 7.36 ± 4.00 | 23.05 ± 3.47 | 9.04 ± 1.63 | 12.96 ± 3.12 |
12 | 3-Octen-2-one | 17.09 ± 3.14 | 22.49 ± 5.44 | 55.67 ± 17.06 | 111.72 ± 6.21 | 76.01 ± 7.28 | 77.25 ± 9.10 |
13 | (E)-2-Octenal | 12.82 ± 3.23 | 20.49 ± 4.07 | 54.98 ± 24.06 | 153.96 ± 18.51 | 64.48 ± 9.80 | 83.46 ± 15.70 |
14 | 2-Isopropyl-3-methoxypyrazine | 211.53 ± 39.65 | 222.50 ± 23.67 | 292.61 ± 43.29 | 509.32 ± 125.61 | 212.52 ± 111.73 | 313.61 ± 120.50 |
15 | 2-Oxo-pentanoic acid | 10.96 ± 4.76 | 27.68 ± 8.28 | 95.60 ± 55.21 | 397.04 ± 131.61 | 53.36 ± 16.51 | 226.85 ± 237.52 |
16 | Nonanal | 11.05 ± 2.30 | 16.24 ± 3.05 | 31.98 ± 11.59 | 58.61 ± 13.27 | 24.60 ± 4.17 | 35.12 ± 8.22 |
17 | (E)-2-Nonenal | 5.93 ± 1.00 | 8.38 ± 1.72 | 17.44 ± 5.73 | 42.11 ± 4.04 | 13.47 ± 1.87 | 17.42 ± 3.50 |
18 | γ-Elemene | 7.36 ± 0.69 | 13.96 ± 4.74 | 11.18 ± 1.97 | 7.03 ± 2.88 | 11.91 ± 3.39 | 5.22 ± 1.17 |
19 | β-Chamigrene | 25.14 ± 2.57 | 53.46 ± 16.46 | 55.86 ± 12.89 | 34.55 ± 10.56 | 48.74 ± 10.46 | 29.71 ± 5.60 |
20 | Cedrene-V6 | 18.74 ± 1.49 | 40.15 ± 10.86 | 40.73 ± 9.28 | 26.73 ± 7.98 | 34.40 ± 7.53 | 24.14 ± 4.52 |
21 | β-Patchoulene | 1.84 ± 0.21 | 4.09 ± 1.06 | 3.93 ± 0.94 | 2.73 ± 0.71 | 3.32 ± 0.76 | 2.48 ± 0.50 |
22 | β-Maaliene | 7.86 ± 0.62 | 16.24 ± 2.03 | 17.72 ± 4.10 | 12.29 ± 3.44 | 14.85 ± 3.32 | 10.91 ± 2.34 |
23 | α-Gurjunene | 3.95 ± 0.27 | 8.14 ± 2.03 | 8.58 ± 1.84 | 5.59 ± 1.62 | 7.25 ± 1.45 | 5.24 ± 1.17 |
24 | α-Guaiene | 3.11 ± 0.34 | 4.80 ± 1.92 | 5.37 ± 1.59 | 3.95 ± 0.74 | 5.10 ± 0.46 | 5.24 ± 1.17 |
25 | β-Panasinsene | 97.38 ± 7.43 | 191.78 ± 49.51 | 210.59 ± 46.16 | 143.60 ± 36.69 | 173.46 ± 36.88 | 128.88 ± 26.73 |
26 | (−)-β-Elemene | 49.56 ± 4.99 | 80.64 ± 23.13 | 71.24 ± 10.30 | 45.56 ± 12.11 | 70.57 ± 16.96 | 39.23 ± 9.62 |
27 | (−)-Tricyclo[6.2.1.0(4,11)]undec-5-ene, 1,5,9,9-tetramethyl- (isocaryophyllene-I1) | 10.51 ± 0.84 | 21.77 ± 5.75 | 21.76 ± 4.58 | 14.56 ± 3.40 | 18.58 ± 3.89 | 13.33 ± 2.90 |
28 | (+)-Valencene | 18.85 ± 1.42 | 40.57 ± 17.51 | 38.38 ± 9.89 | 18.53 ± 3.12 | 36.45 ± 6.56 | 15.25 ± 3.54 |
29 | Caryophyllene | 15.18 ± 1.29 | 35.64 ± 10.00 | 36.60 ± 4.97 | 14.07 ± 3.15 | 28.19 ± 5.65 | 15.19 ± 3.51 |
30 | Caryophyllene-(I1) | 6.71 ± 0.45 | 12.17 ± 3.57 | 14.78 ± 3.05 | 9.10 ± 2.55 | 12.93 ± 3.03 | 8.15 ± 1.92 |
31 | β-Gurjunene | 202.96 ± 20.50 | 525.85 ± 132.21 | 665.20 ± 89.22 | 206.16 ± 39.98 | 411.32 ± 95.02 | 252.53 ± 62.16 |
32 | Eudesma-3,7(11)-diene | 10.03 ± 1.17 | 22.86 ± 7.13 | 26.55 ± 4.24 | 9.15 ± 1.84 | 19.78 ± 3.90 | 10.29 ± 2.42 |
33 | Decahydro-1,1,7-trimethyl-4-methylene-1H-Cycloprop[e]azulene | 7.43 ± 1.13 | 16.12 ± 11.02 | 12.38 ± 4.61 | 4.96 ± 1.43 | 16.67 ± 4.19 | 4.11 ± 0.91 |
34 | γ-Gurjunene | 90.12 ± 7.96 | 178.95 ± 61.47 | 195.29 ± 41.95 | 112.51 ± 21.56 | 173.44 ± 29.87 | 104.23 ± 25.69 |
35 | (−)-α-Neoclovene | 131.56 ± 10.27 | 253.99 ± 65.45 | 265.85 ± 49.59 | 177.85 ± 39.88 | 216.23 ± 44.98 | 169.38 ± 36.86 |
36 | Aromadendrene | 11.73 ± 1.35 | 24.22 ± 10.37 | 25.83 ± 7.03 | 12.39 ± 2.06 | 23.75 ± 4.09 | 12.65 ± 3.05 |
37 | (Z)-β-Farnesene | 46.84 ± 3.44 | 72.71 ± 19.90 | 70.15 ± 11.89 | 41.40 ± 13.44 | 70.68 ± 17.01 | 36.94 ± 8.11 |
38 | 2-Isopropenyl-4a,8-dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalene | 18.49 ± 1.51 | 32.17 ± 7.91 | 35.08 ± 6.24 | 26.67 ± 5.40 | 30.18 ± 6.31 | 23.14 ± 5.53 |
39 | β-Neoclovene | 43.79 ± 3.42 | 81.62 ± 21.50 | 90.02 ± 17.60 | 62.88 ± 12.28 | 71.98 ± 14.53 | 57.72 ± 13.46 |
40 | β-Selinene | 16.35 ± 1.89 | 35.90 ± 13.78 | 32.24 ± 7.25 | 17.45 ± 2.79 | 31.21 ± 5.57 | 17.63 ± 4.07 |
41 | Elixene | 15.09 ± 1.22 | 25.75 ± 8.37 | 29.47 ± 6.71 | 17.21 ± 3.12 | 27.22 ± 5.13 | 13.50 ± 3.27 |
42 | (−)-Spathulenol | 41.58 ± 5.69 | 51.17 ± 4.70 | 63.07 ± 13.45 | 57.36 ± 15.00 | 55.41 ± 5.33 | 44.72 ± 10.06 |
43 | 2,6,10,10-Tetramethyl-tricyclo [7.2.0.0(2,6)] undecan-5-ol | 36.13 ± 5.89 | 26.73 ± 5.04 | 25.79 ± 4.67 | 46.72 ± 8.37 | 22.27 ± 6.00 | 18.57 ± 4.12 |
44 | Humulene epoxide ii (−) | 6.06 ± 1.13 | 9.09 ± 2.88 | 16.18 ± 4.27 | 19.94 ± 3.86 | 8.62 ± 1.87 | 16.93 ± 3.76 |
45 | 7(11)-Selinen-4α-ol | 18.16 ± 3.27 | 16.98 ± 2.40 | 21.26 ± 3.62 | 27.60 ± 4.94 | 15.60 ± 2.03 | 16.35 ± 3.13 |
46 | Ginsenol | 151.00 ± 30.37 | 96.65 ± 12.55 | 100.31 ± 18.99 | 196.06 ± 41.56 | 82.16 ± 22.47 | 75.82 ± 18.74 |
Groups for Comparison | Q-Marker’ Name | VIP Value | p | MCG5–15-years | GCG5–15-years |
---|---|---|---|---|---|
GCG5–15-years vs. MCG5–15-years | Hexanal | 5.48586 | >0.000 | 1529.33 ± 999.73 | 4116.45 ± 1860.92 |
β-Gurjunene | 1.43177 | 0.006 | 464.68 ± 217.47 | 290.00 ± 111.51 | |
2-Oxo-pentanoic acid | 1.42528 | >0.000 | 44.75 ± 48.39 | 225.75 ± 167.48 | |
Heptanal | 1.28533 | >0.000 | 97.54 ± 47.60 | 241.62 ± 131.77 | |
Octanal | 1.11063 | >0.000 | 62.17 ± 32.43 | 170.21 ± 94.00 |
Groups for Comparison | Q-Marker’ Name | VIP Value | p | MCG5-years | MCG10-years | MCG15-years |
---|---|---|---|---|---|---|
MCG5-years vs. MCG10-years | β-Panasinsene | 2.26268 | 0.005 | 97.38 ± 7.43 | 191.78 ± 49.51 | 210.59 ± 46.16 |
(−)-α-Neoclovene | 2.61166 | 0.006 | 131.56 ± 10.27 | 253.99 ± 65.45 | 265.85 ± 49.59 | |
γ-Gurjunene | 2.21771 | 0.016 | 90.12 ± 7.96 | 178.95 ± 61.47 | 195.29 ± 41.95 | |
β-Neoclovene | 1.45465 | 0.007 | 43.79 ± 3.42 | 81.62 ± 21.50 | 90.02 ± 17.60 | |
β-Chamigrene | 1.22714 | 0.008 | 25.14 ± 2.57 | 53.46 ± 16.46 | 55.86 ± 12.89 | |
2-Oxo-pentanoic acid | 1.03629 | 0.002 | 10.96 ± 4.76 | 27.68 ± 8.28 | 95.60 ± 55.21 | |
MCG5-years vs. MCG15-year | (−)-α-Neoclovene | 2.16242 | >0.000 | 131.56 ± 10.27 | 253.99 ± 65.45 | 265.85 ± 49.59 |
β-Panasinsene | 1.99593 | >0.000 | 97.38 ± 7.43 | 191.78 ± 49.51 | 210.59 ± 46.16 | |
γ-Gurjunene | 1.89388 | >0.000 | 90.12 ± 7.96 | 178.95 ± 61.47 | 195.29 ± 41.95 | |
2-Oxo-pentanoic acid | 1.76019 | 0.013 | 10.96 ± 4.76 | 27.68 ± 8.28 | 95.60 ± 55.21 | |
Heptanal | 1.67883 | 0.005 | 69.98 ± 14.63 | 75.35 ± 18.87 | 147.29 ± 51.59 | |
Octanal | 1.50643 | 0.004 | 36.07 ± 5.10 | 52.50 ± 12.61 | 97.95 ± 30.42 | |
Benzaldehyde | 1.45653 | 0.003 | 36.45 ± 2.43 | 27.73 ± 6.52 | 94.85 ± 27.53 | |
(E)-2-Heptenal | 1.39969 | 0.000 | 18.50 ± 3.32 | 37.36 ± 19.97 | 84.60 ± 19.39 | |
β-Neoclovene | 1.27773 | >0.000 | 43.79 ± 3.42 | 81.62 ± 21.50 | 90.02 ± 17.60 | |
(E)-2-Octenal | 1.24425 | 0.007 | 12.82 ± 3.23 | 20.49 ± 4.07 | 54.98 ± 24.06 | |
3-Octen-2-one | 1.18196 | 0.002 | 17.09 ± 3.14 | 22.49 ± 5.44 | 55.67 ± 17.06 | |
β-Chamigrene | 1.03703 | >0.000 | 25.14 ± 2.57 | 53.46 ± 16.46 | 55.86 ± 12.89 | |
MCG10-years vs. MCG15-years | Heptanal | 2.46311 | 0.009 | 69.98 ± 14.63 | 75.35 ± 18.87 | 147.29 ± 51.59 |
2-Oxo-pentanoic acid | 2.42858 | 0.029 | 10.96 ± 4.76 | 27.68 ± 8.28 | 95.60 ± 55.21 | |
Benzaldehyde | 2.13574 | 0.001 | 36.45 ± 2.43 | 27.73 ± 6.52 | 94.85 ± 27.53 | |
Octanal | 1.96282 | 0.007 | 36.07 ± 5.10 | 52.50 ± 12.61 | 97.95 ± 30.42 | |
(E)-2-Octenal | 1.70095 | 0.016 | 12.82 ± 3.23 | 20.49 ± 4.07 | 54.98 ± 24.06 | |
(E)-2-Heptenal | 1.6901 | 0.002 | 18.50 ± 3.32 | 37.36 ± 19.97 | 84.60 ± 19.39 | |
3-Octen-2-one | 1.56645 | 0.004 | 17.09 ± 3.14 | 22.49 ± 5.44 | 55.67 ± 17.06 |
Groups for Comparison | Q-Marker’ Name | VIP Value | p | GCG5-years | GCG10-years | GCG15-years |
---|---|---|---|---|---|---|
GCG5-years vs. GCG10-years | Hexanal | 5.45061 | >0.000 | 6282.94 ± 1163.54 | 2298.02 ± 168.66 | 3768.41 ± 803.90 |
2-Oxo-pentanoic acid | 1.60289 | >0.000 | 397.04 ± 131.61 | 53.36 ± 16.51 | 226.85 ± 237.52 | |
Heptanal | 1.40708 | >0.000 | 411.09 ± 77.96 | 143.42 ± 14.94 | 170.35 ± 24.52 | |
Benzaldehyde | 1.03157 | >0.000 | 210.09 ± 48.35 | 60.35 ± 9.45 | 80.37 ± 13.16 | |
Octanal | 1.20191 | >0.000 | 293.63 ± 41.48 | 96.77 ± 10.99 | 120.21 ± 21.23 | |
2-Isopropyl-3-methoxypyrazine | 1.46396 | 0.001 | 509.32 ± 125.61 | 212.52 ± 111.73 | 313.61 ± 120.50 | |
GCG5-years vs. GCG15-years | Hexanal | 5.41556 | 0.001 | 6282.94 ± 1163.54 | 2298.02 ± 168.66 | 3768.41 ± 803.90 |
2-Oxo-pentanoic acid | 1.44353 | 0.023 | 397.04 ± 131.61 | 53.36 ± 16.51 | 226.85 ± 237.52 | |
Heptanal | 1.61564 | >0.000 | 411.09 ± 77.96 | 143.42 ± 14.94 | 170.35 ± 24.52 | |
Benzaldehyde | 1.13916 | 0.001 | 210.09 ± 48.35 | 60.35 ± 9.45 | 80.37 ± 13.16 | |
Octanal | 1.36848 | >0.000 | 293.63 ± 41.48 | 96.77 ± 10.99 | 120.21 ± 21.23 | |
2-Isopropyl-3-methoxypyrazine | 1.52673 | 0.020 | 509.32 ± 125.61 | 212.52 ± 111.73 | 313.61 ± 120.50 | |
GCG10-years vs. GCG15-years | Hexanal | 5.33736 | 0.006 | 6282.94 ± 1163.54 | 2298.02 ± 168.66 | 3768.41 ± 803.90 |
2-Oxo-pentanoic acid | 1.82677 | 0.003 | 397.04 ± 131.61 | 53.36 ± 16.51 | 226.85 ± 237.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, P.; Li, S.; Wu, D.; Zhong, Y.; Li, W.; Xu, H.; Huang, L. Differentiation of Mountain- and Garden-Cultivated Ginseng with Different Growth Years Using HS-SPME-GC-MS Coupled with Chemometrics. Molecules 2023, 28, 2016. https://doi.org/10.3390/molecules28052016
Zhang L, Wang P, Li S, Wu D, Zhong Y, Li W, Xu H, Huang L. Differentiation of Mountain- and Garden-Cultivated Ginseng with Different Growth Years Using HS-SPME-GC-MS Coupled with Chemometrics. Molecules. 2023; 28(5):2016. https://doi.org/10.3390/molecules28052016
Chicago/Turabian StyleZhang, Luoqi, Ping Wang, Sen Li, Dan Wu, Yute Zhong, Weijie Li, Haiyu Xu, and Luqi Huang. 2023. "Differentiation of Mountain- and Garden-Cultivated Ginseng with Different Growth Years Using HS-SPME-GC-MS Coupled with Chemometrics" Molecules 28, no. 5: 2016. https://doi.org/10.3390/molecules28052016
APA StyleZhang, L., Wang, P., Li, S., Wu, D., Zhong, Y., Li, W., Xu, H., & Huang, L. (2023). Differentiation of Mountain- and Garden-Cultivated Ginseng with Different Growth Years Using HS-SPME-GC-MS Coupled with Chemometrics. Molecules, 28(5), 2016. https://doi.org/10.3390/molecules28052016