Gallium(III)- and Indium(III)-Containing Ionic Liquids as Highly Active Catalysts in Organic Synthesis
Abstract
:1. Introduction
2. Acidity by Gutmann Acceptor Number
3. Ga(III)-Based Ionic Liquids
4. In(III)-Based Ionic Liquids
5. Other Applications of Ga(III) and In(III)-Based Ionic Liquids
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rogers, R.D.; Seddon, K.R. Ionic Liquids—Solvents of the Future? Science 2003, 302, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Pârvulescu, V.I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev. 2007, 107, 2615–2665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Q.; Zhang, S.; Lu, X.; Zhang, X. Electrodeposition in Ionic Liquids. ChemPhysChem 2016, 17, 335–351. [Google Scholar] [CrossRef]
- Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; Volume 1, pp. 1–721. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Kar, M.; Pringle, J.M. Fundamentals of Ionic Liquids; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; ISBN 9783527340033. [Google Scholar]
- Vekariya, R.L. A Review of Ionic Liquids: Applications towards Catalytic Organic Transformations. J. Mol. Liq. 2017, 227, 44–60. [Google Scholar] [CrossRef]
- Shiflett, M.B. (Ed.) Commercial Applications of Ionic Liquids; Green Chemistry and Sustainable Technology; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-35244-8. [Google Scholar]
- Dupont, J.; Kollár, L. Ionic Liquids (ILs) in Organometallic Catalysis; Topics in Organometallic Chemistry; Springer Verlag GmbH: Heidelberg, Germany, 2015; Volume 51. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, S.; Dewhurst, R.D.; Ignat’ev, N.V.; Finze, M.; Braunschweig, H. Boron: Its Role in Energy-Related Processes and Applications. Angew. Chem. Int. Ed. Engl. 2020, 59, 8800. [Google Scholar] [CrossRef]
- Nori, V.; Pesciaioli, F.; Sinibaldi, A.; Giorgianni, G.; Carlone, A. Boron-Based Lewis Acid Catalysis: Challenges and Perspectives. Catalysts 2021, 12, 5. [Google Scholar] [CrossRef]
- Ni, C.; Ma, X.; Yang, Z.; Roesky, H.W. Recent Advances in Aluminum Compounds for Catalysis. Eur. J. Inorg. Chem. 2022, 2022, e202100929. [Google Scholar] [CrossRef]
- Dagorne, S.; Fliedel, C.; de Frémont, P. Gallium and Indium Compounds in Homogeneous Catalysis. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Scott, R.A., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 1–27. [Google Scholar] [CrossRef]
- Jung, H.J.; Cho, Y.; Kim, D.; Mehrkhodavandi, P. Cationic Aluminum, Gallium, and Indium Complexes in Catalysis. Catal. Sci. Technol. 2021, 11, 62–91. [Google Scholar] [CrossRef]
- Wang, B.; Jin, C.; Shao, S.; Yue, Y.; Zhang, Y.; Wang, S.; Chang, R.; Zhang, H.; Zhao, J.; Li, X. Electron-Deficient Cu Site Catalyzed Acetylene Hydrochlorination. Green Energy Environ. 2022; in press. [Google Scholar] [CrossRef]
- Zhou, H.; Zeng, C.; Ren, L.; Liao, W.; Huang, X. GaCl3-Catalyzed Chloroacylation of Alkynes: A Simple, Convenient and Efficient Method to β-Chlorovinyl Ketones. Synlett 2006, 2006, 3504–3506. [Google Scholar] [CrossRef]
- Li, H.J.; Guillot, R.; Gandon, V. A Gallium-Catalyzed Cycloisomerization/Friedel-Crafts Tandem. J. Org. Chem. 2010, 75, 8435–8449. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.V.S.; Bramha Reddy, B.; Raghavendra Rao, K.V.; Yadav, J.S. Gallium(III)-Catalyzed Tandem Cycloisomerization/Friedel–Crafts Alkylation: A Facile Synthesis of 2,5-Disubstituted Furans. Tetrahedron Lett. 2012, 53, 2500–2503. [Google Scholar] [CrossRef]
- Chatani, N.; Oshita, M.; Tobisu, M.; Ishii, Y.; Murai, S. A GaCl3-Catalyzed [4+1] Cycloaddition of α,β-Unsaturated Carbonyl Compounds and Isocyanides Leading to Unsaturated γ-Lactone Derivatives. J. Am. Chem. Soc. 2003, 125, 7812–7813. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Li, H.; Hughes, R.P.; Wu, J.; Han, X.; Li, H.; Hughes, R.P.; Wu, J. Gallium(III)-Catalyzed Three-Component (4+3) Cycloaddition Reactions. Angew. Chemie 2012, 124, 10536–10539. [Google Scholar] [CrossRef]
- Novikov, R.A.; Tomilov, Y.V.; Nefedov, O.M. Unexpected Formation of 4-Arylcyclopentane-1,1,3,3-Tetracarboxylates in GaCl3-Catalyzed Reaction of 2-Arylcyclopropane-1,1-Dicarboxylates with Tetrasubstituted 1-Pyrazolines. Mendeleev Commun. 2012, 22, 181–183. [Google Scholar] [CrossRef]
- Huang, S.G.; Mao, H.F.; Zhou, S.F.; Zou, J.P.; Zhang, W. Recyclable Gallium(III) Triflate-Catalyzed [4+3] Cycloaddition for Synthesis of 2,4-Disubstituted-3H-Benzo[b][1,4]Diazepines. Tetrahedron Lett. 2013, 54, 6178–6180. [Google Scholar] [CrossRef]
- Suresh, R.; Muthusubramanian, S.; Nagaraj, M.; Manickam, G. Indium Trichloride Catalyzed Regioselective Synthesis of Substituted Pyrroles in Water. Tetrahedron Lett. 2013, 54, 1779–1784. [Google Scholar] [CrossRef]
- Albright, H.; Vonesh, H.L.; Becker, M.R.; Alexander, B.W.; Ludwig, J.R.; Wiscons, R.A.; Schindler, C.S. GaCl3-Catalyzed Ring-Opening Carbonyl-Olefin Metathesis. Org. Lett. 2018, 20, 4954–4958. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.V.S.; Padmavani, B.; Gupta, M.K. Gallium(III) Halide-Catalyzed Coupling of Indoles with Phenylacetylene: Synthesis of Bis(Indolyl)Phenylethanes. Tetrahedron Lett. 2004, 45, 7577–7579. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.V.S.; Eeshwaraiah, B.; Gupta, M.K.; Biswas, S.K. Gallium(III) Halide Promoted Synthesis of 1,3,5-Triaryl- 1,5-Dihalo-1,4-Pentadienes. Tetrahedron Lett. 2005, 46, 1161–1163. [Google Scholar] [CrossRef]
- Yadav, J.S.; Subba Reddy, B.V.; Sengupta, S.; Biswas, S.K. Gallium(III) Chloride Catalyzed of Arylacetylenes with Naphthols and Phenols:A Facile Synthesis of Vinylarenes. Synthesis 2009, 2009, 1301–1304. [Google Scholar] [CrossRef]
- Nishimoto, Y.; Ueda, H.; Yasuda, M.; Baba, A. Gallium Tribromide Catalyzed Coupling Reaction of Alkenyl Ethers with Ketene Silyl Acetals. Angew. Chemie 2012, 124, 8197–8200. [Google Scholar] [CrossRef]
- Nishimoto, Y.; Kita, Y.; Ueda, H.; Imaoka, H.; Chiba, K.; Yasuda, M.; Baba, A. Coupling Reaction of Enol Derivatives with Silyl Ketene Acetals Catalyzed by Gallium Trihalides. Chem.-A Eur. J. 2016, 22, 11837–11845. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zeng, H.; Liu, Z.; Liu, L.; Wang, D.; Chen, Y. FeCl3− and GaCl3−Catalyzed Dehydrative Coupling Reaction of Chromone-Derived Morita-Baylis-Hillman Alcohols with Terminal Alkynes. Chinese J. Chem. 2011, 29, 2732–2738. [Google Scholar] [CrossRef]
- Nishimoto, Y.; Saito, T.; Yasuda, M.; Baba, A. Indium-Catalyzed Coupling Reaction between Silyl Enolates and Alkyl Chlorides or Alkyl Ethers. Tetrahedron 2009, 65, 5462–5471. [Google Scholar] [CrossRef]
- Liu, P.; Pan, Y.M.; Hu, K.; Huang, X.C.; Liang, Y.; Wang, H.S. Ligand-Free Indium(III)-Catalyzed Heck Reaction. Tetrahedron 2013, 69, 7925–7930. [Google Scholar] [CrossRef]
- Gupta, M.K.; O’Sullivan, T.P. Recent Applications of Gallium and Gallium Halides as Reagents in Organic Synthesis. RSC Adv. 2013, 3, 25498–25522. [Google Scholar] [CrossRef] [Green Version]
- Xi, Z.G.; Zhu, L.; Luo, S.; Cheng, J.P. Catalytic Nazarov Reaction of Aryl Vinyl Ketones via Binary Acid Strategy. J. Org. Chem. 2013, 78, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Belaya, M.A.; Knyazev, D.A.; Borisov, D.D.; Novikov, R.A.; Tomilov, Y.V. GaCl3-Mediated Cascade [2 + 4]-Cycloaddition/[4 + 2]-Annulation of Donor-Acceptor Cyclopropanes with Conjugated Dienes: Strategy for the Construction of Benzobicyclo[3.3.1]Nonane Skeleton. J. Org. Chem. 2021, 86, 8089–8100. [Google Scholar] [CrossRef]
- Prakash, G.K.S.; Mathew, T.; Olah, G.A. Gallium(III) Triflate: An Efficient and a Sustainable Lewis Acid Catalyst for Organic Synthetic Transformations. Acc. Chem. Res. 2012, 45, 565–577. [Google Scholar] [CrossRef]
- Li, Z.; Thiery, G.; Lichtenthaler, M.R.; Guillot, R.; Krossing, I.; Gandon, V.; Bour, C. Catalytic Use of Low-Valent Cationic Gallium(I) Complexes as π-Acids. Adv. Synth. Catal. 2018, 360, 544–549. [Google Scholar] [CrossRef]
- Datta, M. Recent Advances of Indium(III) Chloride Catalyzed Reactions in Organic Synthesis. ChemistrySelect 2021, 6, 187–216. [Google Scholar] [CrossRef]
- Estager, J.; Holbrey, J.D.; Swadźba-Kwaśny, M. Halometallate Ionic Liquids—Revisited. Chem. Soc. Rev. 2014, 43, 847–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estager, J.; Oliferenko, A.A.; Seddon, K.R.; Swadźba-Kwaśny, M. Chlorometallate(Iii) Ionic Liquids as Lewis Acidic Catalysts—A Quantitative Study of Acceptor Properties. Dalt. Trans. 2010, 39, 11375–11382. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Liu, H.; Meng, X.; Xu, C.; Liu, Z.; Klusener, P.A.A. Quantitative Characterization of Lewis Acidity and Activity of Chloroaluminate Ionic Liquids. Ind. Eng. Chem. Res. 2016, 55, 11878–11886. [Google Scholar] [CrossRef]
- Kore, R.; Berton, P.; Kelley, S.P.; Aduri, P.; Katti, S.S.; Rogers, R.D. Group IIIA Halometallate Ionic Liquids: Speciation and Applications in Catalysis. ACS Catal. 2017, 7, 7014–7028. [Google Scholar] [CrossRef]
- Li, K.; Choudhary, H.; Rogers, R.D. Ionic Liquids for Sustainable Processes: Liquid Metal Catalysis. Curr. Opin. Green Sustain. Chem. 2018, 11, 15–21. [Google Scholar] [CrossRef]
- Guzmán-Lucero, D.; Guzmán-Pantoja, J.; Velázquez, H.D.; Likhanova, N.V.; Bazaldua-Domínguez, M.; Vega-Paz, A.; Martínez-Palou, R. Isobutane/Butene Alkylation Reaction Using Ionic Liquids as Catalysts. Toward a Sustainable Industry. Mol. Catal. 2021, 515, 111892. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Liu, G.; Hu, R.; Gao, G. Role of Aromatics in Isobutane Alkylation of Chloroaluminate Ionic Liquids: Insights from Aromatic—Ion Interaction. J. Catal. 2021, 396, 54–64. [Google Scholar] [CrossRef]
- Brown, L.C.; Hogg, J.M.; Swadźba-Kwaśny, M. Lewis Acidic Ionic Liquids. Top. Curr. Chem. 2017, 375, 78. [Google Scholar] [CrossRef] [Green Version]
- Singhal, S.; Agarwal, S.; Singh, M.; Rana, S.; Arora, S.; Singhal, N. Ionic Liquids: Green Catalysts for Alkene-Isoalkane Alkylation. J. Mol. Liq. 2019, 285, 299–313. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Huang, C.; Chen, B.; Li, J.; Lei, Z. Stability, Deactivation, and Regeneration of Chloroaluminate Ionic Liquid as Catalyst for Industrial C4 Alkylation. Catalysts 2017, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, Y.; Sheng, X.; Wang, B.; Zhu, Z.; Nan, Q. The Catalytic Performance Study of Chloroaluminate Ionic Liquids on Long-Chain Alkenes Alkylation. Energy Fuels 2018, 32, 9763–9771. [Google Scholar] [CrossRef]
- Lyu, X.; Wang, W.; Sun, Y.; Zhao, Q.; Qiu, T. Ionic Liquids Catalyzed Friedel–Crafts Alkylation of Substituted Benzenes with CCl 4 Toward Trichloromethylarenes. Catal. Lett. 2019, 149, 665–671. [Google Scholar] [CrossRef]
- Kore, R.; Uppara, P.V.; Rogers, R.D. Replacing HF or AlCl3in the Acylation of Isobutylbenzene with Chloroaluminate Ionic Liquids. ACS Sustain. Chem. Eng. 2020, 8, 10330–10334. [Google Scholar] [CrossRef]
- Latos, P.; Alice, C.; Barteczko, N.; Boncel, S.; Jurczyk, S.; Brown, L.C.; Nockemann, P.; Chrobok, A.; Swadźba-Kwaśny, M. Water-Tolerant Trifloaluminate Ionic Liquids: New and Unique Lewis Acidic Catalysts for the Synthesis of Chromane. Front. Chem. 2018, 6, 535. [Google Scholar] [CrossRef]
- Liang, X.; Gong, G.; Wu, H.; Yang, J. Highly Efficient Procedure for the Synthesis of Biodiesel from Soybean Oil Using Chloroaluminate Ionic Liquid as Catalyst. Fuel 2009, 88, 613–616. [Google Scholar] [CrossRef]
- Chauvin, Y.; Gilbert, B.; Guibard, I. Catalytic Dimerization of Alkenes by Nickel Complexes in Organochloroaluminate Molten Salts. J. Chem. Soc. Chem. Commun. 1990, 1, 1715–1716. [Google Scholar] [CrossRef]
- Kumar, A.; Sarma, D. Recent Applications of Chloroaluminate Ionic Liquids in Promoting Organic Reactions. ACS Symp. Ser. 2005, 902, 350–370. [Google Scholar] [CrossRef]
- Hogg, J.M.; Coleman, F.; Ferrer-Ugalde, A.; Atkins, M.P.; Swadźba-Kwaśny, M. Liquid Coordination Complexes: A New Class of Lewis Acids as Safer Alternatives to BF3 in Synthesis of Polyalphaolefins. Green Chem. 2015, 17, 1831–1841. [Google Scholar] [CrossRef]
- Harjani, J.R.; Nara, S.J.; Salunkhe, M.M. Lewis Acidic Ionic Liquids for the Synthesis of Electrophilic Alkenes via the Knoevenagel Condensation. TETRAHEDRON Lett. 2002, 43, 1127–1130. [Google Scholar] [CrossRef]
- Zhang, R.; Meng, X.; Liu, Z.; Meng, J.; Xu, C. Isomerization of N-Pentane Catalyzed by Acidic Chloroaluminate Ionic Liquids. Ind. Eng. Chem. Res. 2008, 47, 8205–8210. [Google Scholar] [CrossRef]
- Huang, M.Y.; Wu, J.C.; Shieu, F.S.; Lin, J.J. Isomerization of Exo-Tetrahydrodicyclopentadiene to Adamantane Using an Acidity-Adjustable Chloroaluminate Ionic Liquid. Catal. Commun. 2009, 10, 1747–1751. [Google Scholar] [CrossRef]
- Huang, M.Y.; Wu, J.C.; Shieu, F.S.; Lin, J.J. Preparation of High Energy Fuel JP-10 by Acidity-Adjustable Chloroaluminate Ionic Liquid Catalyst. Fuel 2011, 90, 1012–1017. [Google Scholar] [CrossRef]
- Maniam, K.K.; Paul, S. A Review on the Electrodeposition of Aluminum and Aluminum Alloys in Ionic Liquids. Coatings 2021, 11, 80. [Google Scholar] [CrossRef]
- Latos, P.; Szelwicka, A.; Boncel, S.; Jurczyk, S.; Swadźba-Kwaśny, M.; Chrobok, A. Highly Efficient Synthesis of Alkyl Levulinates from α-Angelica Lactone, Catalyzed with Lewis Acidic Trifloaluminate Ionic Liquids Supported on Carbon Nanotubes. ACS Sustain. Chem. Eng. 2019, 7, 5184–5191. [Google Scholar] [CrossRef]
- Plechkova, N.V.; Seddon, K.R. Applications of Ionic Liquids in the Chemical Industry. Chem. Soc. Rev. 2007, 37, 123–150. [Google Scholar] [CrossRef]
- Timken, H.K.; Luo, H.; Chang, B.-K.; Carter, E.; Cole, M. ISOALKYTM Technology: Next-Generation Alkylate Gasoline Manufacturing Process Technology Using Ionic Liquid Catalyst. In Commercial Applications of Ionic Liquids; Shiflett, M.B., Ed.; Springer International Publishing: New York, NY, USA, 2020; pp. 33–47. [Google Scholar] [CrossRef]
- Greer, A.J.; Jacquemin, J.; Hardacre, C. Industrial Applications of Ionic Liquids. Molecules 2020, 25, 5207. [Google Scholar] [CrossRef]
- Shah, F.U.; Glavatskih, S.; Antzutkin, O.N. Boron in Tribology: From Borates to Ionic Liquids. Tribol. Lett. 2013, 51, 281–301. [Google Scholar] [CrossRef]
- Coffie, S.; Hogg, J.M.; Cailler, L.; Ferrer-Ugalde, A.; Murphy, R.W.; Holbrey, J.D.; Coleman, F.; Swadźba-Kwaśny, M. Lewis Superacidic Ionic Liquids with Tricoordinate Borenium Cations. Angew. Chemie Int. Ed. 2015, 54, 14970–14973. [Google Scholar] [CrossRef] [Green Version]
- Matuszek, K.; Coffie, S.; Chrobok, A.; Swadźba-Kwaśny, M. Borenium Ionic Liquids as Catalysts for Diels–Alder Reaction: Tuneable Lewis Superacids for Catalytic Applications. Catal. Sci. Technol. 2017, 7, 1045–1049. [Google Scholar] [CrossRef] [Green Version]
- Hogg, J.M.; Ferrer-Ugalde, A.; Coleman, F.; Swadźba-Kwaśny, M. Borenium Ionic Liquids as Alternative to BF3 in Polyalphaolefins (PAOs) Synthesis. ACS Sustain. Chem. Eng. 2019, 7, 15044–15052. [Google Scholar] [CrossRef]
- Bilgiç, G.; Bilgiç, G. Investigation of Boron-Based Ionic Liquids for Energy Applications. In Characteristics and Applications of Boron; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Zhu, Y.; Hosmane, N.S. Ionic Liquids: Recent Advances and Applications in Boron Chemistry. Eur. J. Inorg. Chem. 2017, 2017, 4369–4377. [Google Scholar] [CrossRef] [Green Version]
- Apperley, D.C.; Hardacre, C.; Licence, P.; Murphy, R.W.; Plechkova, N.V.; Seddon, K.R.; Srinivasan, G.; Swadźba-Kwaśny, M.; Villar-Garcia, I.J. Speciation of Chloroindate(III) Ionic Liquids. Dalt. Trans. 2010, 39, 8679–8687. [Google Scholar] [CrossRef] [PubMed]
- Hardacre, C.; Murphy, R.W.; Seddon, K.R.; Srinivasan, G.; Swadźba-Kwaśny, M.; Hardacre, C.; Murphy, R.W.; Seddon, K.R.; Srinivasan, G.; Swadźba-Kwaśny, M. Speciation of Chlorometallate Ionic Liquids Based on Gallium(Iii) and Indium(Iii). Aust. J. Chem. 2010, 63, 845–848. [Google Scholar] [CrossRef]
- Cui, J.; De With, J.; Klusener, P.A.A.; Su, X.; Meng, X.; Zhang, R.; Liu, Z.; Xu, C.; Liu, H. Identification of Acidic Species in Chloroaluminate Ionic Liquid Catalysts. J. Catal. 2014, 320, 26–32. [Google Scholar] [CrossRef]
- Noack, K.; Schulz, P.S.; Paape, N.; Kiefer, J.; Wasserscheid, P.; Leipertz, A. The Role of the C2 Position in Interionic Interactions of Imidazolium Based Ionic Liquids: A Vibrational and NMR Spectroscopic Study. Phys. Chem. Chem. Phys. 2010, 12, 14153–14161. [Google Scholar] [CrossRef]
- Izgorodina, E.I.; Maganti, R.; Armel, V.; Dean, P.M.; Pringle, J.M.; Seddon, K.R.; MacFarlane, D.R. Understanding the Effect of the C2 Proton in Promoting Low Viscosities and High Conductivities in Imidazolium-Based Ionic Liquids: Part I. Weakly Coordinating Anions. J. Phys. Chem. B 2011, 115, 14688–14697. [Google Scholar] [CrossRef]
- Gutmann, V. The Donor-Acceptor Approach to Molecular Interactions; Plenum Press: New York, NY, USA, 1978; ISBN 9781461588276. [Google Scholar]
- Angueira, E.J.; White, M.G. Super Acidic Ionic Liquids for Arene Carbonylation Derived from Dialkylimidazolium Chlorides and MCl3 (M = Al, Ga, or In). J. Mol. Catal. A Chem. 2007, 277, 164–170. [Google Scholar] [CrossRef]
- Yong, J.K.; Varma, R.S. Microwave-Assisted Preparation of 1-Butyl-3-Methylimidazolium Tetrachlorogallate and Its Catalytic Use in Acetal Formation under Mild Conditions. Tetrahedron Lett. 2005, 46, 7447–7449. [Google Scholar] [CrossRef]
- Rangits, G.; Kollár, L. Palladium Catalysed Hydroethoxycarbonylation in Imidazolium-Based Ionic Liquids. J. Mol. Catal. A Chem. 2006, 246, 59–64. [Google Scholar] [CrossRef]
- Xue, H.; Tong, Z.F.; Wei, F.Y.; Qing, S.G. Crystal Structure of Room-Temperature Ionic Liquid 1-Butyl-Isoquinolinium Gallium Tetrachloride [(BIQL)GaCl4]. Comptes Rendus Chim. 2008, 11, 90–94. [Google Scholar] [CrossRef]
- Atkins, M.P.; Seddon, K.R.; Swadźba-Kwaśny, M. Oligomerisation of Linear 1-Olefins Using a Chlorogallate(III) Ionic Liquid. Pure Appl. Chem. 2011, 83, 1391–1406. [Google Scholar] [CrossRef]
- Xing, X.Q.; Zhao, G.Y.; Cui, J.Z. Chlorogallate(III) Ionic Liquids: Synthesis, Acidity Determination and Their Catalytic Performances for Isobutane Alkylation. Sci. China Chem. 2012, 55, 1542–1547. [Google Scholar] [CrossRef]
- Wang, H.; Meng, X.; Zhao, G.; Zhang, S. Isobutane/Butene Alkylation Catalyzed by Ionic Liquids: A More Sustainable Process for Clean Oil Production. Green Chem. 2017, 19, 1462–1489. [Google Scholar] [CrossRef]
- Pomelli, C.S.; Ghilardi, T.; Chiappe, C.; De Angelis, A.R.; Calemma, V.; Hallett, J.P. Alkylation of Methyl Linoleate with Propene in Ionic Liquids in the Presence of Metal Salts. Molecules 2015, 20, 21840–21853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matuszek, K.; Chrobok, A.; Hogg, J.M.; Coleman, F.; Swadźba-Kwaśny, M. Friedel–Crafts Alkylation Catalysed by GaCl3-Based Liquid Coordination Complexes. Green Chem. 2015, 17, 4255–4262. [Google Scholar] [CrossRef]
- Markiton, M.; Chrobok, A.; Matuszek, K.; Seddon, K.R.; Swadzba-Kwasny, M. Exceptional Activity of Gallium(III) Chloride and Chlorogallate(III) Ionic Liquids for Baeyer–Villiger Oxidation. RSC Adv. 2016, 6, 30460–30467. [Google Scholar] [CrossRef] [Green Version]
- Matuszek, K.; Chrobok, A.; Latos, P.; Markiton, M.; Szymańska, K.; Jarzębski, A.; Swadźba-Kwaśny, M. Silica-Supported Chlorometallate(III) Ionic Liquids as Recyclable Catalysts for Diels–Alder Reaction under Solventless Conditions. Catal. Sci. Technol. 2016, 6, 8129–8137. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Choudhary, H.; Mishra, M.K.; Rogers, R.D. Enhanced Acidity and Activity of Aluminum/Gallium-Based Ionic Liquids Resulting from Dynamic Anionic Speciation. ACS Catal. 2019, 9, 9789–9793. [Google Scholar] [CrossRef]
- Kim, Y.J.; Varma, R.S. Tetrahaloindate(III)-Based Ionic Liquids in the Coupling Reaction of Carbon Dioxide and Epoxides to Generate Cyclic Carbonates: H-Bonding and Mechanistic Studies. J. Org. Chem. 2005, 70, 7882–7891. [Google Scholar] [CrossRef] [PubMed]
- Earle, M.J.; Hakala, U.; Hardacre, C.; Karkkainen, J.; McAuley, B.J.; Rooney, D.W.; Seddon, K.R.; Thompson, J.M.; Wähälä, K. Chloroindate(III) Ionic Liquids: Recyclable Media for Friedel–Crafts Acylation Reactions. Chem. Commun. 2005, 7, 903–905. [Google Scholar] [CrossRef]
- Kim, Y.J.; Varma, R.S. Microwave-Assisted Preparation of Imidazolium-Based Tetrachloroindate(III) and Their Application in the Tetrahydropyranylation of Alcohols. Tetrahedron Lett. 2005, 46, 1467–1469. [Google Scholar] [CrossRef]
- Pilli, R.A.; Robello, L.G.; Camilo, N.S.; Dupont, J.; Moreira Lapis, A.A.; Da Silveira Neto, B.A. Addition of Activated Olefins to Cyclic N-Acyliminium Ions in Ionic Liquids. Tetrahedron Lett. 2006, 47, 1669–1672. [Google Scholar] [CrossRef]
- Gunaratne, H.Q.N.; Lotz, T.J.; Seddon, K.R. Chloroindate(III) Ionic Liquids as Catalysts for Alkylation of Phenols and Catechol with Alkenes. New J. Chem. 2010, 34, 1821–1824. [Google Scholar] [CrossRef]
- Joseph, J.K.; Jain, S.L.; Singhal, S.; Sain, B. Efficient Synthesis of 3,4-Dihydropyrimidinones in 1-n-Butyl-3-Methylimidazolium Tetrachloroindate (BMI·InCl4). Ind. Eng. Chem. Res. 2011, 50, 11463–11466. [Google Scholar] [CrossRef]
- Safaei, S.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Khavasi, H.R. [InCl4]-Catalyzed Addition of Hydrazones to β-Diketones: An Efficient Regioselective Synthesis of Pyrazoles and Pyrazole-Fused Cyclohexanones. Synlett 2013, 24, 1086–1090. [Google Scholar] [CrossRef]
- Tiong, Y.W.; Yap, C.L.; Gan, S.; Yap, W.S.P. One-Pot Conversion of Oil Palm Empty Fruit Bunch and Mesocarp Fiber Biomass to Levulinic Acid and Upgrading to Ethyl Levulinate via Indium Trichloride-Ionic Liquids. J. Clean. Prod. 2017, 168, 1251–1261. [Google Scholar] [CrossRef]
- Tiong, Y.W.; Yap, C.L.; Gan, S.; Yap, W.S.P. Optimisation Studies on the Conversion of Oil Palm Biomass to Levulinic Acid and Ethyl Levulinate via Indium Trichloride-Ionic Liquids: A Response Surface Methodology Approach. Ind. Crops Prod. 2019, 128, 221–234. [Google Scholar] [CrossRef]
- Seddon, K.R.; Srinivasan, G.; Swadźba-Kwaśny, M.; Wilson, A.R. Buffered Chlorogallate(III) Ionic Liquids and Electrodeposition of Gallium Films. Phys. Chem. Chem. Phys. 2013, 15, 4518–4526. [Google Scholar] [CrossRef]
- Pan, G.B.; Mann, O.; Freyland, W. Nanoscale Electrodeposition of Ga on Au(111) from Ionic Liquids. J. Phys. Chem. C 2011, 115, 7656–7659. [Google Scholar] [CrossRef]
- Estager, J.; Nockemann, P.; Seddon, K.R.; Srinivasan, G.; Swadźba-Kwaśny, M. Electrochemical Synthesis of Indium(0) Nanoparticles in Haloindate(III) Ionic Liquids. ChemSusChem 2012, 5, 117–124. [Google Scholar] [CrossRef]
- Biller, H.; Lerch, S.; Tölke, K.; Stammler, H.G.; Hoge, B.; Strassner, T. Tetrakis(Pentafluoroethyl)Gallate, [Ga(C2F5)4]−, Ionic Liquids. Chem.-A Eur. J. 2021, 27, 13325–13329. [Google Scholar] [CrossRef]
- Niemann, M.; Neumann, B.; Stammler, H.G.; Hoge, B. Synthesis, Properties, and Application of Tetrakis(Pentafluoroethyl)Gallate, [Ga(C2F5)4]−. Angew. Chemie Int. Ed. 2019, 58, 8938–8942. [Google Scholar] [CrossRef] [PubMed]
- Novikov, R.A.; Denisov, D.A.; Potapov, K.V.; Tkachev, Y.V.; Shulishov, E.V.; Tomilov, Y.V. Ionic Ga-Complexes of Alkylidene- and Arylmethylidenemalonates and Their Reactions with Acetylenes: An In-Depth Look into the Mechanism of the Occurring Gallium Chemistry. J. Am. Chem. Soc. 2018, 140, 14381–14390. [Google Scholar] [CrossRef] [PubMed]
- Aminuddin, M.S.; Bustam Khalil, M.A.; Abdullah, B. Metal Chloride Anion Based Ionic Liquids: Synthesis, Characterization and Evaluation of Performance in Hydrogen Sulfide Oxidative Absorption. RSC Adv. 2022, 12, 11906–11912. [Google Scholar] [CrossRef]
- Fehrmann, R.; Riisager, A.; Haumann, M. Supported Ionic Liquids: Fundamentals and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 1–474. [Google Scholar] [CrossRef]
- Kumar, P.; Vermeiren, W.; Dath, J.P.; Hoelderich, W.F. Production of Alkylated Gasoline Using Ionic Liquids and Immobilized Ionic Liquids. Appl. Catal. A Gen. 2006, 304, 131–141. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, N.; Wang, J.; Zhuang, D.; Ding, Y.; Tan, R.; Yin, D. Preparation and Catalytic Activity of Periodic Mesoporous Organosilica Incorporating Lewis Acidic Chloroindate(III) Ionic Liquid Moieties. Microporous Mesoporous Mater. 2009, 122, 240–246. [Google Scholar] [CrossRef]
- Valkenberg, M.H.; de Castro, C.; Hölderich, W.F. Immobilisation of Ionic Liquids on Solid Supports. Green Chem. 2002, 4, 88–93. [Google Scholar] [CrossRef]
- Valkenberg, M.H.; de Castro, C.; Hölderich, W.F. Immobilisation of Chloroaluminate Ionic Liquids on Silica Materials. Top. Catal. 2000, 14, 139–144. [Google Scholar] [CrossRef]
- Gracia, M.J.; Losada, E.; Luque, R.; Campelo, J.M.; Luna, D.; Marinas, J.M.; Romero, A.A. Activity of Gallium and Aluminum SBA-15 Materials in the Friedel–Crafts Alkylation of Toluene with Benzyl Chloride and Benzyl Alcohol. Appl. Catal. A Gen. 2008, 349, 148–155. [Google Scholar] [CrossRef]
- Liu, S.; Shang, J.; Zhang, S.; Yang, B.; Deng, Y. Highly Efficient Trimerization of Isobutene over Silica Supported Chloroaluminate Ionic Liquid Using C4 Feed. Catal. Today 2013, 200, 41–48. [Google Scholar] [CrossRef]
- Li, P.-H.; Li, B.-L.; Hu, H.-C.; Zhao, X.-N.; Zhang, Z.-H. Ionic Liquid Supported on Magnetic Nanoparticles as Highly Efficient and Recyclable Catalyst for the Synthesis of β-Keto Enol Ethers. Catal. Commun. 2014, 46, 118–122. [Google Scholar] [CrossRef]
- Pedro, A.Q.; Coutinho, J.A.P.; Freire, M.G. Immobilization of Ionic Liquids, Types of Materials, and Applications. In Encyclopedia of Ionic Liquids; Springer: Singapore, 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Wolny, A.; Chrobok, A. Silica-Based Supported Ionic Liquid-like Phases as Heterogeneous Catalysts. Molecules 2022, 27, 5900. [Google Scholar] [CrossRef] [PubMed]
Substance | AN |
---|---|
hexane | 0 |
pyridine | 14.2 |
methanol | 41.3 |
ethanoic acid | 52.9 |
water | 54.8 |
trifluoroethanoic acid | 105.5 |
methanesulphonic acid | 126.1 |
trifluoromethanesulphonic acid | 129.1 |
IL | Anionic Speciation | AN |
---|---|---|
χAlCl3 = 0.33 | Cl−, [AlCl4]− | 93.2 |
χAlCl3 = 0.50 | [AlCl4]− | 91.8 |
χAlCl3 = 0.67 | [Al2Cl7]− | 96.0 |
χGaCl3 = 0.33 | [GaCl4]− | 21.7 |
χGaCl3 = 0.50 | [GaCl4]− | 45.9 |
χGaCl3 = 0.67 | [Ga2Cl7]− | 99.5 |
χGaCl3 = 0.75 | [Ga3Cl10]− | 107.5 |
χInCl3 = 0.25 | [InCl6]3− | 32.5 |
χInCl3 = 0.50 | [InCl4]− | 57.1 |
χInCl3 = 0.67 | [InCl4]− | 58.4 |
Process | Substrates | Ionic Liquid | Reaction Conditions | Performance | Ref. |
---|---|---|---|---|---|
Acetalization | methanol, aldehydes | [C4mim][GaCl4] (χGaCl3 = 0.50) | aldehyde 5.66 mmol; catalyst 5 mol%; 30 min; rt | 81% yield from benzaldehyde | [78] |
97% yield from acetaldehyde | |||||
98% yield from propionaldehyde | |||||
Ethoxycarbonylation | styrene, ethanol, CO | [C4mim][GaCl4] (χGaCl3 = 0.50) | catalyst PdCl2(PPh3)2 | 67% yield; 77% selectivity | [79] |
Oligomerization | 1-pentene | [C2mim][Ga2Cl7] (χGaCl3 = 0.67) | catalyst 0.10–0.45 mol%; 1 h; 0–20 °C | 6% conversion; 58% selectivity to C20–C50 blend | [81] |
1-decene | Urea-GaCl3 (χGaCl3 = 0.50–0.75) | catalyst 1 wt%; 1 h; 120 °C | 71.5–78.5% conversion; 34.1–38.7% selectivity to C20 | [55] | |
Alkylation | isobutane, olefin (C3–C5) | [Et3NHCl]-GaCl3 (χGaCl3 = 0.65) | 40 mL hydrocarbon feed; molar ratio of isobutane/butene 10:1; catalyst/hydrocarbon feed ratio 0.4; CuCl = 5 mol%; 5 bar; 15 min; 15 °C. | selectivity of C8 products up to 70.1 wt%, trimethylpentane up to 50.5 wt% and total alkylate RON were 91.3 wt% | [82] |
[Et3NHCl]-GaCl3/CuCl (χGaCl3 = 0.65) | |||||
methyl linoleate, propene | [C4mim][GaCl4/Ga2Cl7] (χGaCl3 = 0.60); | methyl linoleate 11 mmol; propane 7 bar; 8 h; 100 °C | no data | [84] | |
[BuIsoq][GaCl4/Ga2Cl7] (χGaCl3 = 0.60) | |||||
Baeyer–Villiger oxidation | 2-adamantanone, H2O2 | [C2mim]Cl-GaCl3 (χGaCl3 = 0.67–0.75) | 2-adamantanone 0.67 mmol; H2O2 30% aq. 1.34 mmol; catalyst 100 mol%; 1 min; rt | 93–99% yield | [86] |
Diels–Alder | cyclopentadiene, methyl acrylate | [tespmim][GaCl4] (χGaCl3 = 0.50) | cyclopentadiene 4 mmol; methyl acrylate 6 mmol; catalyst 5 mol%; 5 min; 25 °C | 6% conversion; 80:20 endo:exo products ratio | [87] |
[tespmim][Ga2Cl7] (χGaCl3 = 0.67) | 73% conversion; 95:5 endo:exo products ratio | ||||
[tespmim][Ga3Cl10] (χGaCl3 = 0.75) | 98% conversion; 95:5 endo:exo products ratio | ||||
cyclopentadiene, ethyl acrylate | [BCl2(4pic)][GaCl4] (χGaCl3 = 0.50) [BCl2(4pic)][Ga2Cl7] (χGaCl3 = 0.67) [BCl2(dma)][Ga2Cl7] (χGaCl3 = 0.67) [BCl2(mim)][Ga2Cl7] (χGaCl3 = 0.67) | cyclopentadiene 24 mmol; ethyl acrylate 16 mmol; catalyst 0.1–0.5 mol%; 5 min; 0 °C | 100% conversion; 94:6 endo:exo products ratio | [67] | |
Friedel–Crafts alkylation | 1-decene, benzene | [emim][Ga2Cl7] (χGaCl3 = 0.67) | 1-decene 128.34 mmol; benzene 898.27 mmol; catalyst 1 mol%; 1,5 h; 20 °C | 91% yield and 91% selectivity to all of 2,3,4,5-phenyldecanes | [85] |
40% yield and 36% selectivity to 2-phenyldecane | |||||
benzyl chloride, benzene | [HN222][Ga2Cl7] (χGaCl3 = 0.67) | benzyl chloride 1 mmol; benzene 5 mL; catalyst 10 mol%; 15 min; 30 °C | 57.8% yield; 57.8% selectivity | [88] | |
[HN222][xAlCl3 + (2 − x)GaCl3]Cl (x = 0.5–1.5) | 62.5–72.0% yield; 62.5–72.0% selectivity | ||||
Friedel–Crafts acylation | 1,3-dimethoxybenene, acetyl chloride | [HN222][Ga2Cl7] (χGaCl3 = 0.67) | 1,3-dimethoxybenene 1 mmol; acetyl chloride 1 mmol; catalyst 10 mol%; 3 h; 30 °C | 16.6% yield; 33.7% selectivity | |
[HN222][xAlCl3 + (2 − x)GaCl3]Cl (x = 0.5–1.5) | 13.7–25.4% yield; 20.9–36.0% selectivity | ||||
Epoxides coupling | propylene oxide, CO2 | [C4mim][GaCl4] (χGaCl3 = 0.50) | propylene oxide 51.6 mmol; catalyst 0.5 mol%; CO2 100 psi; 1 h; 120 °C | 17% yield; 100% selectivity | [89] |
Process | Substrates | Ionic Liquid | Reaction Conditions | Performance | Refs. |
---|---|---|---|---|---|
Fiedel–Crafts acylation | benzene derivatives with benzoic anhydride (BA), benzoyl chloride (BC) or ethanoic anhydride (EA) | [C4mim][InCl4] (χInCl3 = 0.67) | anisole 113 mmol; anhydride 124 mmol; catalyst 10 mol%; 48 h; 80–120 °C | 97% yield and 98% selectivity for anisole and BA | [90] |
89% yield and 98% selectivity for anisole and EA | |||||
81% yield for benzene and BC | |||||
86% yield and 81% selectivity for toluene and BA | |||||
87% yield and 86% selectivity for isobutylbenzene and BA | |||||
96% yield and 83% selectivity for isobutylbenzene and BC | |||||
Tetrahydropyranylation of alcohols | 3,4-dihydropyran, alcohol | [C4mim][InCl4] (χInCl3 = 0.50) | 3,4-dihydropyran 11 mmol; alcohol 10 mmol; catalyst 25 mol%; 5 min; 100 W of MW irradiation | 88% yield from phenol | [91] |
85% yield from benzyl alcohol | |||||
84% yield from cinnamyl alcohol | |||||
86% yield from 1-phenylethanol | |||||
Acetalization | benzaldehyde, methanol | [C4mim][InCl4] (χInCl3 = 0.50) | benzaldehyde 5.66 mmol; catalyst 5 mol%; rt for 30 min | 70% yield | [78] |
Epoxides coupling | propylene oxide, CO2 | [C4mim][InCl4], [C4mim][InCl3Br], [C4mim]InBr3Cl], [C4mim][InBr4], [bPy][InCl4], (χInCl3 = 0.50) | propylene oxide 51.6 mmol; catalyst 0.5 mol%; CO2 pressure 100 psi; 1 h; 120 °C | 92–97% yields; 100% selectivity | [89] |
Nucleophile additions to cyclic N-acyliminium ions | α-methoxycarbamate and nucleophile | [C4mim][InCl4] (χInCl3 = 0.50) | α-methoxycarbamate 0.25 mmol; nucleophile 0.38–0.50 mmol; catalyst 0.1 mL; rt; 24 h | 80–89% isolated yield from allyltrimethylsilane | [92] |
76–78% isolated yield from silyl enol ethers | |||||
77–79% isolated yield from ketene silyl acetal | |||||
Alkylation | phenol, p-cresol or catechol with isobutene, diisobutene or 2-methylheptene | [C4mim][InCl4] (χInCl3 = 0.67) | phenol to indium mole ratio = 50:1; 100–110 °C | 78–88% yields | [93] |
Biginelli condensation | benzaldehyde, ethylacetoacetate and urea | [C4mim][InCl4] (χInCl3 = 0.50) | aldehyde 5 mmol; β-dicarbonyl compound 5 mmol; urea 5 mmol; catalyst 0.5 mL; 25-55 min; 50 °C | 98% yield | [94] |
aldehyde, β-dicarbonyl compound and urea | 82–97% yield | ||||
Condensation of aldehydes, hydrazones and 1,3-diketones | aldehyde, arylhydrazine and 1,3-diketones | [C4mim][InCl4] | aldehyde 1 mmol; arylhydrazine 1 mmol; 1,3-diketone 1.2 mmol; catalyst 1.2 mmol; 1–2 h; 140 °C | 61–90% yields; 100% regioselectivity | [95] |
Biomass depolymerisation to levulinic acid | oil palm empty fruit bunch (OPEFB) and mesocarp fiber (OPMF) biomass, ethanol | [Hmim][HSO4]-InCl3 | 0.15 mmol of InCl3 in IL; 6.6:1 (w/w) of ILs to biomass; 22.7% (w/w) of H2O; 177 °C; 4.8 h | 17.7% (from OPEFB) and 18.4% (from OPMF) yields to LA; 74.1% (from OPEFB) and 86.4% (from OPMF) efficiencies | [96,97] |
Levulinic acid esterification to ethyl levulinate | 7.2:1 (v/v) of ethanol to LA ratio; 105 °C; 12.2 h | 18.7% (from OPEFB) and 20.1% (from OPMF) yields to EL; 63.2% (from OPEFB) and 75.3% (from OPMF) efficiencies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Więcławik, J.; Chrobok, A. Gallium(III)- and Indium(III)-Containing Ionic Liquids as Highly Active Catalysts in Organic Synthesis. Molecules 2023, 28, 1955. https://doi.org/10.3390/molecules28041955
Więcławik J, Chrobok A. Gallium(III)- and Indium(III)-Containing Ionic Liquids as Highly Active Catalysts in Organic Synthesis. Molecules. 2023; 28(4):1955. https://doi.org/10.3390/molecules28041955
Chicago/Turabian StyleWięcławik, Justyna, and Anna Chrobok. 2023. "Gallium(III)- and Indium(III)-Containing Ionic Liquids as Highly Active Catalysts in Organic Synthesis" Molecules 28, no. 4: 1955. https://doi.org/10.3390/molecules28041955
APA StyleWięcławik, J., & Chrobok, A. (2023). Gallium(III)- and Indium(III)-Containing Ionic Liquids as Highly Active Catalysts in Organic Synthesis. Molecules, 28(4), 1955. https://doi.org/10.3390/molecules28041955