Natural Zeolites for the Sorption of Ammonium: Breakthrough Curve Evaluation and Modeling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Modeling and Experimental Validation
2.2. Ammonium Breakthrough in Natural Water Matrices
Influence of Potassium and the DOC on the Ammonium Breakthrough Curve
3. Materials and Methods
3.1. Zeolite Characteristics
3.2. Column and Batch Set-Up
3.3. Breakthrough Curve Modeling
- (a)
- Experimental determination of three different isotherms in ultrapure water with 10 pairs of values (ceq and qeq). Isotherm 1 contains a single-sorbate system of NH4+ (c0(NH4+) = 0.06–2.22 mmol/L), isotherm 2 contains a single-sorbate system of K+ (c0(K+) = 0.03–1.02 mmol/L), and isotherm 3 contains a multi-sorbate system of NH4+ and K+ (c0(NH4+) = 0.06–2.22 mmol/L; c0(K+) = 0.7 mmol/L). The Freundlich isotherm parameters KF and nF were calculated with the program ISO 3.2© (Eckhard Worch 2009).
- (b)
- The pair of values (ceq/c0 and t in h) from the differential circuit batch reactor experiments and its boundary conditions (mZ, V, c0) as well as the Freundlich isotherm parameter were used to calculate the theoretical equilibrium concentration. The empirical kinetic parameters (ksav, w) were adjusted manually to the course of concentration decrease by sorption. Three different kinetic experiments were conducted with the following initial concentrations in ultrapure water: (1) c0(NH4+) = 0.7 mmol/L; (2) c0(K+) = 0.7 mmol/L; and (3) c0(NH4+, K+) = 0.7 mmol/L. The program KIN 3.1© (Eckhard Worch 2009) determined the empirical kinetic parameters.
- (c)
- Breakthrough curves can be calculated by the program LDF 2.6© (Eckhard Worch 2009). The following boundary parameters were needed for the calculation: c0, KF, nF, kFav, ksav, mZ, vF and ρB. Furthermore, experimental data of breakthrough curves can be loaded into LDF 3.0b and compared with modeled curves. Three different experimental breakthrough curves with the same initial concentrations of step (2) in ultrapure water were recorded.
3.4. Investigation of Natural Water Matrices
3.5. Analytical Methods
4. Conclusions
- The sorption of NH4+ onto natural zeolites was more favorable than the sorption of K+. For this reason, natural zeolites are highly promising sorbents with which to remove NH4+ in drinking water applications.
- Intraparticle diffusion is the rate limiting step during NH4+ breakthrough—as determined by comparison of kFav and ksav values. The presence of K+ decreased the intraparticle diffusion rate of NH4+.
- The LDF and Thomas models were successfully validated by experimental NH4+ breakthrough data and can reduce time-consuming field investigations. The Thomas model can further reduce the complexity of experimental investigations because only breakthrough data are necessary (this is in contrast to the LDF model that is based on isothermal and kinetic data).
- Natural water matrices strongly decreased the treated bed volumes during NH4+ breakthrough. In particular, K+ and DOC concentrations have to be considered when applying natural zeolites to the treatment of drinking water.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Food and Agricultural Organization of the United States. Fertilizer by Nutrient. Available online: https://www.fao.org/faostat/en/#data/RFN (accessed on 22 September 2022).
- Chen, W.; Hou, Z.; Wu, L.; Liang, Y.; Wei, C. Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil 2010, 326, 61–73. [Google Scholar] [CrossRef]
- Chen, J.; Liu, L.; Wang, Z.; Sun, H.; Zhang, Y.; Bai, Z.; Song, S.; Lu, Z.; Li, C. Nitrogen Fertilization Effects on Physiology of the Cotton Boll–Leaf System. Agronomy 2019, 9, 271. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef]
- Liu, J.; You, L.; Amini, M.; Obersteiner, M.; Herrero, M.; Zehnder, A.J.B.; Yang, H. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. USA 2010, 107, 8035–8040. [Google Scholar] [CrossRef]
- Jiao, J.J.; Wang, Y.; Cherry, J.A.; Wang, X.; Zhi, B.; Du, H.; Wen, D. Abnormally High Ammonium of Natural Origin in a Coastal Aquifer-Aquitard System in the Pearl River Delta, China. Environ. Sci. Technol. 2010, 44, 7470–7475. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organisation: Geneva, Switzerland, 2017. [Google Scholar]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef] [PubMed]
- Uhlmann, W.; Kreuziger, Y.; Kruspe, R.; Neumann, J.; Berg, T. Untersuchungen zu Ammonium in ostsächsischen Bergbaufolgeseen. Available online: https://www.wasser.sachsen.de/download/Abschlussbericht_TP_05_online.pdf (accessed on 4 August 2021).
- Gupta, V.K.; Sadegh, H.; Yari, M.; Shahryari Ghoshekandi, R.; Maazinejad, B.; Chahardori, M. Removal of ammonium ions from wastewater: A short review in development of efficient methods. Glob. J. Environ. Sci. Manag. 2015, 1, 149–158. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries. 2021. Available online: https://pubs.usgs.gov/periodicals/mcs2021/mcs2021.pdf (accessed on 2 October 2021).
- Virta, R. Minerals Yearbook 2011. Available online: https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/zeolites/myb1-2011-zeoli.pdf (accessed on 12 December 2021).
- Zeolite Products. Home–Zeolite Products. Available online: https://www.zeolite-products.com/ (accessed on 15 March 2022).
- Taddeo, R.; Prajapati, S.; Lepistö, R. Optimizing ammonium adsorption on natural zeolite for wastewaters with high loads of ammonium and solids. J. Porous Mater. 2017, 24, 1545–1554. [Google Scholar] [CrossRef]
- Guaya, D.; Valderrama, C.; Farran, A.; Armijos, C.; Cortina, J.L. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chem. Eng. J. 2015, 271, 204–213. [Google Scholar] [CrossRef]
- Karadag, D.; Tok, S.; Akgul, E.; Turan, M.; Ozturk, M.; Demir, A. Ammonium removal from sanitary landfill leachate using natural Gördes clinoptilolite. J. Hazard. Mater. 2008, 153, 60–66. [Google Scholar] [CrossRef]
- Du, Q.; Liu, S.; Cao, Z.; Wang, Y. Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Sep. Purif. Technol. 2005, 44, 229–234. [Google Scholar] [CrossRef]
- Eberle, S.; Börnick, H.; Stolte, S. Granular Natural Zeolites: Cost-Effective Adsorbents for the Removal of Ammonium from Drinking Water. Water 2022, 14, 939. [Google Scholar] [CrossRef]
- Weatherley, L.; Miladinovic, N. Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Res. 2004, 38, 4305–4312. [Google Scholar] [CrossRef] [PubMed]
- Kwakye-Awuah, B.; Sefa-Ntiri, B.; Von-Kiti, E.; Nkrumah, I.; Williams, C. Adsorptive Removal of Iron and Manganese from Groundwater Samples in Ghana by Zeolite Y Synthesized from Bauxite and Kaolin. Water 2019, 11, 1912. [Google Scholar] [CrossRef]
- Erdem, E.; Karapinar, N.; Donat, R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004, 280, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Belviso, C. Zeolite for Potential Toxic Metal Uptake from Contaminated Soil: A Brief Review. Processes 2020, 8, 820. [Google Scholar] [CrossRef]
- Kotoulas, A.; Agathou, D.; Triantaphyllidou, I.E.; Tatoulis, T.I.; Akratos, C.S.; Tekerlekopoulou, A.G.; Vayenas, D.V. Zeolite as a Potential Medium for Ammonium Recovery and Second Cheese Whey Treatment. Water 2019, 11, 136. [Google Scholar] [CrossRef]
- Hedström, A.; Rastas Amofah, L. Adsorption and desorption of ammonium by clinoptilolite adsorbent in municipal wastewater treatment systems. J. Environ. Eng. Sci. 2008, 7, 53–61. [Google Scholar] [CrossRef]
- Eberle, S.; Börnick, H.; Stolte, S. A Sequential Anammox Zeolite-Biofilter for the Removal of Nitrogen Compounds from Drinking Water. Water 2022, 14, 3512. [Google Scholar] [CrossRef]
- Kannan, A.D.; Parameswaran, P. Ammonia adsorption and recovery from swine wastewater permeate using naturally occurring clinoptilolite. J. Water Process. Eng. 2021, 43, 102234. [Google Scholar] [CrossRef]
- Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Belviso, C.; Cavalcante, F.; Lettino, A.; Vagliasindi, F.G.; Roccaro, P. Removal of ammonium from wastewater by zeolite synthetized from volcanic ash: Batch and column tests. J. Environ. Chem. Eng. 2022, 10, 107539. [Google Scholar] [CrossRef]
- Worch, E. Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling, 2nd ed.; De Gruyter: Berlin, Germany, 2021; ISBN 9783110715507. [Google Scholar]
- Lin, L.; Lei, Z.; Wang, L.; Liu, X.; Zhang, Y.; Wan, C.; Lee, D.-J.; Tay, J.H. Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites. Sep. Purif. Technol. 2013, 103, 15–20. [Google Scholar] [CrossRef]
- Ivanova, E.; Karsheva, M.; Koumanova, B. Adsorption of ammonium ions onto natural zeolite. J. Univ. Chem. Technol. Metall. 2010, 45, 295–302. [Google Scholar]
- Huo, H.; Lin, H.; Dong, Y.; Cheng, H.; Wang, H.; Cao, L. Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite. J. Hazard. Mater. 2012, 229–230, 292–297. [Google Scholar] [CrossRef]
- Cheng, Z.; Ding, W. Ammonium removal from water by natural and modified zeolite: Kinetic, equilibrium, and thermodynamic studies. Desalin. Water Treat. 2014, 55, 978–985. [Google Scholar] [CrossRef]
- Moussavi, G.; Talebi, S.; Farrokhi, M.; Sabouti, R.M. The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. Chem. Eng. J. 2011, 171, 1159–1169. [Google Scholar] [CrossRef]
- Chen, H.-F.; Lin, Y.-J.; Chen, B.-H.; Yoshiyuki, I.; Liou, S.Y.-H.; Huang, R.-T. A Further Investigation of NH4+ Removal Mechanisms by Using Natural and Synthetic Zeolites in Different Concentrations and Temperatures. Minerals 2018, 8, 499. [Google Scholar] [CrossRef]
- Jaskūnas, A.; Subačius, B.; Šlinkšiene, R. adsorption of potassium ions on natural zeolite: Kinetic and equilibrium studies. Chemija 2015, 26, 69–78. [Google Scholar]
- Kodewitz, P. Datasheet CLP85+ Natural Zeolite. Available online: https://www.zeolith-gmbh.com/produkte/klinoptilolith-zeolith (accessed on 16 February 2022).
- Mazloomi, F.; Jalali, M. Ammonium removal from aqueous solutions by natural Iranian zeolite in the presence of organic acids, cations and anions. J. Environ. Chem. Eng. 2016, 4, 1664–1673. [Google Scholar] [CrossRef]
- Akcay, M.U.; Avdan, Z.Y.; Inan, H. Effect of biofiltration process on the control of THMs and HAAs in drinking water. Desalin. Water Treat. 2016, 57, 2546–2554. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Zorpus, A.A. Handbook of Natural Zeolites, 1st ed.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; ISBN 9781608052615. [Google Scholar]
- Margeta, K.; Zabukovec, N.; Siljeg, M.; Farkas, A. Natural Zeolites in Water Treatment—How Effective is Their Use. In Water Treatment; Elshorbagy, W., Ed.; InTech: London, UK, 2013; ISBN 978-953-51-0928-0. [Google Scholar]
- HEU: Framework Type. Available online: https://america.iza-structure.org/IZA-SC/framework.php?STC=HEU (accessed on 30 January 2023).
- Sidey, V. On the effective ionic radii for ammonium. Acta Crystallogr. Sect. B Struct. Sci. 2016, 72, 626–633. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Nightingale, E.R., Jr. Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. J. Phys. Chem. 1959, 63, 1381–1387. [Google Scholar] [CrossRef]
- Gnielinski, V. Equations for the calculation of heat and mass transfer during flow through stationary spherical packings at moderate and high Peclet numbers. Int. Chem. Eng. 1981, 21, 3. [Google Scholar]
- Thomas, H.C. Heterogeneous Ion Exchange in a Flowing System. J. Am. Chem. Soc. 1944, 66, 1664–1666. [Google Scholar] [CrossRef]
Investigation Steps | Modeling | Water Matrix | |||
---|---|---|---|---|---|
Parameter | Unit | 0.7 mmol/L NH4+ | 0.7 mmol/L K+ | 0.7 mmol/L NH4+ (+K+) | |
Freundlich parameters | KF | (/g) | 1.02 | 8.39 × 10−3 | 1.21 |
nF | (−) | 0.93 | 2.19 | 0.63 | |
R2 | (−) | 0.99 | 0.85 | 0.98 | |
Diffusion parameters | kFav | (1/s) | 5.2 × 10−1 | 3.7 × 10−1 | 5.2 × 10−1 |
ksav | (1/s) | 1.1 × 10−4 | 3.6 × 10−5 | 9.8 × 10−5 | |
w | (g/mg) | −0.11 | −0.02 | −0.05 | |
Breakthrough curve modeling | (m3/h) | 1.1 × 10−4 | |||
vF | (m/h) | 1.75 | |||
EBCT | (min) | 2.16 | |||
DL | (m2/s) | 2.39 × 10−9 (NH4+) | |||
1.59 × 10−9 (K+) | |||||
ρB | (kg/m3) | 0.91 | |||
εB | (−) | 0.2 | |||
av | (1/m) | 7.61 × 103 | |||
ν | (m2/s) | 9.55 × 10−7 | |||
Re | (−) | 1.64 | |||
Sc | (−) | 3.98 × 103 |
Composition | Value (%) | Characteristics | |
---|---|---|---|
SiO2 | 65.00–71.30 | Exchange capacity | 1.2–1.5 mol/kg |
Al2O3 | 11.50–13.10 | Selectivity | NH4+ > K+ > Na+ > Ca2+ > Mg2+ |
CaO | 2.70–5.20 | Mean pore diameter | 0.4 nm |
K2O | 2.20–3.40 | Specific surface | 30–60 m2/g |
Fe2O3 | 0.70–1.90 | Si/Al | 4.80–5.40 (−) |
MgO | 0.60–1.20 | Grain sizes | 0.5–0.8 mm |
Na2O | 0.20–1.30 | ||
TiO2 | 0.10–0.30 |
Water Matrices | Cations (mmol/L) | DOC (mg/L) | |||
---|---|---|---|---|---|
K+ | Na+ | Mg2+ | Ca2+ | ||
Ultrapure water (control) | <CR x | <CR x | <CR x | <CR x | 0.09 |
Tap water | 0.04 | 0.36 | 0.12 | 0.83 | 1.76 |
Elbe-/tap water (1:10) | 0.05 | 0.43 | 0.13 | 0.84 | 2.52 |
Groundwater | 0.11 | 0.91 | 0.66 | 1.23 | 4.56 |
Elbe river water | 0.14 | 1.16 | 0.31 | 0.92 | 7.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eberle, S.; Schmalz, V.; Börnick, H.; Stolte, S. Natural Zeolites for the Sorption of Ammonium: Breakthrough Curve Evaluation and Modeling. Molecules 2023, 28, 1614. https://doi.org/10.3390/molecules28041614
Eberle S, Schmalz V, Börnick H, Stolte S. Natural Zeolites for the Sorption of Ammonium: Breakthrough Curve Evaluation and Modeling. Molecules. 2023; 28(4):1614. https://doi.org/10.3390/molecules28041614
Chicago/Turabian StyleEberle, Stephan, Viktor Schmalz, Hilmar Börnick, and Stefan Stolte. 2023. "Natural Zeolites for the Sorption of Ammonium: Breakthrough Curve Evaluation and Modeling" Molecules 28, no. 4: 1614. https://doi.org/10.3390/molecules28041614
APA StyleEberle, S., Schmalz, V., Börnick, H., & Stolte, S. (2023). Natural Zeolites for the Sorption of Ammonium: Breakthrough Curve Evaluation and Modeling. Molecules, 28(4), 1614. https://doi.org/10.3390/molecules28041614