Coco Monoethanolamide Surfactant as a Sustainable Corrosion Inhibitor for Mild Steel: Theoretical and Experimental Investigations
Abstract
:1. Introduction
2. Result and Discussion
2.1. CMC Determination
2.2. WL Studies
2.2.1. Impact of Temperature and Concentration
2.2.2. Activation Parameters Studies
2.2.3. Thermodynamic and Isotherm Studies
2.3. Electrochemical Studies
2.3.1. Open Circuit Potential (OCP) Studies
2.3.2. Potentiodynamic Polarization (PDP) Studies
2.3.3. Electrochemical Impedance Spectroscopy (EIS) Studies
2.4. Surface Examination
2.4.1. SEM Examination
2.4.2. AFM Examination
2.4.3. Contact Angle Investigation
2.5. Theoretical Analyses
2.5.1. DFT Results
2.5.2. MC and MD Simulations
2.6. The Inhibition Mechanism
3. Experimental
3.1. Specimen, Reagents and Materials
3.2. Surface Tension Measurement
3.3. Weight Loss Investigations
3.4. Electrochemical Techniques
3.5. Surface Morphology Study
3.6. Theoretical Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Fontana, M.G.; Greene, N.D. Corrosion Engineering; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Sastri, V.S. Green Corrosion Inhibitors: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Sastri, V.S. Corrosion Inhibitors: Principles and Applications; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Migahed, M.; Al-Sabagh, A. Beneficial role of surfactants as corrosion inhibitors in petroleum industry: A review article. Chem. Eng. Commun. 2009, 196, 1054–1075. [Google Scholar] [CrossRef]
- Prabha, S.S.; Rathish, R.J.; Dorothy, R.; Brindha, G.; Pandiarajan, M.; Al-Hashem, A.; Rajendran, S. Corrosion problems in petroleum industry and their solution. Eur. Chem. Bull. 2014, 3, 300–307. [Google Scholar]
- Solomon, M.M.; Uzoma, I.E.; Olugbuyiro, J.A.; Ademosun, O.T. A censorious appraisal of the oil well acidizing corrosion inhibitors. J. Pet. Sci. Eng. 2022, 215, 110711. [Google Scholar] [CrossRef]
- Ansari, K.R.; Chauhan, D.S.; Singh, A.; Saji, V.S.; Quraishi, M.A. Corrosion inhibitors for acidizing process in oil and gas sectors. In Corrosion Inhibitors in the Oil and Gas Industry; Wiley: Hoboken, NJ, USA, 2020; pp. 151–176. [Google Scholar]
- Koch, G. Cost of corrosion. In Trends in Oil and Gas Corrosion Research and Technologies; Woodhead Publishing: Sawston, UK, 2017; pp. 3–30. [Google Scholar]
- Song, G.-L.; Mishra, A. Selection and Characterization for Corrosion Control. Acta Metall. Sin. 2017, 4. Available online: https://www.cnki.com.cn/Article/CJFDTotal-JSXY201704001.htm (accessed on 26 December 2022).
- Goyal, M.; Kumar, S.; Bahadur, I.; Verma, C.; Ebenso, E.E. Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review. J. Mol. Liq. 2018, 256, 565–573. [Google Scholar] [CrossRef]
- Sanyal, B. Organic compounds as corrosion inhibitors in different environments—A review. Prog. Org. Coat. 1981, 9, 165–236. [Google Scholar] [CrossRef]
- Xhanari, K.; Finšgar, M. Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: A review. Arab. J. Chem. 2019, 12, 4646–4663. [Google Scholar] [CrossRef]
- Ganjoo, R.; Verma, C.; Kumar, A.; Quraishi, M. Colloidal and interface aqueous chemistry of dyes: Past, present and future scenarios in corrosion mitigation. Adv. Colloid Interface Sci. 2022, 311, 102832. [Google Scholar] [CrossRef]
- Verma, C.; Abdellattif, M.H.; Alfantazi, A.; Quraishi, M. N-heterocycle compounds as aqueous phase corrosion inhibitors: A robust, effective and economic substitute. J. Mol. Liq. 2021, 340, 117211. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Chauhan, D.S.; Saji, V.S. Heterocyclic biomolecules as green corrosion inhibitors. J. Mol. Liq. 2021, 341, 117265. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Rhee, K.Y. Corrosion inhibition relevance of semicarbazides: Electronic structure, reactivity and coordination chemistry. Rev. Chem. Eng. 2022. [Google Scholar] [CrossRef]
- Zhu, Y.; Free, M.L.; Woollam, R.; Durnie, W. A review of surfactants as corrosion inhibitors and associated modeling. Prog. Mater. Sci. 2017, 90, 159–223. [Google Scholar] [CrossRef]
- Verma, C.; Hussain, C.M.; Quraishi, M.; Alfantazi, A. Green surfactants for corrosion control: Design, performance and applications. Adv. Colloid Interface Sci. 2022, 311, 102822. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.; Rhee, K. Hydrophilicity and hydrophobicity consideration of organic surfactant compounds: Effect of alkyl chain length on corrosion protection. Adv. Colloid Interface Sci. 2022, 306, 102723. [Google Scholar] [CrossRef]
- Aslam, R.; Mobin, M.; Aslam, J.; Aslam, A.; Zehra, S.; Masroor, S. Application of surfactants as anticorrosive materials: A comprehensive review. Adv. Colloid Interface Sci. 2021, 295, 102481. [Google Scholar] [CrossRef]
- Migahed, M.; Attya, M.; Rashwan, S.; Abd El-Raouf, M.; Al-Sabagh, A. Synthesis of some novel non ionic surfactants based on tolyltriazole and evaluation their performance as corrosion inhibitors for carbon steel. Egypt. J. Pet. 2013, 22, 149–160. [Google Scholar] [CrossRef]
- Mobin, M.; Zehra, S.; Parveen, M. L-Cysteine as corrosion inhibitor for mild steel in 1 M HCl and synergistic effect of anionic, cationic and non-ionic surfactants. J. Mol. Liq. 2016, 216, 598–607. [Google Scholar] [CrossRef]
- Ganjoo, R.; Kumar, A. Current Trends in Anti-corrosion Studies of Surfactants on Metals and Alloys. J. Bio-Tribo-Corros. 2022, 8, 2. [Google Scholar] [CrossRef]
- Verma, C.; Yaagoob, I.Y.; Goni, L.K.; Mazumder, M.A.J.; Ali, S.A.; Quraishi, M.A. Synthesis of Polymeric Surfactant Containing Bis-cationic Motifs as a Highly Efficient acid Corrosion Inhibitor for C1018 Carbon steel. New J. Chem. 2023. [Google Scholar] [CrossRef]
- Negm, N.; Al Sabagh, A.; Migahed, M.; Bary, H.A.; El Din, H. Effectiveness of some diquaternary ammonium surfactants as corrosion inhibitors for carbon steel in 0.5 M HCl solution. Corros. Sci. 2010, 52, 2122–2132. [Google Scholar] [CrossRef]
- Malik, M.A.; Hashim, M.A.; Nabi, F.; Al-Thabaiti, S.A.; Khan, Z. Anti-corrosion ability of surfactants: A review. Int. J. Electrochem. Sci. 2011, 6, 1927–1948. [Google Scholar]
- Zhang, T.; Pan, Z.; Gao, H. Novel synthesized gemini surfactant as corrosion inhibitor for carbon steel in HCl solution. J. Surfactants Deterg. 2015, 18, 1003–1009. [Google Scholar] [CrossRef]
- Asefi, D.; Mahmoodi, N.M.; Arami, M. Effect of nonionic co-surfactants on corrosion inhibition effect of cationic gemini surfactant. Colloids Surf. A Physicochem. Eng. Asp. 2010, 355, 183–186. [Google Scholar] [CrossRef]
- Kaczerewska, O.; Leiva-Garcia, R.; Akid, R.; Brycki, B.; Kowalczyk, I.; Pospieszny, T. Effectiveness of O-bridged cationic gemini surfactants as corrosion inhibitors for stainless steel in 3 M HCl: Experimental and theoretical studies. J. Mol. Liq. 2018, 249, 1113–1124. [Google Scholar] [CrossRef]
- Shaban, S.M.; Abd-Elaal, A.A.; Tawfik, S.M. Gravimetric and electrochemical evaluation of three nonionic dithiol surfactants as corrosion inhibitors for mild steel in 1 M HCl solution. J. Mol. Liq. 2016, 216, 392–400. [Google Scholar] [CrossRef]
- Bedair, M.; Soliman, S.; Metwally, M. Synthesis and characterization of some nonionic surfactants as corrosion inhibitors for steel in 1.0 M HCl (Experimental and computational study). J. Ind. Eng. Chem. 2016, 41, 10–22. [Google Scholar] [CrossRef]
- Aslam, R.; Mobin, M.; Zehra, S.; Obot, I.B.; Ebenso, E.E. N, N′-Dialkylcystine Gemini and Monomeric N-Alkyl Cysteine Surfactants as Corrosion inhibitors on mild steel corrosion in 1 M HCl solution: A Comparative study. ACS Omega 2017, 2, 5691–5707. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Y.; Li, P.; Zeng, X.; Guo, B.; Pan, J.; Hou, L.; Yin, X. Novel Schiff base-based cationic Gemini surfactants as corrosion inhibitors for Q235 carbon steel and printed circuit boards. Colloids Surf. A Physicochem. Eng. Asp. 2021, 623, 126717. [Google Scholar] [CrossRef]
- Shaban, S.M.; Elsharif, A.M.; Elged, A.H.; Eluskkary, M.; Aiad, I.; Soliman, E. Some new phospho-zwitterionic Gemini surfactants as corrosion inhibitors for carbon steel in 1.0 M HCl solution. Environ. Technol. Innov. 2021, 24, 102051. [Google Scholar] [CrossRef]
- Mobin, M.; Noori, S. Adsorption and corrosion inhibition behaviour of zwitterionic gemini surfactant for mild steel in 0.5 M HCl. Tenside Surfactants Deterg. 2016, 53, 357–367. [Google Scholar] [CrossRef]
- Javadian, S.; Yousefi, A.; Neshati, J. Synergistic effect of mixed cationic and anionic surfactants on the corrosion inhibitor behavior of mild steel in 3.5% NaCl. Appl. Surf. Sci. 2013, 285, 674–681. [Google Scholar] [CrossRef]
- Bedir, A.G.; Abd El-raouf, M.; Abdel-Mawgoud, S.; Negm, N.A.; El Basiony, N. Corrosion Inhibition of Carbon Steel in Hydrochloric Acid Solution Using Ethoxylated Nonionic Surfactants Based on Schiff Base: Electrochemical and Computational Investigations. ACS Omega 2021, 6, 4300–4312. [Google Scholar] [CrossRef]
- Gebril, M.A.; Bedair, M.A.; Soliman, S.A.; Bakr, M.F.; Mohamed, M.B.I. Experimental and computational studies of the influence of non-ionic surfactants with coumarin moiety as corrosion inhibitors for carbon steel in 1.0 M HCl. J. Mol. Liq. 2022, 349, 118445. [Google Scholar] [CrossRef]
- Li, X.; Deng, S.; Du, G. Nonionic surfactant of coconut diethanolamide as a novel corrosion inhibitor for cold rolled steel in both HCl and H2SO4 solutions. J. Taiwan Inst. Chem. Eng. 2022, 131, 104171. [Google Scholar] [CrossRef]
- Hegazy, M.; El-Tabei, A.; Bedair, A.; Sadeq, M. An investigation of three novel nonionic surfactants as corrosion inhibitor for carbon steel in 0.5 M H2SO4. Corros. Sci. 2012, 54, 219–230. [Google Scholar] [CrossRef]
- Pal, A.; Sarkar, R.; Karmakar, K.; Mondal, M.H.; Saha, B. Surfactant as an anti-corrosive agent: A review. Tenside Surfactants Deterg. 2022, 59, 363–372. [Google Scholar] [CrossRef]
- Migahed, M.A.; Abd-El-Raouf, M.; Al-Sabagh, A.M.; Abd-El-Bary, H.M. Effectiveness of some non ionic surfactants as corrosion inhibitors for carbon steel pipelines in oil fields. Electrochim. Acta 2005, 50, 4683–4689. [Google Scholar] [CrossRef]
- Ahmady, A.R.; Hosseinzadeh, P.; Solouk, A.; Akbari, S.; Szulc, A.M.; Brycki, B.E. Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review. Adv. Colloid Interface Sci. 2022, 299, 102581. [Google Scholar] [CrossRef]
- Jin, X.; Wang, J.; Zheng, S.; Li, J.; Ma, X.; Feng, L.; Zhu, H.; Hu, Z. The study of surface activity and anti-corrosion of novel surfactants for carbon steel in 1 M HCl. J. Mol. Liq. 2022, 353, 118747. [Google Scholar] [CrossRef]
- Abdallah, M.; Hegazy, M.; Ahmed, H.; Al-Gorair, A.S.; Hawsawi, H.; Morad, M.; Benhiba, F.; Warad, I.; Zarrouk, A. Appraisal of synthetic cationic Gemini surfactants as highly efficient inhibitors for carbon steel in the acidization of oil and gas wells: An experimental and computational approach. RSC Adv. 2022, 12, 17050–17064. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, C.; Wang, S.; Zeng, N.; Lei, S. Comparison of anionic surfactants dodecylbenzene sulfonic acid and 1, 2, 4-triazole for inhibition of Co corrosion and study of the mechanism for passivation of the Co surface by dodecylbenzene sulfonic acid. J. Mol. Liq. 2022, 353, 118792. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Sharma, P.; Berisha, A.; Mehmeti, V.; Dagdag, O.; Kumar, V. Monte Carlo simulation, molecular dynamic simulation, quantum chemical calculation and anti-corrosive behaviour of Citrus limetta pulp waste extract for stainless steel (SS-410) in acidic medium. Mater. Chem. Phys. 2022, 284, 126052. [Google Scholar] [CrossRef]
- Dagdag, O.; Berisha, A.; Mehmeti, V.; Haldhar, R.; Berdimurodov, E.; Hamed, O.; Jodeh, S.; Lgaz, H.; Sherif, E.-S.M.; Ebenso, E.E. Epoxy coating as effective anti-corrosive polymeric material for aluminum alloys: Formulation, electrochemical and computational approaches. J. Mol. Liq. 2022, 346, 117886. [Google Scholar] [CrossRef]
- Abdellattif, M.H.; Alrefaee, S.H.; Dagdag, O.; Verma, C.; Quraishi, M. Calotropis procera extract as an environmental friendly corrosion Inhibitor: Computational demonstrations. J. Mol. Liq. 2021, 337, 116954. [Google Scholar] [CrossRef]
- Pakiet, M.; Tedim, J.; Kowalczyk, I.; Brycki, B. Functionalised novel gemini surfactants as corrosion inhibitors for mild steel in 50 mM NaCl: Experimental and theoretical insights. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123699. [Google Scholar] [CrossRef]
- Han, P.; Chen, C.; Li, W.; Yu, H.; Xu, Y.; Ma, L.; Zheng, Y. Synergistic effect of mixing cationic and nonionic surfactants on corrosion inhibition of mild steel in HCl: Experimental and theoretical investigations. J. Colloid Interface Sci. 2018, 516, 398–406. [Google Scholar] [CrossRef]
- El-Monem, M.A.; Shaban, M.M.; Migahed, M.A.; Khalil, M.M. Synthesis, characterization, and computational chemical study of aliphatic tricationic surfactants as corrosion inhibitors for metallic equipment in oil fields. ACS Omega 2020, 5, 26626–26639. [Google Scholar] [CrossRef] [PubMed]
- Aslam, R.; Mobin, M.; Aslam, J.; Lgaz, H. Sugar based N, N′-didodecyl-N, N′ digluconamideethylenediamine gemini surfactant as corrosion inhibitor for mild steel in 3.5% NaCl solution-effect of synergistic KI additive. Sci. Rep. 2018, 8, 3690. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Chen, B.; Zhang, L. Novel surfactants as green corrosion inhibitors for mild steel in 15% HCl: Experimental and theoretical studies. Chem. Eng. J. 2020, 402, 126219. [Google Scholar] [CrossRef]
- Lyu, B.; Liu, H.; Li, P.; Gao, D.; Ma, J. Preparation and properties of polymeric surfactants: A potential corrosion inhibitor of carbon steel in acidic medium. J. Ind. Eng. Chem. 2019, 80, 411–424. [Google Scholar] [CrossRef]
- El-Maksoud, A.; El-Dossoki, F.; Migahed, M.; Gouda, M.; El-Gharkawy, E.-S.R. New Imidazol-1-ium Bromide Derivative Surfactants as Corrosion Inhibitors for Carbon Steel in 1 M HCl Solutions: Experimental and Theoretical Studies. J. Bio-Tribo-Corros. 2021, 7, 156. [Google Scholar] [CrossRef]
- Zhao, R.; Xu, W.; Yu, Q.; Niu, L. Synergistic effect of SAMs of S-containing amino acids and surfactant on corrosion inhibition of 316L stainless steel in 0.5 M NaCl solution. J. Mol. Liq. 2020, 318, 114322. [Google Scholar] [CrossRef]
- Mobin, M.; Aslam, R.; Aslam, J. Synergistic effect of cationic gemini surfactants and butanol on the corrosion inhibition performance of mild steel in acid solution. Mater. Chem. Phys. 2019, 223, 623–633. [Google Scholar] [CrossRef]
- El-Tabei, A.; Hegazy, M.; Bedair, A.; El Basiony, N.; Sadeq, M. Novel macrocyclic cationic surfactants: Synthesis, experimental and theoretical studies of their corrosion inhibition activity for carbon steel and their antimicrobial activities. J. Mol. Liq. 2022, 345, 116990. [Google Scholar] [CrossRef]
- Mobin, M.; Parveen, M.; Aslam, R. Effect of different additives, temperature, and immersion time on the inhibition behavior of L-valine for mild steel corrosion in 5% HCl solution. J. Phys. Chem. Solids 2022, 161, 110422. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Chen, X.; Liu, C.; Zhao, J. Synergistic inhibition properties and microstructures of self-assembled imidazoline and phosphate ester mixture for carbon steel corrosion in the CO2 brine solution. J. Mol. Liq. 2022, 357, 119140. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, T.; Wang, J.; Jia, G. The inhibition performance of novel amino acid-based amphiprotic surfactants on aluminum alloys in sodium chloride solutions: Experimental and theoretical studies. Mater. Chem. Phys. 2022, 278, 125622. [Google Scholar] [CrossRef]
- Odewunmi, N.A.; Mazumder, M.A.; Ali, S.A. Tipping Effect of Tetra-alkylammonium on the Potency of N-(6-(1H-benzo [d] imidazol-1-yl) hexyl)-N, N-dimethyldodecan-1-aminium bromide (BIDAB) as Corrosion Inhibitor of Austenitic 304L Stainless Steel in Oil and Gas Acidization: Experimental and DFT Approach. J. Mol. Liq. 2022, 360, 119431. [Google Scholar]
- Palimi, M.; Tang, Y.; Alvarez, V.; Kuru, E.; Li, D. Green corrosion inhibitors for drilling operation: New derivatives of fatty acid-based inhibitors in drilling fluids for 1018 carbon steel in CO2-saturated KCl environments. Mater. Chem. Phys. 2022, 288, 126406. [Google Scholar] [CrossRef]
- Dagdag, O.; Safi, Z.; Erramli, H.; Wazzan, N.; Guo, L.; Verma, C.; Ebenso, E.; Kaya, S.; El Harfi, A. Epoxy prepolymer as a novel anti-corrosive material for carbon steel in acidic solution: Electrochemical, surface and computational studies. Mater. Today Commun. 2020, 22, 100800. [Google Scholar] [CrossRef]
- Dagdag, O.; Haldhar, R.; Kim, S.-C.; Guo, L.; Gouri, M.E.; Berdimurodov, E.; Hamed, O.; Jodeh, S.; Akpan, E.D.; Ebenso, E.E. Recent progress in epoxy resins as corrosion inhibitors: Design and performance. J. Adhes. Sci. Technol. 2022, 1–22. [Google Scholar] [CrossRef]
- Berdimurodov, E.; Kholikov, A.; Akbarov, K.; Guo, L.; Kaya, S.; Katin, K.P.; Verma, D.K.; Rbaa, M.; Dagdag, O. Novel cucurbit [6] uril-based [3] rotaxane supramolecular ionic liquid as a green and excellent corrosion inhibitor for the chemical industry. Colloids Surf. A Physicochem. Eng. Asp. 2022, 633, 127837. [Google Scholar] [CrossRef]
- Prasad, D.; Dagdag, O.; Safi, Z.; Wazzan, N.; Guo, L. Cinnamoum tamala leaves extract highly efficient corrosion bio-inhibitor for low carbon steel: Applying computational and experimental studies. J. Mol. Liq. 2022, 347, 118218. [Google Scholar] [CrossRef]
- Berdimurodov, E.; Kholikov, A.; Akbarov, K.; Guo, L.; Kaya, S.; Katin, K.P.; Verma, D.K.; Rbaa, M.; Dagdag, O.; Haldhar, R. Novel gossypol–indole modification as a green corrosion inhibitor for low–carbon steel in aggressive alkaline–saline solution. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128207. [Google Scholar] [CrossRef]
- Dagdag, O.; El Harfi, A.; El Gana, L.; Safi, Z.S.; Guo, L.; Berisha, A.; Verma, C.; Ebenso, E.E.; Wazzan, N.; El Gouri, M. Designing of phosphorous based highly functional dendrimeric macromolecular resin as an effective coating material for carbon steel in NaCl: Computational and experimental studies. J. Appl. Polym. Sci. 2021, 138, 49673. [Google Scholar] [CrossRef]
- Erramli, H.; Dagdag, O.; Safi, Z.; Wazzan, N.; Guo, L.; Abbout, S.; Ebenso, E.; Verma, C.; Haldhar, R.; El Gouri, M. Trifunctional epoxy resin as anticorrosive material for carbon steel in 1 M HCl: Experimental and computational studies. Surf. Interfaces 2020, 21, 100707. [Google Scholar] [CrossRef]
- Dagdag, O.; El Harfi, A.; Safi, Z.; Guo, L.; Kaya, S.; Verma, C.; Ebenso, E.; Wazzan, N.; Quraishi, M.; El Bachiri, A. Cyclotriphosphazene based dendrimeric epoxy resin as an anti-corrosive material for copper in 3% NaCl: Experimental and computational demonstrations. J. Mol. Liq. 2020, 308, 113020. [Google Scholar] [CrossRef]
- Dagdag, O.; Safi, Z.; Qiang, Y.; Erramli, H.; Guo, L.; Verma, C.; Ebenso, E.E.; Kabir, A.; Wazzan, N.; El Harfi, A. Synthesis of macromolecular aromatic epoxy resins as anticorrosive materials: Computational modeling reinforced experimental studies. ACS Omega 2020, 5, 3151–3164. [Google Scholar] [CrossRef]
- Damej, M.; Hsissou, R.; Berisha, A.; Azgaou, K.; Sadiku, M.; Benmessaoud, M.; Labjar, N. New epoxy resin as a corrosion inhibitor for the protection of carbon steel C38 in 1M HCl. experimental and theoretical studies (DFT, MC, and MD). J. Mol. Struct. 2022, 1254, 132425. [Google Scholar] [CrossRef]
- Eddy, N.O.; Ita, B.I. QSAR, DFT and quantum chemical studies on the inhibition potentials of some carbozones for the corrosion of mild steel in HCl. J. Mol. Model. 2011, 17, 359–376. [Google Scholar] [CrossRef]
- El Ashry, E.S.H.; El Nemr, A.; Esawy, S.A.; Ragab, S. Corrosion inhibitors-Part II: Quantum chemical studies on the corrosion inhibitions of steel in acidic medium by some triazole, oxadiazole and thiadiazole derivatives. Electrochim. Acta 2006, 51, 3957–3968. [Google Scholar] [CrossRef]
- Fergachi, O.; Benhiba, F.; Rbaa, M.; Ouakki, M.; Galai, M.; Touir, R.; Lakhrissi, B.; Oudda, H.; Touhami, M.E. Corrosion inhibition of ordinary steel in 5.0 M HCl medium by benzimidazole derivatives: Electrochemical, UV–visible spectrometry, and DFT calculations. J. Bio-Tribo-Corros. 2019, 5, 21. [Google Scholar] [CrossRef]
- Lukovits, I.; Kalman, E.; Zucchi, F. Corrosion inhibitors—Correlation between electronic structure and efficiency. Corrosion 2001, 57, 3–8. [Google Scholar] [CrossRef]
- Mazlan, N.; Jumbri, K.; Kassim, M.A.; Wahab, R.A.; Rahman, M.B.A. Density functional theory and molecular dynamics simulation studies of bio-based fatty hydrazide-corrosion inhibitors on Fe (1 1 0) in acidic media. J. Mol. Liq. 2022, 347, 118321. [Google Scholar] [CrossRef]
- Berisha, A. Experimental, Monte Carlo and molecular dynamic study on corrosion inhibition of mild steel by pyridine derivatives in aqueous perchloric acid. Electrochem 2020, 1, 188–199. [Google Scholar] [CrossRef]
- Hsissou, R.; Abbout, S.; Seghiri, R.; Rehioui, M.; Berisha, A.; Erramli, H.; Assouag, M.; Elharfi, A. Evaluation of corrosion inhibition performance of phosphorus polymer for carbon steel in [1 M] HCl: Computational studies (DFT, MC and MD simulations). J. Mater. Res. Technol. 2020, 9, 2691–2703. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Mandal, N.; Benhiba, F.; Bahadur, I.; Dagdag, O. Anticorrosive properties of a green and sustainable inhibitor from leaves extract of Cannabis sativa plant: Experimental and theoretical approach. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126211. [Google Scholar] [CrossRef]
- Berdimurodov, E.; Kholikov, A.; Akbarov, K.; Guo, L.; Kaya, S.; Verma, D.K.; Rbaa, M.; Dagdag, O. Novel glycoluril pharmaceutically active compound as a green corrosion inhibitor for the oil and gas industry. J. Electroanal. Chem. 2022, 907, 116055. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Sharma, P.; Guo, L.; Dagdag, O.; Kumar, V. Molecular dynamic simulation and Quantum chemical calculation of phytochemicals present in Beta vulgaris and electrochemical behaviour of Beta vulgaris peel extract as green corrosion inhibitor for stainless steel (SS-410) in acidic medium. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127707. [Google Scholar] [CrossRef]
- Dagdag, O.; Hsissou, R.; El Harfi, A.; El Gana, L.; Safi, Z.; Guo, L.; Verma, C.; Ebenso, E.E.; El Gouri, M. Development and Anti-corrosion Performance of Polymeric Epoxy Resin and their Zinc Phosphate Composite on 15CDV6 Steel in 3wt% NaCl: Experimental and Computational Studies. J. Bio-Tribo-Corros. 2020, 6, 112. [Google Scholar] [CrossRef]
- Yadav, D.K.; Quraishi, M.A. Application of some condensed uracils as corrosion inhibitors for mild steel: Gravimetric, electrochemical, surface morphological, UV–visible, and theoretical investigations. Ind. Eng. Chem. Res. 2012, 51, 14966–14979. [Google Scholar] [CrossRef]
- Espinoza-Vázquez, A.; Rodríguez-Gómez, F.J.; Martínez-Cruz, I.K.; Ángeles-Beltrán, D.; Negrón-Silva, G.E.; Palomar-Pardavé, M.; Romero, L.L.; Pérez-Martínez, D.; Navarrete-López, A.M. Adsorption and corrosion inhibition behaviour of new theophylline–triazole-based derivatives for steel in acidic medium. R. Soc. Open Sci. 2019, 6, 181738. [Google Scholar] [CrossRef] [PubMed]
Temperature (°C) | Conc. (mM) | Weight Loss (mg) | Surface Coverage (θ) | ηWL% | |
---|---|---|---|---|---|
30 °C | Blank | 55.944 | 0.518 | - | - |
0.2054 | 23.112 | 0.214 | 0.5854 | 58.54 | |
0.3081 | 16.956 | 0.157 | 0.6956 | 69.56 | |
0.4109 | 10.692 | 0.099 | 0.8075 | 80.75 | |
0.5136 | 7.776 | 0.072 | 0.8598 | 85.98 | |
0.6163 | 4.32 | 0.040 | 0.9223 | 92.23 | |
40 °C | Blank | 70.95 | 0.657 | - | - |
0.2054 | 28.188 | 0.261 | 0.6015 | 60.15 | |
0.3081 | 19.44 | 0.180 | 0.7253 | 72.53 | |
0.4109 | 11.664 | 0.108 | 0.8345 | 83.45 | |
0.5136 | 7.884 | 0.073 | 0.8887 | 88.87 | |
0.6163 | 3.996 | 0.037 | 0.9426 | 94.26 | |
50 °C | Blank | 80.244 | 0.743 | - | - |
0.2054 | 26.028 | 0.241 | 0.6748 | 67.48 | |
0.3081 | 12.636 | 0.117 | 0.7617 | 76.17 | |
0.4109 | 11.556 | 0.107 | 0.8547 | 85.47 | |
0.5136 | 8.1 | 0.075 | 0.8987 | 89.87 | |
0.6163 | 2.7 | 0.025 | 0.9653 | 96.53 | |
60 °C | Blank | 88.128 | 0.816 | - | - |
0.2054 | 26.892 | 0.249 | 0.6946 | 69.46 | |
0.3081 | 18.684 | 0.173 | 0.7876 | 78.76 | |
0.4109 | 11.124 | 0.103 | 0.8735 | 87.35 | |
0.5136 | 7.236 | 0.067 | 0.9169 | 91.69 | |
0.6163 | 0.864 | 0.008 | 0.9895 | 99.01 |
Concentration (mM) | Ea KJ.mol−1 | ∆H* KJ.mol−1 | ∆S* KJ.mol−1.K−1 |
---|---|---|---|
0.6163 | 40.83 | 43.85 | −0.099 |
Temp. (°C) | Kads × 104 (M−1) | |||
---|---|---|---|---|
30 | 0.504 | −31.59 | 10.96 | 0.140 |
40 | 0.534 | −32.78 | 0.139 | |
50 | 0.685 | −34.50 | 0.131 | |
60 | 0.720 | −35.70 | 0.140 |
Conc. (mM) | Ecorr (V) | jcorr (µA cm−2) | ba (V/dec) | −bc (V/dec) | Polarization Resistance (Ω) | Corrosion Rate (mm/yr.) | ηPDP% |
---|---|---|---|---|---|---|---|
Blank | −0.427 | 1028 | 0.121 | 0.158 | 28.981 | 11.945 | - |
0.2054 | −0.462 | 410.24 | 0.133 | 0.150 | 63.608 | 5.6158 | 60.09 |
0.3081 | −0.453 | 273.62 | 0.098 | 0.117 | 98.047 | 2.7611 | 73.38 |
0.4109 | −0.467 | 142.56 | 0.092 | 0.140 | 169.83 | 1.6565 | 86.13 |
0.5136 | −0.462 | 125.96 | 0.106 | 0.134 | 204.71 | 1.4636 | 87.74 |
0.6163 | −0.464 | 29.632 | 0.096 | 0.135 | 828.11 | 0.344 | 97.11 |
Conc. (mM) | Rs (Ω) | Rct (Ω cm2) | CPE | Cdl (µF cm−2) | ηEIS% | |
---|---|---|---|---|---|---|
n | Y0 (µF cm−2) | |||||
Blank | 1.68 | 21.45 | 0.84 | 270.29 | 334.34 | - |
0.2054 | 5.53 | 63.35 | 0.88 | 336.42 | 317.14 | 66.14 |
0.3081 | 1.57 | 97.34 | 0.85 | 349.85 | 305.15 | 77.96 |
0.4109 | 3.17 | 115.31 | 0.77 | 179.16 | 227.64 | 81.39 |
0.5136 | 5.86 | 210.09 | 0.78 | 216.07 | 196.68 | 89.79 |
0.6163 | 7.65 | 758.53 | 0.73 | 225.47 | 181.48 | 97.17 |
Scheme | Polished Sample | Blank | Inhibited |
---|---|---|---|
Average roughness (Ra) | 7.31 nm | 327 nm | 20.4 nm |
Root mean square roughness (Rq) | 8.67 nm | 478 nm | 24.1 nm |
Theoretical Parameters | CMEA |
---|---|
EHOMO | −7.203 |
ELUMO | 0.414 |
∆E (ELUMO − EHOMO) | 7.617 |
Ionization energy (I) | 7.203 |
Electron affinity (A) | −0.414 |
Dipole magnitude (µ) | 7.459 |
Electronegativity (χ) | 3.394 |
Global hardness (η) | 3.808 |
Global softness (σ) | 0.262 |
Fraction of transferred electrons (∆N) | 0.473 |
∆Eback-donation | −0.952 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganjoo, R.; Sharma, S.; Sharma, P.K.; Dagdag, O.; Berisha, A.; Ebenso, E.E.; Kumar, A.; Verma, C. Coco Monoethanolamide Surfactant as a Sustainable Corrosion Inhibitor for Mild Steel: Theoretical and Experimental Investigations. Molecules 2023, 28, 1581. https://doi.org/10.3390/molecules28041581
Ganjoo R, Sharma S, Sharma PK, Dagdag O, Berisha A, Ebenso EE, Kumar A, Verma C. Coco Monoethanolamide Surfactant as a Sustainable Corrosion Inhibitor for Mild Steel: Theoretical and Experimental Investigations. Molecules. 2023; 28(4):1581. https://doi.org/10.3390/molecules28041581
Chicago/Turabian StyleGanjoo, Richika, Shveta Sharma, Praveen K. Sharma, O. Dagdag, Avni Berisha, Eno E. Ebenso, Ashish Kumar, and Chandrabhan Verma. 2023. "Coco Monoethanolamide Surfactant as a Sustainable Corrosion Inhibitor for Mild Steel: Theoretical and Experimental Investigations" Molecules 28, no. 4: 1581. https://doi.org/10.3390/molecules28041581
APA StyleGanjoo, R., Sharma, S., Sharma, P. K., Dagdag, O., Berisha, A., Ebenso, E. E., Kumar, A., & Verma, C. (2023). Coco Monoethanolamide Surfactant as a Sustainable Corrosion Inhibitor for Mild Steel: Theoretical and Experimental Investigations. Molecules, 28(4), 1581. https://doi.org/10.3390/molecules28041581