Rosa rugosa Low Caloric Fiber Protein Preparations Rich in Antioxidant Flavanols and Ellagitannins
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Material
3.2. Determination of the Nutritional Composition
3.3. Mineral Content
3.4. HPLC-PDA Measurement of Polyphenols
3.5. HPLC-FD Measurement of Flavanols
3.6. Qualitative Measurement of Selected Polyphenols by UHPLC-DAD-MS
3.7. Antioxidant Activity
3.8. Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milala, J.; Sójka, M.; Król, K.; Buczek, M. Charakterystyka składu chemicznego owoców Rosa pomifera ‘Karpatia’. Żywność Nauka Technol. Jakość 2013, 5, 154–167. [Google Scholar]
- Cendrowski, A.; Kalisz, S.; Mitek, M. Properties and applications of rose hips in food processing. Żywność Nauka Technol. Jakość 2012, 4, 24–31. [Google Scholar] [CrossRef]
- Fatrcová-Šramková, K.; Brindza, J.; Ivanišová, E.; Juríková, T.; Schwarzová, M.; Horčinová Sedláčková, V.; Grygorieva, O. Morphological and antiradical characteristics of Rugosa rose (Rosa rugosa Thunb.) fruits canned in different kind of honeys and in beverages prepared from honey. Potravin. Slovak J. Food Sci. 2019, 13, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, W.; Zieliński, J.; Mścisz, A.; Adamczak, A.; Mrozikiewicz, P.M. Aktualny stan i perspektywy badań róż owocowych. [Current research on roses and their perspectives]. Herba Pol. 2007, 53, 85–89. [Google Scholar]
- Fascella, G.; D’Angiolillo, F.; Mammano, M.M.; Amenta, M.; Romeo, F.V.; Rapisarda, P.; Ballistreri, G. Bioactive compounds and antioxidant activity of four rose hip species from spontaneous Sicilian flora. Food Chem. 2019, 289, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Koczka, N.; Stefanovits-Bányai, É.; Ombódi, A. Total Polyphenol Content and Antioxidant Capacity of Rosehips of Some Rosa Species. Medicines 2018, 5, 84. [Google Scholar] [CrossRef] [PubMed]
- Fecka, I. Qualitative and quantitative determination of hydrolysable tannins and other polyphenols in herbal products from meadowsweet and dog rose. Phytochem. Anal. 2009, 20, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Bhave, A.; Schulzova, V.; Chmelarova, H.; Mrnka, L.; Hajslova, J. Assessment of rosehips based on the content of their biologically active compounds. J. Food Drug Anal. 2017, 25, 681–690. [Google Scholar] [CrossRef]
- Mannozzi, C.; Foligni, R.; Scalise, A.; Mozzon, M. Characterization of lipid substances of rose hip seeds as a potential source of functional components: A review. Italian J. Food Sci. 2020, 32, 721–733. [Google Scholar] [CrossRef]
- Kulaitienė, J.; Medveckienė, B.; Levickienė, D.; Vaitkevičienė, N.; Makarevičienė, V.; Jarienė, E. Changes in Fatty Acids Content in Organic Rosehip (Rosa spp.) Seeds during Ripening. Plants 2020, 9, 1793. [Google Scholar] [CrossRef]
- Chae, S.-H.; Lee, Y.-S.; Kim, J.-H.; Han, T.-H.; Ku, K.-M. Metabolite and Elastase Activity Changes in Beach Rose (Rosa rugosa) Fruit and Seeds at Various Stages of Ripeness. Plants 2021, 10, 1283. [Google Scholar] [CrossRef] [PubMed]
- Turan, S.; Solak, R.; Kiralan, M.; Ramadan, M.F. Bioactive lipids, antiradical activity and stability of rosehip seed oil under thermal and photo-induced oxidation. Grasas Aceites 2018, 69, 248. [Google Scholar] [CrossRef]
- Olech, M.; Nowacka-Jechalke, N.; Masłyk, M.; Martyna, A.; Pietrzak, W.; Kubiński, K.; Załuski, D.; Nowak, R. Polysaccharide-Rich Fractions from Rosa rugosa Thunb.—Composition and Chemopreventive Potential. Molecules 2019, 24, 1354. [Google Scholar] [CrossRef] [PubMed]
- Kayahan, S.; Ozdemir, Y.; Gulbag, F. Functional Compounds and Antioxidant Activity of Rosa Species Grown in Turkey. Erwerbs-Obstbau 2023, 65, 1079–1086. [Google Scholar] [CrossRef]
- Rahman, M.J.; Costa de Camargo, A.; Shahidi, F. Phenolic profiles and antioxidant activity of defatted camelina and Sophia seeds. Food Chem. 2018, 240, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Duba, K.S.; Casazza, A.A.; Mohamed, H.B.; Perego, P.; Fiori, L. Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: Experiments and modeling. Food Bioprod. Process. 2015, 94, 29–38. [Google Scholar] [CrossRef]
- Aksoylu, Z.; Çağindi, Ö.; Köse, E. Effects of blueberry, grape seed powder and poppyseed incorporation on physicochemical and sensory properties of biscuit. J. Food Qual. 2015, 38, 164–174. [Google Scholar] [CrossRef]
- Gutiérrez, C.; Rubilar, M.; Jara, C.; Verdugo, M.; Sineiro, J.; Shene, C. Flaxseed and flaxseed cake as a source of compounds for food industry. J. Soil Sci. Plant Nutr. 2010, 10, 454–463. [Google Scholar] [CrossRef]
- Korus, J.; Juszczak, L.; Ziobro, R.; Witczak, M.; Grzelak, K.; Sójka, M. Defatted strawberry and blackcurrant seeds as functional ingredients of gluten-free bread. J. Texture Stud. 2012, 43, 29–39. [Google Scholar] [CrossRef]
- Kosmala, M.; Zduńczyk, Z.; Juśkiewicz, J.; Jurgoński, A.; Karlińska, E.; Macierzyński, J.; Jańczak, R.; Rój, E. Chemical composition of defatted strawberry and raspberry seeds and the effect of these dietary ingredients on polyphenol metabolites, intestinal function, and selected serum parameters in rats. J. Agric. Food Chem. 2015, 63, 2989–2996. [Google Scholar] [CrossRef]
- Kosmala, M.; Jurgoński, A.; Juśkiewicz, J.; Karlinśka, E.; Macierzyński, J.; Rój, E.; Zduńczyk, Z. Chemical Composition of Blackberry Press Cake, Polyphenolic Extract, and Defatted Seeds, and Their Effects on Cecal Fermentation, Bacterial Metabolites, and Blood Lipid Profile in Rats. J. Agric. Food Chem. 2017, 65, 5470–5479. [Google Scholar] [CrossRef] [PubMed]
- Grzelak-Błaszczyk, K.; Karlińska, E.; Grzęda, K.; Rój, E.; Kołodziejczyk, K. Defatted strawberry seeds as a source of phenolics, dietary fiber and minerals. LWT 2017, 84, 18–22. [Google Scholar] [CrossRef]
- Mendonça, R.D.; Carvalhod, N.C.; Martin-Moreno, J.M.; Pimenta, A.M.; Lopes, A.C.S.; Gea, A.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Total polyphenol intake, polyphenol subtypes and incidence of cardiovascular disease: The SUN cohort study. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 69–78. [Google Scholar] [CrossRef]
- Yi, J.; Li, S.; Wang, C.; Cao, N.; Qu, H.; Cheng, C.; Wang, Z.; Wang, L.; Zhou, L. Potential applications of polyphenols on main ncRNAs regulations as novel therapeutic strategy for cancer. Biomed. Pharmacother. 2019, 113, 108703. [Google Scholar] [CrossRef] [PubMed]
- Moure, A.; Franco, D.; Santamaría, R.I.; Soto, C.; Sineiro, J.; Domínguez, H.; Zúñga, M.E.; Núñez, M.J.; Chamy, R.; López-Munguía, A.; et al. Enzyme-aided alternative processes for the extraction of oil from Rosa rubiginosa. JAOC 2001, 78, 437–439. [Google Scholar] [CrossRef]
- Concha, J.; Soto, C.; Chamy, R.; Zúñiga, M.E. Effect of Rosehip Extraction Process on Oil and Defatted Meal Physicochemical Properties. JAOCS 2006, 83, 771–775. [Google Scholar] [CrossRef]
- FoodData Central. Available online: https://fdc.nal.usda.gov (accessed on 1 October 2022).
- Kazaz, S.; Baydar, H.; Erbas, S. Variations in Chemical Compositions of Rosa damascena Mill. and Rosa canina L. Fruits. Czech J. Food Sci. 2009, 27, 178–184. [Google Scholar] [CrossRef]
- Demir, F.; Özcan, M. Chemical and technological properties of rose (Rosa canina L.) fruits grown wild in Turkey. J. Food Eng. 2001, 47, 333–336. [Google Scholar] [CrossRef]
- Ercisli, S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem. 2007, 104, 1379–1384. [Google Scholar] [CrossRef]
- Kovacs, S.; Facsar, G.; Laszlo, U.; Toth, M. Phenological, morphological characteristics of some rose species found in Hungary. Acta Hortic. 2004, 690, 71–76. [Google Scholar] [CrossRef]
- Koponen, J.M.; Happonen, A.M.; Mattila, P.H.; Torronen, A.R. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J. Agric. Food Chem. 2007, 55, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Cendrowski, A.; Ścibisz, I.; Mitek, M.; Kieliszek, M.; Kolniak-Ostek, J. Profile of the Phenolic Compounds of Rosa rugosa Petals. J. Food Qual. 2017, 2017, 7941347. [Google Scholar] [CrossRef]
- Cunja, V.; Mikulic-Petkovsek, M.; Zupan, A.; Stampar, F.; Schmitzer, V. Frost decreases content of sugars, ascorbic acid and some quercetin glycosides but stimulates selected carotenes in Rosa canina hips. J. Plant Physiol. 2015, 178, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Mármol, I.; Sánchez-de-Diego, C.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Therapeutic Applications of Rose Hips from Different Rosa Species. Int. J. Mol. Sci. 2017, 18, 1137. [Google Scholar] [CrossRef] [PubMed]
- Salminen, J.P.; Karonen, M.; Lempa, K.; Liimatainen, J.; Sinkkonen, J.; Lukkarinen, M.; Pihlaja, K. Characterisation of proanthocyanidin aglycones and glycosides from rose hips by high-performance liquid chromatography–mass spectrometry, and their rapid quantification together with Vitamin C. J. Chromatogr. A 2005, 1077, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Yang, Y.; Bakri, M.; Chen, Q.; Xin, X.; Aisa, H.A. A LC/QTOF-MS/MS application to investigate chemical compositions in a fraction with protein tyrosine phosphatase 1B inhibitory activity from Rosa rugosa flowers. Phytochem. Anal. 2013, 24, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Fetni, S.; Bertella, N.; Ouahab, A.; Zapater, J.M.M.; De Pascual, S.; Fernandez, T. Composition and biological activity of the Algerian plant Rosa canina L. by HPLC-UV-MS. Arab. J. Chem. 2017, 13, 1105–1119. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Liu, X.; Li, J.; Zhang, J.; Liu, D. Chemical constituents and pharmacological activities of medicinal plants from Rosa genus. Chin. Herb. Med. 2022, 14, 187–209. [Google Scholar] [CrossRef]
- Cunja, V.; Mikulic-Petkovsek, M.; Stampar, F.; Schmitzer, V. Compound Identification of Selected Rose Species and Cultivars: An Insight to Petal and Leaf Phenolic Profiles. J. Am. Soc. Hortic. Sci. 2014, 139, 157–166. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chemposov, V.V.; Chirikova, N.K. Metabolites of Prickly Rose: Chemodiversity and Digestive-Enzyme-Inhibiting Potential of Rosa acicularis and the Main Ellagitannin Rugosin D. Plants 2021, 10, 2525. [Google Scholar] [CrossRef]
- Ouerghemmi, S.; Sebei, H.; Siracusa, L.; Ruberto, G.; Saija, A.; Cimino, F.; Cristani, M. Comparative study of phenolic composition and antioxidant activity of leaf extracts from three wild Rosa species grown in different tunisia regions: Rosa canina L.; Rosa moschata Herrm. and Rosa sempervirens L. Ind. Crops Prod. 2016, 94, 167–177. [Google Scholar] [CrossRef]
- Hvattum, E. Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography coupled to electrospray ionisation tandem mass spectrometry and diode-array detection. Rapid Commun. Mass Spectrom. 2002, 16, 655–662. [Google Scholar] [CrossRef]
- Karlińska, E.; Romanowska, B.; Kosmala, M. The Aerial Parts of Agrimonia procera Wallr. and Agrimonia eupatoria L. as a Source of Polyphenols, and Especially Agrimoniin and Flavonoids. Molecules 2021, 26, 7706. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Rockville, MD, USA, 2007. [Google Scholar]
- de Menezes, E.W.; Grande, F.; Giuntini, E.B.; Lopes, T.D.V.C.; Dan, M.C.T.; Prado, S.B.R.; Melo Franco, B.D.G.; Charrondière, U.R.; Lajolo, F.M. Impact of dietary fiber energy on the calculation of food total energy value in the Brazilian Food Composition Database. Food Chem. 2016, 193, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Sójka, M.; Kołodziejczyk, K.; Milala, J. Polyphenolic and basic chemical composition of black chokeberry industrial by-products. Ind. Crop. Prod. 2013, 51, 77–86. [Google Scholar] [CrossRef]
- Sójka, M.; Klimczak, E.; Macierzyński, J.; Kołodziejczyk, K. Nutrient and polyphenolic composition of industrial strawberry press cake. Eur. Food Res. Technol. 2013, 237, 995–1007. [Google Scholar] [CrossRef]
- Milala, J.; Piekarska-Radzik, L.; Sójka, M.; Klewicki, R.; Matysiak, B.; Klewicka, E. Rosa spp. Extracts as a Factor That Limits the Growth of Staphylococcus spp. Bacteria, a Food Contaminant. Molecules 2021, 26, 4590. [Google Scholar] [CrossRef]
- Kim, D.O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef]
Defatted Seeds | SFE s.1 | SFE s.2 | SFE s.3 | Mean |
---|---|---|---|---|
Dry matter | 95.6 ± 0.0 b | 95.6 ± 0.1 b | 93.3 ± 0.1 a | 94.8 ± 1.3 |
Ash % | 2.4 ± 0.1 b | 3.5 ± 0.1 c | 1.9 ± 0.0 a | 2.6 ± 0.6 |
Ca mg/100 g | 152.0 ± 5.7 b | 246.4 ± 4.8 c | 129.3.0 ± 4.6 a | 175.9 ±62.1 |
Mg mg/100 g | 69.6 ± 2.6 a | 107.4 ± 1.7 b | 74.8 ± 0.9 a | 83.9 ± 20.5 |
K mg/100 g | 125.2 ±10.8 a | 302.5 ± 7.1 c | 170.0 ± 0.8 b | 199.2 ± 92.2 |
Na mg/100 g | 3.0 ± 0.4 a | 4.9 ± 0.2 b | 2.6 ± 0.1 a | 3.5 ± 1.2 |
Protein % | 15.1 ± 0.3 a | 15.0 ± 0.4 a | 14.1 ± 0.1 b | 14.7 ± 0.5 |
Dietary Fibers % | 66.1 ± 0.3 b | 61.2 ± 0.4 a | 67.4 ± 0.1 c | 64.9 ± 2.7 |
Metabolized carbohydrates, % | 11.3 ± 0.2 b | 15.6 ± 0.2 c | 9.7 ± 0.1 a | 12.2 ± 2.5 |
Fat % | 0.6 ± 0.1 b | 0.3 ± 0.1 a | 0.1 ± 0.0 a | 0.4 ± 0.2 |
Energy value, kcal/100 g | 243.5 ± 0.2 b | 247.8 ± 0.6 c | 231.1 ± 0.4 a | 240.8 ± 7.1 |
Polyphenols | SFE s.1 | SFE s.2 | SFE s.3 | Mean |
---|---|---|---|---|
Main ellagitannin mg/100 g | 146.5 ± 7.3 a | 270.5 ± 11.3 b | 138.5 ± 0.7 a | 185.2 ± 74.0 |
Free ellagic acid mg/100 g | 12.1 ± 1.7 a | 33.1 ± 0.0 b | 11.7 ± 0.4 a | 19.0 ± 12.2 |
Total ellagic acid mg/100 g | 452.9 ± 20.9 b | 900.7 ± 59.6 c | 325.7 ± 22.9 a | 559.8 ± 302.0 |
Flavanols mg/100 g | 801.2 ± 12.4 a | 943.8 ± 83.4 a | 851.9 ± 12.2 a | 865.6 ± 72.3 |
Antioxidant activity DPPH µM TAEC/g | 128.0 ± 6.3 a | 183.0 ± 10 b | 120.3 ± 2.0 a | 143.8 ± 34.2 |
Variable | The Spearman Rank-Order Correlation Coefficient Significant Differences p < 0.0500 | |||
---|---|---|---|---|
Total Ellagic Acid | Free Ellagic Acid | Main Ellagitanin | Flavanols | |
Antioxidant activity DPPH | 0.885714 | 0.771429 | 0.942857 | 0.371429 |
RT [min] | MS Data [m/z] | MS/MS Data | MW [g/mol] | Compound | |
---|---|---|---|---|---|
1 | 16.5 | [783.07]− | 783, 451, 301 | 784 | Bis-HHDP-glucose |
[633.07]− | 633, 301 | 634 | HHDP-galloyl-glucose | ||
2 | 18.2 | [783.07]− | 783, 451, 301 | 784 | Bis-HHDP-glucose |
[633.07]− | 633, 301 | 634 | HHDP-galloyl-glucose | ||
3 | 20.7 | [577.14]− | 425, 408, 407, 289, 137, 125 | 578 | Procyanidin dimer |
[785.09]− | 483, 419, 313, 301 | 786 | di-O-galloyl-HHDP-glucose Tellimagrandin | ||
4 | 21.65 | [865.2]− | 695, 577, 407, 287, 125 | 866 | Procyanidin trimer |
5 | 22.6 | [289.07]− | 245, 241, 125 | 290 | Catechin |
6 | 24.5 | [1153.26]− | 983, 865, 695, 577, 449, 287, 125 | 1154 | Procyanidin tetramer |
7 | 26.1 | [785.09]− | 633, 483, 419, 301 | 786 | di-O-galloyl-HHDP-glucose Tellimagrandin I |
9 | 28.56 | [635.09]− | 465, 313, 295, 223, 211, 193, 169, 125 | 636 | Tri-O-galloyl-glucoside |
10 | 29.1 | [1153.26]− | 983, 865, 695, 577, 449, 287, 125 | 1154 | Procyanidin tetramer |
11 | 29.4 | [933.07]− | 631, 451, 301 | 934 | Ellagitannin |
[865.2]− | 695, 577, 543, 451, 425, 407, 287,125 | 866 | Procyanidin trimer | ||
12 | 30.55 | [935.08]− | 898, 765, 633, 463, 301 | 936 | Galloyl bis HHDP- glucose |
13 | 32.8 | [1018.0]2− | 1691, 1567, 1265, 1209, 1059, 935, 897, 783, 633, 301 | 2038 | Ellagitannin |
14 | 33.8 | [937.1]− | 785, 767, 741, 635, 465, 419, 301 | 938 | Tri-galloyl-HHDP-glucose Tellimagrandin II |
15 | 34.01 | [1105]− | 1061, 937, 917, 909, 891, 805, 785, 767, 749, 633, 615, 597, 465, 425, 301, 275, 169, 125 | 1106 | Rugosin A |
16 | 35.39 | [787.1]− [935]2− | 635, 617, 483, 465, 447, 313, 295 1569, 1085, 1059, 935, 917, 787, 767, 633, 451, 301 | 788 1872 | Tetragalloyl glucose Ellagitannin |
17 | 36.12 | [934]2− | 1567, 1265, 1085, 935, 897, 783, 633, 301 | 1870 | Ellagitannin |
18 | 37.08 | [615.1]− | 463, 301 | 616 | Quercetin-galloylhexoside |
[433.04]− | 301 | 434 | Ellagic acid pentoside | ||
19 | 38.02 | [1085.08]− | 783, 633, 613, 451, 301 | 1086 | Galloyl-castalagin |
20 | 38.4 | [301.0]− | 302 | Ellagic acid | |
21 | 39.02 | [463.09]− | 301 | 464 | Quercetin hexoside |
22 | 39.73 | [939.11]− | 769, 617, 599, 465, 447, 431, 169 | 940 | Pentagalloylglucose |
23 | 39.99 | [477.1]− | 477, 313, 265, 169 | 478 | not identified |
24 | 40.04 | [1085.08]− | 783, 633, 613, 451, 301 | 1086 | Galloyl-castalagin |
25 | 41.53 | [433.08]− | 433, 301, 300 | 434 | Ellagic acid pentoside |
26 | 42.45 | [447.09]− | 301 | 448 | Quercetin 3-rhamnoside |
27 | 46.13 | [593.13]− | 463, 285 | 594 | Tiliroside * |
28 | 46.3 | [301.04]− | 302 | Quercetin | |
29 | 48.6 | [285.04]− | 286 | Kaempferol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milala, J.; Kosmala, M.; Sójka, M.; Kołodziejczyk, K.; Klewicki, R.; Król, M.; Karlińska, E.; Rój, E. Rosa rugosa Low Caloric Fiber Protein Preparations Rich in Antioxidant Flavanols and Ellagitannins. Molecules 2023, 28, 8021. https://doi.org/10.3390/molecules28248021
Milala J, Kosmala M, Sójka M, Kołodziejczyk K, Klewicki R, Król M, Karlińska E, Rój E. Rosa rugosa Low Caloric Fiber Protein Preparations Rich in Antioxidant Flavanols and Ellagitannins. Molecules. 2023; 28(24):8021. https://doi.org/10.3390/molecules28248021
Chicago/Turabian StyleMilala, Joanna, Monika Kosmala, Michał Sójka, Krzysztof Kołodziejczyk, Robert Klewicki, Magdalena Król, Elżbieta Karlińska, and Edward Rój. 2023. "Rosa rugosa Low Caloric Fiber Protein Preparations Rich in Antioxidant Flavanols and Ellagitannins" Molecules 28, no. 24: 8021. https://doi.org/10.3390/molecules28248021
APA StyleMilala, J., Kosmala, M., Sójka, M., Kołodziejczyk, K., Klewicki, R., Król, M., Karlińska, E., & Rój, E. (2023). Rosa rugosa Low Caloric Fiber Protein Preparations Rich in Antioxidant Flavanols and Ellagitannins. Molecules, 28(24), 8021. https://doi.org/10.3390/molecules28248021