Recent Advances in Chiral Schiff Base Compounds in 2023
- (1)
- Basic (Physical and Chemical) Properties of Schiff Bases
- (2)
- Formation Mechanism or Principle in the Synthesis of Schiff Bases
- (3)
- Reactions Involving Schiff Bases or Their Metal Complexes
- (4)
- Schiff Base Ligands in Metal Complexes
- (5)
- Analysis or Classification Using Schiff Base Compounds
- (6)
- Medical or Biological Applications of Schiff Bases
- (7)
- Use of Schiff Bases in Materials Science or Engineering
Author Contributions
Conflicts of Interest
References
- Fabbrizzi, L. Beauty in Chemistry: Making Artistic Molecules with Schiff Bases. J. Org. Chem. 2020, 85, 12212–12226. [Google Scholar] [CrossRef] [PubMed]
- Tada, K.; Ikegaki, C.; Fuse, Y.; Tateishi, K.; Sogawa, H.; Sanda, F. Optically active polyaromatic Schiff base adopting stable secondary structures. Polymer 2023, 268, 125703. [Google Scholar] [CrossRef]
- Li, G.; Li, D.; Alshalalfeh, M.; Cheramy, J.; Zhang, H.; Xu, Y. Stereochemical Properties of Two Schiff-Base Transition Metal Complexes and Their Ligand by Using Multiple Chiroptical Spectroscopic Tools and DFT Calculations. Molecules 2023, 28, 2571. [Google Scholar] [CrossRef]
- Zhang, J.; Song, M.; Tang, W.; Xue, D.; Xiao, J.; Sun, H.; Wang, C. Transforming Racemic Compounds into Two New Enantioenriched Chiral Products via Intermediate Kinetic Resolution. ACS Catal. 2023, 13, 15603–15610. [Google Scholar] [CrossRef]
- Yan, L.; Li, Z.; Zhong, X.; Du, J.; Xiong, Y.; Peng, S.; Li, H. Preferential Enrichment of Enantiomer from Amino Acid Schiff Bases by Coordination Interaction and Crystallization. Materials 2023, 16, 530. [Google Scholar] [CrossRef] [PubMed]
- Ciber, L.; Požgan, F.; Brodnik, H.; Štefane, B.; Svete, J.; Waser, M.; Grošelj, U. Synthesis and Catalytic Activity of Bifunctional Phase-Transfer Organocatalysts Based on Camphor. Molecules 2023, 28, 1515. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Hicks, J.C.; Chávez-Flores, D.; Galán, G.Z.; Camacho-Dávila, A.A. Synnthesis of cyclic amino acid baikiain via asymmetric phase transfer catalysis. J Heterocycl. Chem. 2023, 60, 1027–1031. [Google Scholar] [CrossRef]
- Romanowski, G.; Budka, J.; Inkielewicz-Stepniak, I. Synthesis, Spectroscopic Characterization, Catalytic and Biological Activity of Oxidovanadium(V) Complexes with Chiral Tetradentate Schiff Bases. Molecules 2023, 28, 7408. [Google Scholar] [CrossRef]
- Dmitrieva, A.V.; Levitskiy, O.A.; Grishin, Y.K.; Magdesieva, T.V. A new oxidatively stable ligand for the chiral functionalization of amino acids in Ni(II)–Schiff base complexes. Beilstein J. Org. Chem. 2023, 19, 566–574. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Li, C. Picolinaldehyde-Zinc(II)-Palladium(0) Catalytic System for the Asymmetric α-Allylation of N-Unprotected Amino Esters. Chem. Eur. J. 2023, 29, e202301348. [Google Scholar] [CrossRef]
- Lin, Y.; Tian, X.; Zhu, B.; Chen, D.; Huang, C. Five Porous Complexes Constructed from a Racemic Ligand: Synthesis, Chiral Self-Assembly, Iodine Adsorption, and Desorption Properties. Inorg. Chem. 2023, 62, 12099–12110. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.T.; Jordan, R.; Felton, S.; Müller-Bunz, H.; Morgan, G.G. Spontaneous Chiral Resolution of a MnIII Spin-Crossover Complex with High Temperature 80 K Hysteresis. Chem. Eur. J. 2023, 29, e202300275. [Google Scholar] [CrossRef] [PubMed]
- Ikeshita, M.; Oka, T.; Kitahara, M.; Suzuki, S.; Imai, Y.; Tsuno, T. Circularly Polarized Luminescence of Chiral Schiff-base Boron Difluoride Complexes Liquefied with Polyethylene Glycol Chains. Chem. Lett. 2023, 52, 556–559. [Google Scholar] [CrossRef]
- Ohya, M.; Kikukawa, T.; Matsuo, J.; Tsukamoto, T.; Nagaura, R.; Fujisawa, T.; Unno, M. Structure and Heterogeneity of Retinal Chromophore in Chloride Pump Rhodopsins Revealed by Raman Optical Activity. J. Phys. Chem. B 2023, 127, 4775–4782. [Google Scholar] [CrossRef] [PubMed]
- Ikeshita, M.; Orioku, K.; Matsudaira, K.; Kitahara, M.; Imai, Y.; Tsuno, T. Liquid Based Circularly Polarized Phosphorescence of a Chiral Schiff Base Platinum(II) Complex Bearing Polyethylene Glycol Chains. ChemPhotoChem 2023, 7, e202300010. [Google Scholar] [CrossRef]
- Yang, S.; Huang, Y.; Lu, A.; Wang, Z.; Li, H. A Highly Selective and Sensitive Sequential Recognition Probe Zn2+ and H2PO4− Based on Chiral Thiourea Schiff Base. Molecules 2023, 28, 4166. [Google Scholar] [CrossRef]
- Ranjani, M.; Keerthana, V.; Selvakumar, S.; Lynch, V.M.; Mohankumar, A.; Palanisamy, S.; Kalaivani, P.; Prabhakaran, R. Multifaceted Chiral Probe 2,3-Dihydro-4-hydroxy-chromene Schiff Base in Detecting Cu2+ Ions, L-Histidine, and Imidazole: Spectroscopic Investigation and Confocal and Live Cell Imaging. ACS Appl. Bio Mater. 2023, 6, 2358–2369. [Google Scholar] [CrossRef]
- Burmistrov, V.; Batrakova, A.; Aleksandriiskii, V.; Novikov, I.; Belov, K.; Khodov, I.; Koifman, O. Conformational and Supramolecular Aspects in Chirality of Flexible Camphor-Containing Schiff Base as an Inducer of Helical Liquid Crystals. Molecules 2023, 28, 2388. [Google Scholar] [CrossRef]
- Tang, X.; Yang, Y.; Li, X.; Wang, X.; Guo, D.; Zhang, S.; Zhang, K.; Wu, J.; Zheng, J.; Zheng, S.; et al. Postmodification of an Amine-Functionalized Covalent Organic Framework for Enantioselective Adsorption of Tyrosine. ACS Appl. Mater. Interfaces 2023, 15, 24836–24845. [Google Scholar] [CrossRef]
- Zhu, S.; Zhou, Y.; Liu, F.; Lei, Y.; Liu, S.; Wen, H.; Shi, B.; Zhang, S.; Liu, C.; Lu, Y. A Pair of Multifunctional Cu(II)–Dy(III) Enantiomers with Zero–Field Single–Molecule Magnet Behaviors, Proton Conduction Properties and Magneto–Optical Faraday Effects. Molecules 2023, 28, 7506. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, S.; Lu, Y.; Hao, X.; Wen, H. Homochiral Cu6 Dy3 single-molecule magnets displaying proton conduction and a strong magneto-optical Faraday effect. Inorg. Chem. Front. 2023, 10, 3714–3722. [Google Scholar] [CrossRef]
- Akitsu, T. (Ed.) Schiff Base in Organic, Inorganic and Physical Chemistry; IntechOpen: London, UK, 2023. [Google Scholar]
- Akitsu, T.; Miroslaw, B.; Sudarsan, S. Photofunctions in Hybrid Systems of Schiff Base Metal Complexes and Metal or Semiconductor (Nano)Materials. Int. J. Mol. Sci. 2022, 23, 10005. [Google Scholar] [CrossRef]
- Marzouki, R.; Akitsu, T. (Eds.) Crystal Growth and Chirality—Technologies and Applications; IntechOpen: London, UK, 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeda, C.; Nakane, D.; Akitsu, T. Recent Advances in Chiral Schiff Base Compounds in 2023. Molecules 2023, 28, 7990. https://doi.org/10.3390/molecules28247990
Takeda C, Nakane D, Akitsu T. Recent Advances in Chiral Schiff Base Compounds in 2023. Molecules. 2023; 28(24):7990. https://doi.org/10.3390/molecules28247990
Chicago/Turabian StyleTakeda, China, Daisuke Nakane, and Takashiro Akitsu. 2023. "Recent Advances in Chiral Schiff Base Compounds in 2023" Molecules 28, no. 24: 7990. https://doi.org/10.3390/molecules28247990
APA StyleTakeda, C., Nakane, D., & Akitsu, T. (2023). Recent Advances in Chiral Schiff Base Compounds in 2023. Molecules, 28(24), 7990. https://doi.org/10.3390/molecules28247990