Mechanochemical-Assisted Extraction and Biological Activity Research of Phenolic Compounds from Lotus Seedpod (Receptaculum Nelumbinis)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Solid Reagents
2.2. Optimization of Phenolic Compounds Extraction Process
2.2.1. Single-Factor Experiments
2.2.2. Interactive Effect on TPC Using MCAE
2.2.3. Model Validation
2.3. Analysis of Antioxidant Activities
2.4. In Vitro Enzyme Inhibitory Activities
2.5. Antibacterial Activities of LSP Extracts
3. Materials and Approaches
3.1. Materials and Chemical Reagents
3.2. MCAE
3.3. Yield of TPC (YTP)
3.4. Experimental Design
3.5. UPLC-Triple-TOF/MS Analysis
3.6. In Vitro Antioxidant Activities
3.7. In Vitro Enzyme Inhibitory Activities
3.8. In Vitro Antibacterial Activities
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, M.J.; Shin, H.S. Antioxidative effect of lotus seed and seedpod extracts. Food Sci. Biotechnol. 2012, 21, 1761–1766. [Google Scholar] [CrossRef]
- Tai, J.J.; Ye, C.Y.; Cao, X.J.; Hu, H.; Li, W.Z.; Zhang, H. Study on the anti-gout activity of the lotus seed pod by UPLC-QTOF-MS and virtual molecular docking. Fitoterapia 2023, 167, 105500. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.Q.; Xie, B.J.; Yang, E.L. Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn. J. Agric. Food Chem. 2005, 53, 2441–2445. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Li, B.; Sun, S.S.; Liu, Q.Q.; Zhu, J.; Zhou, X.; Zhang, H.J.; Wu, Q.; Wang, L.S. Analysis of proanthocyanidins and flavonols in the seedpods of Chinese Antique Lotus: A rich source of antioxidants. Food Chem. 2023, 415, 135756. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.C.; Tsai, P.M.; Chou, Y.H.; Lee, Y.C.; Lin, H.H.; Chen, J.H. In Vitro and In Vivo Protective Effects of Flavonoid-Enriched Lotus Seedpod Extract on Lipopolysaccharide-Induced Hepatic Inflammation. Am. J. Chin. Med. 2019, 47, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.Y.; Gao, X.Q.; Xie, B.J.; Sun, Z.D. Inhibitory effects of lotus seedpod procyanidins against lipid and protein oxidation and spoilage organisms in chilled-storage beef. LWT-Food Sci. Technol. 2022, 160, 113247. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, H.H.; Dzah, C.S.; Zhang, J.X.; Diao, C.R.; Ma, H.l.; Duan, Y.Q. Subcritical water extraction, identification, antioxidant and antiproliferative activity of polyphenols from lotus seedpod. Sep. Purif. Technol. 2020, 236, 116217. [Google Scholar] [CrossRef]
- Xiao, J.S.; Xie, B.J.; Cao, Y.P.; Wu, H.; Sun, Z.D.; Xiao, D. Characterization of Oligomeric Procyanidins and Identification of Quercetin Glucuronide from Lotus (Nelumbo nucifera Gaertn.) Seedpod. J. Agric. Food Chem. 2021, 60, 2825–2829. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Rincon, E.; Balu, A.M.; Luque, R.; Serrano, L. Mechanochemical extraction of antioxidant phenolic compounds from Mediterranean and medicinal Laurus nobilis: A comparative study with other traditional and green novel techniques. Ind. Crop. Prod. 2019, 141, 111805. [Google Scholar] [CrossRef]
- Xie, J.; Lin, Y.S.; Shi, X.J.; Zhu, X.Y.; Su, W.K.; Wang, P. Mechanochemical-assisted extraction of flavonoids from bamboo (Phyllostachys edulis) leaves. Ind. Crop. Prod. 2013, 43, 276–282. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, X.; Xie, J.; Wang, P.; Su, W. Mechanochemical-assisted extraction and antioxidant activity of polysaccharides from Ganoderma lucidum spores. Int. J. Food Sci. Technol. 2012, 47, 927–932. [Google Scholar] [CrossRef]
- Korolev, K.G.; Lomovskii, O.I.; Rozhanskaya, O.A.; Vasil’Ev, V.G. Mechanochemical preparation of water-soluble forms of triterpene acids. Chem. Nat. Compd. 2003, 39, 366–372. [Google Scholar] [CrossRef]
- Jin, L.J.; Li, H.Q.; Wu, F.F.; Li, X.Y.; Yu, H.B.; Cui, N.Z.; You, J.S.; Cao, Z.H.; Sun, X.H.; Zhang, J.C.; et al. Application of mechanochemical pretreatment prior to aqueous extraction of eleutheroside B from Eleutherococcus senticosus. Ind. Eng. Chem. Res. 2012, 51, 10695–10701. [Google Scholar] [CrossRef]
- Wang, S.L.; Zhang, R.; Song, X.Y.; Wei, M.M.; Xie, T.; Sun, Y.T.; Hu, J.D.; Men, L.H.; Cao, J. Mechanochemical assisted extraction of active alkaloids from plant with solid acids. ACS Sustain. Chem. Eng. 2019, 7, 197–207. [Google Scholar] [CrossRef]
- Fan, L.H.; Fan, W.X.; Mei, Y.Q.; Liu, L.C.; Li, L.N.; Wang, Z.T.; Yang, L. Mechanochemical assisted extraction as a green approach in preparation of bioactive components extraction from natural products—A review. Trends Food Sci. Technol. 2022, 129, 98–110. [Google Scholar] [CrossRef]
- Lomovsky, O.I.; Lomovskiy, I.O.; Orlov, D.V. Mechanochemical solid acid/base reactions for obtaining biologically active preparations and extracting plant materials. Green Chem. Lett. Rev. 2017, 10, 171–185. [Google Scholar] [CrossRef]
- Xu, W.H.; Yu, J.B.; Feng, W.; Su, W.K. Selective extraction of gardenia yellow and geniposide from Gardenia jasminoides by mechanochemistry. Molecules 2016, 21, 540. [Google Scholar] [CrossRef]
- Caldas, T.W.; Mazza, K.E.L.; Teles, A.S.C.; Mattos, G.N.; Brígida, A.I.S.; Conte-Junior, C.A.; Borguini, R.G.; Godoy, R.L.O.; Cabral, L.M.C.; Tonon, R.V. Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Ind. Crops Prod. 2018, 111, 86–91. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Patras, A.; Brunton, N.; Cullen, P.J.; O’Donnell, C.P. Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrason. Sonochem. 2010, 17, 598–604. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, X.; Zhang, Q.; Zhao, W.; Shi, F. Optimization of ultrasound parameters and its effect on the properties of the activity of beta-glucosidase in apricot kernels. Ultrason. Sonochem. 2019, 52, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Ismail, B.B.; Guo, M.; Pu, Y.; Wang, W.; Ye, X.; Liu, D. Valorisation of baobab (Adansonia digitata) seeds by ultrasound assisted extraction of polyphenolics. Optimisation and comparison with conventional methods. Ultrason. Sonochem. 2019, 52, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Kamarudin, A.A.; Esa, N.M.; Saad, N.; Sayuti, N.H.; Razak, N.A. Heat assisted extraction of phenolic compounds from Eleutherine bulbosa (Mill.) bulb and its bioactive profiles using response surface methodology. Ind. Crops Prod. 2020, 144, 112064. [Google Scholar] [CrossRef]
- Sukor, N.F.; Jusoh, R.; Kamarudin, N.S.; Abdul Halim, N.A.; Sulaiman, A.Z.; Abdullah, S.B. Synergistic effect of probe sonication and ionic liquid for extraction of phenolic acids from oak galls. Ultrason. Sonochem. 2019, 62, 104876. [Google Scholar] [CrossRef] [PubMed]
- Djaudodene, O.; Louaileche, H. Optimization of a green ultrasound-assisted extraction of phenolics and in vitro antioxidant potential of date fruit (Phoenix dactylifera L.). Ann. Univ. “Dunarea De Jos” Galati-Fascicle VI Food Technol. 2018, 42, 109–122. [Google Scholar]
- Duan, L.; Dou, L.-L.; Guo, L.; Li, P.; Liu, E.-H. Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustain. Chem. Eng. 2016, 4, 2405–2411. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Martí-Quijal, F.; Cilla, A.; Munekata, P.; Lorenzo, J.; Remize, F.; Barba, F. Influence of temperature, solvent and pH on the selective extraction of phenolic compounds from Tiger nuts by-products: Triple-TOF-LC-MS-MS characterization. Molecules 2019, 24, 797. [Google Scholar] [CrossRef]
- Goldberg, D.M.; Hoffman, B.; Yang, J.; Soleas, G.J. Phenolic constituents, furans, and total antioxidant status of distilled spirits. J. Agric. Food Chem. 1999, 47, 3978–3985. [Google Scholar] [CrossRef]
- Queirós, R.B.; Tafulo, R.; Paula, A.; Sales, M.G.F. Assessing and comparing the total antioxidant capacity of commercial beverages: Application to beers, wines, waters and soft drinks using TRAP, TEAC and FRAP methods. Comb. Chem. High Throughput Screen. 2013, 16, 22–31. [Google Scholar] [CrossRef]
- Tan, J.B.L.; Lim, Y.Y. Critical analysis of current methods for assessing the in vitro antioxidant and antibacterial activity of plant extracts. Food Chem. 2015, 172, 814–822. [Google Scholar] [CrossRef]
- Gullón, B.; Gullón, P.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Optimization of solvent extraction of antioxidants from Eucalyptus globulus leaves by response surface methodology: Characterization and assessment of their bioactive properties. Ind. Crops Prod. 2017, 108, 649–659. [Google Scholar] [CrossRef]
- Zhang, F.; Qu, J.; Thakur, K.; Zhang, J.G.; Mocan, A.; Wei, Z.J. Purification and identification of an antioxidative peptide from peony (Paeonia suffruticosa Andr.) seed dreg. Food Chem. 2019, 285, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Bao, N.; Wang, D.; Fu, X.; Xie, H.; Gao, G.; Luo, Z. Green Extraction of Phenolic Compounds from Lotus Seedpod (Receptaculum Nelumbinis) Assisted by Ultrasound Coupled with Glycerol. Foods 2021, 10, 239. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Bashmil, Y.M.; Cottrell, J.J.; Suleria, H.A.; Dunshea, F.R. Lc-ms/ms-qtof screening and identification of phenolic compounds from australian grown herbs and their antioxidant potential. Antioxidants 2021, 10, 1770. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Belwal, T.; Jiang, L.; Hu, J.; Limwachiranon, J.; Li, L.; Ren, G.; Zhang, X.; Luo, Z. Valorization of lotus byproduct (Receptaculum Nelumbinis) under green extraction condition. Food Bioprod. Process. 2019, 115, 110–117. [Google Scholar] [CrossRef]
- Song, Y.; Jeong, S.W.; Lee, W.S.; Park, S.; Kim, Y.H.; Kim, G.S.; Lee, S.J.; Jin, J.S.; Kim, C.Y.; Lee, J.E.; et al. Determination of polyphenol components of Korean prostrate spurge (Euphorbia supina) by using liquid chromatography-Tandem mass spectrometry: Overall contribution to antioxidant activity. J. Anal. Methods Chem. 2014, 2014, 418690. [Google Scholar] [CrossRef]
- Huntington, G.B.; Harmon, D.L.; Richards, C.J. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle 1. J. Anim. Sci. 2006, 84, E14–E24. [Google Scholar] [CrossRef]
- Sun, L.J.; Warren, F.J.; Netzel, G.; Gidley, M.J. 3 or 3′-Galloyl substitution plays an important role in association of catechins and theaflavins with porcine pancreatic α-amylase: The kinetics of inhibition of α-amylase by tea phenolics. J. Funct. Foods 2016, 26, 144–156. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Miao, M. Inhibition of α-amylase by polyphenolic compounds: Substrate digestion, binding interactions and nutritional intervention. Trends Food Sci. Technol. 2020, 104, 190–207. [Google Scholar] [CrossRef]
- Sun, L.J.; Miao, M. Dietary phenolics modulate starch digestion and glycaemic level: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 541–555. [Google Scholar] [CrossRef]
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem. 2022, 372, 131231. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Yang, X.; Bai, F.T.; Li, D.; Zhao, T.; Zhang, J.T.; Sun, L.J.; Guo, Y. Young apple phenolics as natural α-glucosidase inhibitors: In vitro and in silico studies. Bioorg. Chem. 2020, 96, 103625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.L.; Wu, Q.X.; Qin, X.M. Camellia nitidissima Chi flower extracts inhibit α-amylase and α-glucosidase: In vitro by analysis of optimization of addition methods, inhibitory kinetics and mechanisms. Process Biochem. 2019, 86, 177–185. [Google Scholar] [CrossRef]
- Umeo, T.; Ryo, Y.; Sachiko, H. Interactions of starch with a cyanidin-catechin pigment (vignacyanidin) isolated from Vigna angularis bean. Food Chem. 2013, 141, 2600–2605. [Google Scholar]
- Umeo, T.; Sachiko, H. Effects of starch on nitrous acid-induced oxidation of kaempferol and inhibition of α-amylase-catalysed digestion of starch by kaempferol under conditions simulating the stomach and the intestine. Food Chem. 2013, 141, 313–319. [Google Scholar]
- Basavegowda, N.; Patra, J.K.; Baek, K.H. Essential oils and mono/bi/tri-metallic nanocomposites as alternative sources of antimicrobial agents to combat multidrug-resistant pathogenic microorganisms: An overview. Molecules 2020, 25, 1058. [Google Scholar] [CrossRef]
- Abad, M.J.; Bedoya, L.M.; Bermejo, P. Essential oils from the Asteraceae family active against multidrug-resistant bacteria. In Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components; Academic Press: Cambridge, MA, USA, 2013; pp. 205–221. [Google Scholar]
- Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Fokou, P.V.T.; et al. The wonderful activities of the genus Mentha: Not only antioxidant properties. Molecules 2021, 26, 1118. [Google Scholar] [CrossRef]
- Alkhatib, R.Q.; Almasarweh, A.B.; Abdo, N.M.; Mayyas, A.S.; Al-Qudah, M.A.; Abu-Orabi, S.T. Chromatographic analysis (LC-MS and GC-MS), antioxidant activity, antibacterial activity, total phenol, and total flavonoid determination of Cleome arabica L. growing in Jordan. Int. J. Food Prop. 2022, 25, 1920–1933. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 2007, 117, 112–119. [Google Scholar] [CrossRef]
- Limwachiranon, J.; Jiang, L.; Huang, H.; Sun, J.; Luo, Z.S. Improvement of phenolic compounds extraction from high-starch lotus (Nelumbo nucifera G.) seed kernels using glycerol: New insights to amylose/amylopectin—Phenolic relationships. Food Chem. 2019, 274, 933–941. [Google Scholar] [CrossRef]
- Bao, N.N.; Rashed, M.M.; Jiang, B.L.; Zhai, K.F.; Luo, Z.S. Green and efficient extraction approach for polyphenol recovery from lotus seedpods (Receptaculum nelumbinis): Gas-assisted combined with glycerol. ACS Omega 2021, 6, 26722–26731. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Oldoni, T.L.C.; Merlin, N.; Karling, M.; Carpes, S.T.; De Alencar, S.M.; Morales, R.G.F.; Silva, E.; Pilau, E.J. Bioguided extraction of phenolic compounds and UHPLC-ESI-Q-TOF-MS/MS characterization of extracts of Moringa oleifera leaves collected in Brazil. Food Res. Int. 2019, 125, 108647. [Google Scholar] [CrossRef] [PubMed]
Term | Sum of Squares | Df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 6766.85 | 9 | 751.87 | 163.3 | <0.0001 |
Linear | |||||
X1-extraction time | 93.13 | 1 | 93.13 | 20.23 | 0.0011 |
X2-liquid/solid ratio | 1645.33 | 1 | 1645.33 | 357.35 | <0.0001 |
X3-extraction temperature | 858.17 | 1 | 858.17 | 186.39 | <0.0001 |
Interactions | |||||
X1 X2 | 179.96 | 1 | 179.96 | 39.09 | <0.0001 |
X1 X3 | 110.39 | 1 | 110.39 | 23.98 | 0.0006 |
X2 X3 | 6.66 | 1 | 6.66 | 1.45 | 0.2567 |
Quadratic | |||||
X12 | 918.02 | 1 | 918.02 | 199.39 | <0.0001 |
X22 | 2087.57 | 1 | 2087.57 | 453.4 | <0.0001 |
X32 | 1596.78 | 1 | 1596.78 | 346.81 | <0.0001 |
Residual | 46.04 | 10 | 4.60 | ||
Lack of Fit | 14.24 | 5 | 2.85 | 0.45 | 0.8008 |
Pure Error | 31.81 | 5 | 6.36 | ||
Cor Total | 6812.90 | 19 | |||
Std. Dev. | 2.15 | ||||
R2 | 0.9932 | ||||
Adjusted R2 | 0.9872 | ||||
Adeq Precision | 34.603 | ||||
Mean | 86.72 | ||||
C.V.% | 2.47 |
Peak | Rt (min) | [M − H]− (m/z) | MS2 Ions (m/z) | Compound |
---|---|---|---|---|
1 | 7.455 | 305.0663 | 125.0234, 179.0335 | gallocatechin |
2 | 12.970 | 153.0194 | 108.0216, 109.0287 | protocatechuic acid |
3 | 33.752 | 463.0872 | 300.0274, 271.0244, 255.0292, 301.0345 | hyperoside |
4 | 33.835 | 477.0673 | 301.0360, 151.0037 | quercetin 3-O-glucuronide |
5 | 33.947 | 579.1712 | 271.0612, 151.0042 | narirutin |
6 | 34.162 | 609.1826 | 301.0737, 285.0369 | hesperidin |
7 | 34.286 | 461.0710 | 285.0400, 229.0505 | kaempferol 3-glucuronide |
8 | 34.339 | 491.0815 | 315.0513, 300.0275 | isorhamnetin 3-O-glucuronide |
Type | E. coli | S. aureus | B. subtilis |
---|---|---|---|
Inhibition zone (mm) | 15 | 12 | 19 |
Independent Variables | |||||
---|---|---|---|---|---|
Run Order | Extraction Time (min) | Liquid/Solid Ratio (mL/g) | Extraction Temperature (°C) | Experimental Values of TPC (mg GAE/g DW) | Predicted Values of TPC (mg GAE/g DW) |
1 | 50 | 40 | 75 | 109.78 | 107.58 |
2 | 70 | 30 | 85 | 83.57 | 84.14 |
3 | 70 | 50 | 65 | 72.70 | 73.33 |
4 | 83.6 | 40 | 75 | 90.04 | 89.40 |
5 | 50 | 40 | 75 | 105.67 | 107.58 |
6 | 16.4 | 40 | 75 | 82.22 | 80.61 |
7 | 50 | 23.2 | 75 | 56.51 | 55.08 |
8 | 50 | 40 | 58.2 | 65.97 | 64.48 |
9 | 30 | 50 | 85 | 94.55 | 95.27 |
10 | 50 | 40 | 75 | 107.72 | 107.58 |
11 | 50 | 40 | 75 | 105.67 | 107.58 |
12 | 30 | 50 | 65 | 84.01 | 85.02 |
13 | 50 | 40 | 75 | 111.22 | 107.58 |
14 | 50 | 40 | 91.8 | 91.89 | 91.14 |
15 | 50 | 40 | 75 | 105.05 | 107.58 |
16 | 70 | 30 | 65 | 61.82 | 62.69 |
17 | 50 | 56.8 | 75 | 92.81 | 92.00 |
18 | 30 | 30 | 65 | 54.11 | 55.41 |
19 | 70 | 50 | 85 | 98.15 | 98.44 |
20 | 30 | 30 | 85 | 61.05 | 62.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, N.; Song, J.; Zhao, X.; Rashed, M.M.A.; Zhai, K.; Dong, Z. Mechanochemical-Assisted Extraction and Biological Activity Research of Phenolic Compounds from Lotus Seedpod (Receptaculum Nelumbinis). Molecules 2023, 28, 7947. https://doi.org/10.3390/molecules28247947
Bao N, Song J, Zhao X, Rashed MMA, Zhai K, Dong Z. Mechanochemical-Assisted Extraction and Biological Activity Research of Phenolic Compounds from Lotus Seedpod (Receptaculum Nelumbinis). Molecules. 2023; 28(24):7947. https://doi.org/10.3390/molecules28247947
Chicago/Turabian StyleBao, Nina, Jiajia Song, Xinyuan Zhao, Marwan M. A. Rashed, Kefeng Zhai, and Zeng Dong. 2023. "Mechanochemical-Assisted Extraction and Biological Activity Research of Phenolic Compounds from Lotus Seedpod (Receptaculum Nelumbinis)" Molecules 28, no. 24: 7947. https://doi.org/10.3390/molecules28247947
APA StyleBao, N., Song, J., Zhao, X., Rashed, M. M. A., Zhai, K., & Dong, Z. (2023). Mechanochemical-Assisted Extraction and Biological Activity Research of Phenolic Compounds from Lotus Seedpod (Receptaculum Nelumbinis). Molecules, 28(24), 7947. https://doi.org/10.3390/molecules28247947