New Dipyrroloquinones from a Plant-Derived Endophytic Fungus Talaromyces sp.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Networking-Based Prioritization of the Isolation Workflow
2.2. Structural Identification
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation and Isolation
3.4. Mosher’s Derivatization Method
3.5. Cytotoxic Activity Assay
3.6. Anti-Inflammatory Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Urban, S.; Hickford, S.J.H.; Blunt, J.W.; Munro, M.H.G. Bioactive marine alkaloids. Curr. Org. Chem. 2000, 4, 765–807. [Google Scholar] [CrossRef]
- Lee, S.M.; Li, X.F.; Jiang, H.; Cheng, J.G.; Seong, S.; Choi, H.D.; Son, B.W. Terreusinone, a novel UV-A protecting dipyrroloquinone from the marine algicolous fungus Aspergillus terreus. Tetrahedron Lett. 2003, 44, 7707–7710. [Google Scholar] [CrossRef]
- Wei, P.Y.; Liu, L.X.; Liu, T.; Chen, C.; Luo, D.Q.; Shi, B.Z. Three new pigment protein tyrosine phosphatases inhibitors from the insect parasite fungus Cordyceps gracilioides: Terreusinone A, pinophilin C and cryptosporioptide A. Molecules 2015, 20, 5825–5834. [Google Scholar] [CrossRef] [PubMed]
- Niveditha, L.; Fu, P.; Leao, T.F.; Li, T.; Wang, T.; Poulin, R.X.; Gaspar, L.R.; Naman, C.B.; Puthiyedathu, S.T. Targeted isolation of two new anti-inflammatory and UV-A protective dipyrroloquinones from the sponge-associated fungus Aspergillus tamarii MCCF102. Planta Med. 2022, 88, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Utkina, N.K.; Makarchenko, A.E.; Denisenko, V.A.; Zyzzyanones, B.D. Dipyrroloquinones from the Marine Sponge Zyzzya fuliginosa. J. Nat. Prod. 2005, 68, 1424–1427. [Google Scholar] [CrossRef] [PubMed]
- Antunes, E.M.; Copp, B.R.; Davies-Coleman, M.T.; Samaai, T. Pyrroloiminoquinone and related metabolites from marine sponges. Nat. Prod. Rep. 2005, 22, 62–72. [Google Scholar] [CrossRef]
- Utkina, N.K. Antioxidant activity of zyzzyanones and makaluvamines from the marine sponge Zyzzya fuliginosa. Nat. Prod. Commun. 2013, 8, 1551–1552. [Google Scholar] [CrossRef]
- Li, X.F.; Lee, S.M.; Choi, H.D.; Kang, J.S.; Son, B.W. Microbial transformation of terreusinone, an ultraviolet-A (UV-A) protecting dipyrroloquinone, by Streptomyces sp. Chem. Pharm. Bull. 2003, 51, 1458–1459. [Google Scholar] [CrossRef]
- Wang, C.; Sperry, J. Total synthesis of the photoprotecting dipyrrolobenzoquinone (+)-terreusinone. Org. lett. 2011, 13, 6444–6447. [Google Scholar] [CrossRef]
- Benjamin, C.R. Ascocarps of aspergillus and penicillium. Mycologia 1955, 47, 669–687. [Google Scholar] [CrossRef]
- Houbraken, J.; Kocsubé, S.; Visagie, C.M.; Yilmaz, N.; Wang, X.C.; Meijer, M.; Kraak, B.; Hubka, V.; Bensch, K.; Samson, R.A.; et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud. Mycol. 2020, 95, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.D.; Chen, A.J.; Houbraken, J.; Frisvad, J.C.; Wu, W.P.; Wei, H.L.; Zhou, Y.G.; Jiang, X.Z.; Samson, R.A. New section and species in Talaromyces. MycoKeys 2020, 68, 75. [Google Scholar] [CrossRef] [PubMed]
- Zhai, M.M.; Li, J.; Jiang, C.X.; Shi, Y.P.; Di, D.L.; Crews, P.; Wu, Q.X. The bioactive secondary metabolites from Talaromyces species. Nat. Prod. Bioprospect. 2016, 6, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.R.; Gong, L.Q.; Jin, M.Y.; Wang, R.; Liu, R.; Gao, J.; Liu, M.D.; Huang, L.; Wang, G.Z.; Wang, D.; et al. Research Advances in the Structures and Biological Activities of Seconadary Metabolites from Talaromyces. Front. Microbiol. 2022, 13, 984801. [Google Scholar] [CrossRef] [PubMed]
- Bara, R.; Aly, A.H.; Pretsch, A.; Wray, V.; Wang, B.; Proksch, P.; Debbab, A. Antibiotically active metabolites from Talaromyces wortmannii, an endophyte of Aloe vera. J. Antibiot. 2013, 66, 491–493. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, L.; Wang, A.; Zhao, S.; Wang, Y.; Sun, Y. Xenoacremones D-H, bioactive tyrosine-decahydrofluorene analogues from the plant-derived fungus Xenoacremonium sinensis. Mar. Drugs 2022, 20, 375. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, S.; Guo, T.; Li, L.; Li, T.; Wang, A.; Zhang, D.; Wang, Y.; Sun, Y. Bioactive PKS-NRPS alkaloids from the plant-derived endophytic fungus Xylaria arbuscula. Molecules 2022, 27, 136. [Google Scholar] [CrossRef]
- Liu, L.L.; Chen, Z.F.; Liu, Y.; Tang, D. Molecular networking-based for the target discovery of potent antiproliferative polycyclic macrolactam ansamycins from Streptomyces cacaoi subsp. Asoensis. Org. Chem. Front. 2020, 7, 4008–4018. [Google Scholar] [CrossRef]
- Clements, T.; Rautenbach, M.; Ndlovu, T.; Khan, S.; Khan, W. A metabolomics and molecular networking approach to elucidate the structures of secondary metabolites produced by Serratia marcescens strains. Front. Chem. 2021, 9, 633870. [Google Scholar] [CrossRef]
- Wang, X.; Subko, K.; Kildgaard, S.; Frisvad, J.C.; Larsen, T.O. Mass spectrometry-based network analysis reveals new insights into the chemodiversity of 28 species in Aspergillus section Flavi. Front. Fungal Biol. 2021, 2, 719420. [Google Scholar] [CrossRef]
- Tan, S.; Yang, B.; Liu, J.; Xun, T.; Liu, Y.; Zhou, X. Penicillixanthone A, a marine-derived dual-coreceptor antagonist as anti-HIV-1 agent. Nat. Prod. Res. 2019, 33, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Hou, X.M.; Yu, M.L.; Wang, C.Y. Secondary metabolites and their bioactivities from the gorgonian-derived fungus Aspergillus versicolor. Chem. Nat. Compd. 2019, 55, 327–330. [Google Scholar] [CrossRef]
- Qiao, H.; Zhang, S.H.; Dong, Y.; Yang, Y.; Xu, R.; Chen, B.; Wang, Y.; Zhu, T.J.; Cui, C.B.; Zhang, G.G.; et al. Chrysomutanin and related meroterpenoids from a DES mutant of the marine-derived fungus Penicillium chrysogenum S-3-25. Nat. Prod. Res. 2022, 36, 1834–1841. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.G.; Sun, Y.; Tang, M.Y.; Sun, P.; Wang, A.Q.; Hao, Y.Q.; Wang, Y.N.; Pei, Y.H. Trichodestruxins A-D: Cytotoxic Cyclodepsipeptides from the Endophytic Fungus Trichoderma harzianum. J. Nat. Prod. 2020, 83, 3635–3641. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, T.; Zhang, F.B.; Wang, Y.N.; Liu, Z.G.; Guo, S.S.; Li, L. Isolation and characterization of cytotoxic withanolides from the calyx of Physalis alkekengi L. var franchetii. Bioorg. Chem. 2020, 96, 103614. [Google Scholar] [CrossRef]
- Suriyaprom, S.; Srisai, P.; Intachaisri, V.; Kaewkod, T.; Pekkoh, J.; Desvaux, M.; Tragoolpua, Y. Antioxidant and Anti-Inflammatory Activity on LPS-Stimulated RAW 264.7 Macrophage Cells of White Mulberry (Morus alba L.) Leaf Extracts. Molecules 2023, 28, 4395. [Google Scholar] [CrossRef]
Position | 1 | 2 | ||
---|---|---|---|---|
δH (J in Hz) | δC, Type | δH (J in Hz) | δC, Type | |
-NH | 12.44 s | - | 12.40 s | - |
2 | - | 136.2 C | - | 139.7, C |
3 | 7.31 s | 112.9 CH | 6.31 s | 106.1, CH |
3a | - | 134.6 C | - | 132.6, C |
4 | - | 174.6 C | - | 174.3, C |
4a | - | 126.8 C | - | 126.5, C |
-NH | 12.44 s | - | 12.20 s | - |
6 | - | 144.4 C | - | 144.0, C |
7 | 6.38 s | 104.9 CH | 6.29 s | 104.9, CH |
7a | - | 132.1 C | - | 131.8, C |
8 | - | 173.2 C | - | 174.5, C |
8a | - | 125.9 C | - | 126.4, C |
1′ | - | 195.6 C | 3.85 d (7.7) | 82.3, CH |
2′ | 3.48 m | 35.5 CH | 2.02 m | 33.1, CH |
3′ | 1.09 (d, 6.8) | 19.3 CH3 | 0.72 d (6.8) | 19.0, CH3 |
4′ | 1.09 (d, 6.8) | 19.2 CH3 | 0.92 d (6.6) | 19.3, CH3 |
5′ | 3.12 s | 56.9, CH3 | ||
1″ | 4.27 (dd, 5.1, 6.6) | 71.6 CH | 4.24 d (6.6) | 72.0, CH |
2″ | 1.92 m | 33.8 CH | 1.92 m | 34.8, CH |
3″ | 0.77 (d, 6.8) | 18.8 CH3 | 0.76 d (6.8) | 19.2, CH3 |
4″ | 0.86 (d, 6.7) | 18.1 CH3 | 0.87 d (6.7) | 18.5, CH3 |
1″-OH | 5.27 (d, 5.2) | - | 5.19 s | - |
Compounds | IC50 (μM) | |
---|---|---|
A549 | HepG2 | |
1 | 133.45 | 111.15 |
2 | 98.82 | 84.69 |
3 | 62.67 | 57.39 |
4 | 0.117 | 0.212 |
5 | >150 | >150 |
6 | 42.53 | 43.87 |
adriamycin | 3.5 | 1.2 |
Compounds | EC50 (μM) | Non-Toxic Concentrations (μM) |
---|---|---|
1 | 20.3 | 3.04–304.87 |
2 | 30.7 | 2.90–190.69 |
3 | 20.6 | 2.79–279.32 |
4 | 1.0 | 0.02–0.12 |
5 | 121.0 | 3.18–318.47 |
6 | 142.5 | 2.41–241.54 |
resveratrol | 1.6 | 0.43–109.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Wang, X.; Liu, B.; Li, S.; Wang, Y.; Guo, T.; Sun, Y. New Dipyrroloquinones from a Plant-Derived Endophytic Fungus Talaromyces sp. Molecules 2023, 28, 7847. https://doi.org/10.3390/molecules28237847
Zhang D, Wang X, Liu B, Li S, Wang Y, Guo T, Sun Y. New Dipyrroloquinones from a Plant-Derived Endophytic Fungus Talaromyces sp. Molecules. 2023; 28(23):7847. https://doi.org/10.3390/molecules28237847
Chicago/Turabian StyleZhang, Dandan, Xiaoqing Wang, Bo Liu, Shuhui Li, Yanlei Wang, Tao Guo, and Yi Sun. 2023. "New Dipyrroloquinones from a Plant-Derived Endophytic Fungus Talaromyces sp." Molecules 28, no. 23: 7847. https://doi.org/10.3390/molecules28237847
APA StyleZhang, D., Wang, X., Liu, B., Li, S., Wang, Y., Guo, T., & Sun, Y. (2023). New Dipyrroloquinones from a Plant-Derived Endophytic Fungus Talaromyces sp. Molecules, 28(23), 7847. https://doi.org/10.3390/molecules28237847