A Photoelectrochemical Sensor Based on DNA Bio-Dots-Induced Aggregation of AuNPs for Methionine Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectroscopic Properties of AuNPs, DNA Bio-Dots, and CS–GSH–CuNCs
2.2. Characterization of Materials
2.2.1. SEM of Different Modified Electrodes
2.2.2. XPS of Different Modified Electrodes
2.2.3. EIS of Different Modified Electrodes
2.3. Effect of Incubation Time of DNA Bio-Dots and AuNPs on PEC Sensor
2.4. Electrochemical Properties
2.4.1. PEC Behavior of the Sensor
2.4.2. Detection Performance of PEC Sensor for Met
2.4.3. Selectivity, Stability, and Reproducibility of PEC Sensors
2.5. Actual Sample Analysis and Recovery Detection
3. Materials and Methods
3.1. Reagents
3.2. Instruments
3.3. Synthesis of DNA Bio-Dots, CS–GSH–CuNCs, and AuNPs
3.3.1. Synthesis of DNA Bio-Dots
3.3.2. Synthesis of CS–GSH–CuNCs
3.3.3. Synthesis of AuNPs
3.4. The Assembly of AuNPs/DNA Bio-Dots/CS–GSH–CuNCs/TiO2 NPs/ITO Electrode
3.5. Detection
3.5.1. Detection of Methionine
3.5.2. Masking of Distractions
3.5.3. Actual Samples Handling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Onaolapo, O.J.; Adekola, M.A.; Azeez, T.O.; Salami, K.; Onaolapo, A.Y. l-Methionine and silymarin: A comparison of prophylactic protective capabilities in acetaminophen-induced injuries of the liver, kidney and cerebral cortex. Biomed. Pharmacother. 2017, 85, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Onaolapo, A.Y.; Onaolapo, O.J.; Blessing, I.C.; Hameed, S.A.; Raimot, R. Low-dose L-methionine-associated changes in behavioural indices in young rats. J. Neurosci. Res. 2016, 4, 11–19. [Google Scholar] [CrossRef]
- Tapia-Rojas, C.; Lindsay, C.B.; Montecinos-Oliva, C.; Arrazola, M.S.; Retamales, R.M.; Bunout, D.; Inestrosa, N.C. Is L-methionine a trigger factor for Alzheimer’s-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Mol. Neurodegener. 2015, 10, 62. [Google Scholar] [CrossRef]
- Binolfi, A.; Limatola, A.; Verzini, S.; Kosten, J.; Theillet, F.X.; May Rose, H.; Selenko, P. Intracellular repair of oxidation-damaged α-synuclein fails to target C-terminal modification sites. Nat. Commun. 2016, 7, 10251. [Google Scholar] [CrossRef]
- Salimi, A.; Roushani, M. Electrocatalytic oxidation of sulfur containing amino acids at renewable Ni-powder doped carbon ceramic electrode: Application to amperometric detection L-cystine, L-cysteine and L-methionine. Electroanalysis 2006, 18, 2129–2136. [Google Scholar] [CrossRef]
- Hoshi, T.; Heinemann, S.H. Regulation of cell function by methionine oxidation and reduction. J. Physiol. 2001, 531, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 2018, 9, 477. [Google Scholar] [CrossRef] [PubMed]
- Waterland, R.A. Assessing the effects of high methionine intake on DNA methylation. J. Nutr. 2006, 136, 1706–1710. [Google Scholar] [CrossRef] [PubMed]
- Kuang, L.; Zhang, L.; Xu, A.Z.; Li, Z.M.; Liang, R.P.; Qiu, J.D. Bio-dots assembly-induced aggregation of gold nanoparticles for highly sensitive and selective colorimetric detection of methionine. Sens. Actuators B Chem. 2017, 244, 1031–1036. [Google Scholar] [CrossRef]
- Vitali, L.; Della Betta, F.; Costa, A.C.O.; Vaz, F.A.S.; Oliveira, M.A.L.; Vistuba, J.P.; Micke, G.A. New multilayer coating using quaternary ammonium chitosan and κ-carrageenan in capillary electrophoresis: Application in fast analysis of betaine and methionine. Talanta 2014, 123, 45–53. [Google Scholar] [CrossRef]
- Cieslarova, Z.; Lopes, F.S.; do Lago, C.L.; França, M.C., Jr.; Simionato, A.V.C. Capillary electrophoresis tandem mass spectrometry determination of glutamic acid and homocysteine’s metabolites: Potential biomarkers of amyotrophic lateral sclerosis. Talanta 2017, 170, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Gatti, R. Simultaneous determination of taurine, n-acetylcysteine, glycine and methionine in commercial formulations by high-performance liquid chromatography. Chromatographia 2019, 82, 1833–1837. [Google Scholar] [CrossRef]
- Borowczyk, K.; Chwatko, G.; Kubalczyk, P.; Jakubowski, H.; Kubalska, J.; Głowacki, R. Simultaneous determination of methionine and homocysteine by on-column derivatization with o-phtaldialdehyde. Talanta 2016, 161, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Han, S. Synergistic enhanced of carbon dots and eosin Y on fenton chemiluminescence for the determination of methionine. Microchem. J. 2021, 163, 105902. [Google Scholar] [CrossRef]
- Zor, E.; Saglam, M.E.; Alpaydin, S.; Bingol, H. A reduced graphene oxide/α-cyclodextrin hybrid for the detection of methionine: Electrochemical, fluorometric and computational studies. Anal. Methods. 2014, 6, 6522–6530. [Google Scholar] [CrossRef]
- Shelkovnikov, V.V.; Altyev, A.M.; Vinogradov, M.E. Determination of methionine in medicines by stripping voltammetry. J. Anal. Chem. 2019, 74, 1239–1244. [Google Scholar] [CrossRef]
- Bernardo-Boongaling, V.R.R.; Serrano, N.; García-Guzmán, J.J.; Palacios-Santander, J.M.; Díaz-Cruz, J.M. Screen-printed electrodes modified with green-synthesized gold nanoparticles for the electrochemical determination of aminothiols. J. Electroanal. Chem. 2019, 847, 113184. [Google Scholar] [CrossRef]
- Ucar, A.; Findik, M.; Bingol, H.; Guler, E.; Ozcan, E. Organometallic chiral Schiff base for enantio-selective fluorescent recognition of methionine. Chem. Zvesti. 2017, 71, 1855–1862. [Google Scholar] [CrossRef]
- Elamathi, C.; Butcher, R.J.; Mohankumar, A.; Sundararaj, P.; Elango, K.P.; Kalaivani, P.; Prabhakaran, R. Dual sensing of methionine and aspartic acid in aqueous medium by a quinoline-based fluorescent probe. Dalton Trans. 2021, 50, 8820–8830. [Google Scholar] [CrossRef]
- Huang, P.C.; Gao, N.; Li, J.F.; Wu, F.Y. Colorimetric detection of methionine based on anti-aggregation of gold nanoparticles in the presence of melamine. Sens. Actuators B Chem. 2018, 255, 2779–2784. [Google Scholar] [CrossRef]
- Mansouri, S.; Rastegarzadeh, S.; Motamedi, H. Highly sensitive determination of methionine by solvent-based de-emulsification dispersive liquid–liquid microextraction using bio-stabilized silver nanoparticles. J. Sep. Sci. 2021, 44, 3004–3013. [Google Scholar] [CrossRef]
- Lomeli-Martin, A.; Ahamed, N.; Abhyankar, V.V.; Lapizco-Encinas, B.H. Electropatterning-Contemporary developments for selective particle arrangements employing electrokinetics. Clin. Chim. Acta. 2021, 1174, 338233. [Google Scholar] [CrossRef]
- Sbrana, E.; Bramanti, E.; Spinetti, M.C.; Raspi, G. S-Adenosyl methionine/S-adenosyl-L-homocysteine ratio determination by capillary electrophoresis employed as a monitoring tool for the antiviral effectiveness of adenosine analogs. Electrophoresis 2004, 25, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Jeevagan, A.J.; John, S.A. Electrochemical determination of L-methionine using the electropolymerized film of non-peripheral amine substituted Cu (II) phthalocyanine on glassy carbon electrode. Bioelectrochemistry 2012, 85, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Lei, J.; Hao, Q.; Ju, H. CdS/MoS2 heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation. Biosens. Bioelectron. 2016, 77, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hu, W. Bifunctional polydopamine thin film coated zinc oxide nanorods for label-free photoelectrochemical immunoassay. Talanta 2017, 166, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mei, S.; Liu, S.; Hun, X. A photoelectrochemical sensing strategy based on single-layer MoS2 modified electrode for methionine detection. Biomed. Anal. 2019, 165, 94–100. [Google Scholar] [CrossRef]
- Li, Q.H.; Zhang, L.; Bai, J.M.; Liu, Z.C.; Liang, R.P.; Qiu, J.D. Preparation of novel fluorescent DNA bio-dots and their application for biothiols and glutathione reductase activity detection. Biosens. Bioelectron. 2015, 74, 886–894. [Google Scholar] [CrossRef]
- Yuan, D.; Wang, P.; Yang, L.; Quimby, J.L.; Sun, Y.P. Carbon “quantum” dots for bioapplications. Exp. Biol. Med. 2022, 247, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tsukamoto, M.; Sergeyev, V.G.; Zinchenko, A. Metal ions sensing by biodots prepared from dna, rna, and nucleotides. Biosensors 2021, 11, 333. [Google Scholar] [CrossRef]
- Song, T.; Zhu, X.; Zhou, S.; Yang, G.; Gan, W.; Yuan, Q. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution. Appl. Surf. Sci. 2015, 347, 505–513. [Google Scholar] [CrossRef]
- Ding, H.; Du, F.; Liu, P.; Chen, Z.; Shen, J. DNA–carbon dots function as fluorescent vehicles for drug delivery. ACS Appl. Mater. Interfaces 2015, 7, 6889–6897. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Cong, S.; Zhao, H.; Tan, M. Nuclear-targeted of TAT peptide-conjugated carbon dots for both one-and two-photon fluorescence imaging. Colloids Surf. B 2019, 180, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, P.; Luo, C.; Huang, C. A photoelectrochemical sensor combining CS− GSH− CuNCs and xanthine oxidase for the detection of xanthine. ChemElectroChem 2022, 9, e202200237. [Google Scholar] [CrossRef]
- Maity, S.; Bain, D.; Bhattacharyya, K.; Das, S.; Bera, R.; Jana, B.; Patra, A. Ultrafast relaxation dynamics of luminescent copper nanoclusters (Cu7L3) and efficient electron transfer to functionalized reduced graphene oxide. J. Phys. Chem. C 2017, 122, 13354–13362. [Google Scholar] [CrossRef]
- Kuang, L.; Cao, S.P.; Zhang, L.; Li, Q.H.; Liu, Z.C.; Liang, R.P.; Qiu, J.D. A novel nanosensor composed of aptamer bio-dots and gold nanoparticles for determination of thrombin with multiple signals. Biosens. Bioelectron. 2016, 85, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Takano, T.Y.; Kobayashi, N.; Hayashi, A.; Yonekura, M.; Nishiyama, Y.; Doi, T. New protein purification system using gold-magnetic beads and a novel peptide tag, “the methionine tag”. Bioconjug. Chem. 2011, 22, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.H.; Zhang, L.N.; He, S.B.; Liu, A.L.; Li, G.W.; Lin, X.H.; Chen, W. Methionine-directed fabrication of gold nanoclusters with yellow fluorescent emission for Cu2+ sensing. Bioconjug. Chem. 2015, 65, 397–403. [Google Scholar] [CrossRef]
- Crespilho, F.N.; Lima, F.C.; da Silva, A.B.; Oliveira, O.N., Jr.; Zucolotto, V. The origin of the molecular interaction between amino acids and gold nanoparticles: A theoretical and experimental investigation. Chem. Phys. Lett. 2009, 469, 186–190. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, W.; Zhou, Y.; Ge, Q.; Huang, C. Synthesis of novel quantum dots from DNA under mild conditions and their use as a fluorescent probe for the detection of Fe3+ and in biological imaging. Anal. Met. 2015, 7, 6274–6279. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Z.; Jia, Q. Electrostatically confined in-situ preparation of stable glutathione-capped copper nanoclusters for fluorescence detection of lysozyme. Sens. Actuators B Chem. 2020, 319, 128305. [Google Scholar] [CrossRef]
- An, Y.; Ren, Y.; Bick, M.; Dudek, A.; Waworuntu, E.H.W.; Tang, J.; Chang, B. Highly fluorescent copper nanoclusters for sensing and bioimaging. Biosens. Bioelectron. 2020, 154, 112078. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Fan, G.C.; Chen, J.J.; Shi, J.J.; Zhu, J.J. Highly sensitive and selective photoelectrochemical biosensor for Hg2+ detection based on dual signal amplification by exciton energy transfer coupled with sensitization effect. Anal. Chem. 2015, 87, 12340–12347. [Google Scholar] [CrossRef] [PubMed]
- Al-Mayman, S.I.; Al-Johani, M.S.; Mohamed, M.M.; Al-Zeghayer, Y.S.; Ramay, S.M.; Al-Awadi, A.S.; Soliman, M.A. TiO2ZnO photocatalysts synthesized by sol–gel auto-ignition technique for hydrogen production. Int. J. Hydrogen Energy 2017, 42, 5016–5025. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Aazaad, B.; Lakshmipathi, S.; Ilanchelian, M. Glutathione functionalized copper nanoclusters as a fluorescence platform for specific biosensing of cysteine and application in cellular imaging. Microchem. J. 2020, 158, 105253. [Google Scholar] [CrossRef]
- Rozenberg, M.; Shoham, G.; Reva, I.; Fausto, R. Low-temperature Fourier transform infrared spectra and hydrogen bonding in polycrystalline L-alanine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2003, 59, 3253–3266. [Google Scholar] [CrossRef]
- Lee, M.; Lim, T.; Lee, Y.; Kang, S.; Han, M.S. Di–thioether amide–Pd2+ complex based-methionine fluorescent chemosensor with selectivity over cysteine and histidine. Dyes Pigm. 2017, 144, 69–75. [Google Scholar] [CrossRef]
- Wang, Y.; Gan, N.; Zhou, Y.; Li, T.; Cao, Y.; Chen, Y. Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics. Biosens. Bioelectron. 2017, 87, 508–513. [Google Scholar] [CrossRef]
- Kong, F.; Liu, R.; Chu, R.; Wang, X.; Xu, K.; Tang, B. A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells. Chem. Commun. 2013, 49, 9176–9178. [Google Scholar] [CrossRef]
Analytical Method | Linear Range (µmol/L) | Detection Limit (nmol/L) | Ref. |
---|---|---|---|
Electrochemical method | 0.10–10.0 | 100 | [16] |
Colorimetric method | 0.00–1.00 | 24.5 | [19] |
High-performance liquid chromatography | 2.00–60.0 | 1.0 | [13] |
Chemiluminescence | 0.10–10.0 | 30.0 | [14] |
Fluorimetry | 2.51–25.12 | 1000 | [47] |
Photoelectrochemistry | 0.025–10.0 | 5.1 | This work |
Sample Entry | Found (µmol/L) ± SD, n = 3) | Added (µmol/L) | Detected (µmol/L) ± SD, n = 3) | Recovery (%) ± SD, n = 3) |
---|---|---|---|---|
1 | 0.00 | 0.050 | 0.052 ± 0.002 | 104.0 ± 3.8 |
2 | 0.00 | 0.300 | 0.292 ± 0.007 | 97.4 ± 2.3 |
3 | 0.00 | 1.000 | 1.036 ± 0.012 | 103.6 ± 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, C.; Chen, X.; Li, P.; Huang, C. A Photoelectrochemical Sensor Based on DNA Bio-Dots-Induced Aggregation of AuNPs for Methionine Detection. Molecules 2023, 28, 7740. https://doi.org/10.3390/molecules28237740
Luo C, Chen X, Li P, Huang C. A Photoelectrochemical Sensor Based on DNA Bio-Dots-Induced Aggregation of AuNPs for Methionine Detection. Molecules. 2023; 28(23):7740. https://doi.org/10.3390/molecules28237740
Chicago/Turabian StyleLuo, Chen, Xiaoxiao Chen, Pu Li, and Chaobiao Huang. 2023. "A Photoelectrochemical Sensor Based on DNA Bio-Dots-Induced Aggregation of AuNPs for Methionine Detection" Molecules 28, no. 23: 7740. https://doi.org/10.3390/molecules28237740
APA StyleLuo, C., Chen, X., Li, P., & Huang, C. (2023). A Photoelectrochemical Sensor Based on DNA Bio-Dots-Induced Aggregation of AuNPs for Methionine Detection. Molecules, 28(23), 7740. https://doi.org/10.3390/molecules28237740