Study of the Anti-Inflammatory Mechanism of β-Carotene Based on Network Pharmacology
Abstract
:1. Introduction
2. Results
2.1. Screening of β-Carotene Targets
2.2. Screening of Inflammatory Targets
2.3. Screening of Anti-Inflammatory Candidate Targets of β-Carotene
2.4. Construction of the ‘Active Ingredient–Target Network
2.5. Screening of Anti-Inflammatory Core Targets of β-Carotene and Construction of a PPI Network
2.6. Functional Enrichment Analysis of the GO Gene and Enrichment Analysis of the KEGG Pathway
2.7. Molecular Docking Results
3. Discussion
4. Materials and Methods
4.1. Prediction of β-Carotene Targets
4.2. Acquisition of Inflammatory Targets
4.3. Acquisition and Integration of Intersection Targets
4.4. Construction of the ‘Active Ingredient-Targets’ Network
4.5. Construction of Protein–Protein Interaction, PPI Network between Target Proteins of Anti-Inflammatory Action of β-Carotene
4.6. Functional Enrichment of the GO Gene and Enrichment of the KEGG Pathway
4.7. Molecular Docking
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hooper, L.V.; Dan, R.L.; Macpherson, A.J. Interactions Between the Microbiota and the Immune System. Science 2012, 336, 1268–1273. [Google Scholar] [CrossRef]
- Maynard, C.L.; Elson, C.O.; Hatton, R.D.; Weaver, C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012, 489, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Fleury, C.B.; Mignotte, J.V. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 2002, 84, 131–141. [Google Scholar] [CrossRef]
- Li, R.; Xiang, C.; Li, Y.; Nie, Y. Targeting immunoregulation for cardiac regeneration. J. Mol. Cell. Cardiol. 2023, 177, 1–8. [Google Scholar] [CrossRef]
- Qu, Y.; Li, D.; Liu, W.; Shi, D. Molecular Consideration Relevant to the Mechanism of the Comorbidity between Psoriasis and Systemic Lupus Erythematosus (Review). Exp. Ther. Med. 2023, 26, 1–12. [Google Scholar] [CrossRef]
- Tian, Y.; Gong, X.; Qin, D.; Cao, Y.; Zhang, S.; Xia, L.; Liu, F.; Su, Z. S1PR1-Dependent Migration of ILC3s from Intestinal Tissue to the Heart in a Mouse Model of Viral Myocarditis. J. Leukoc. Biol. 2023, 114, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.W.; Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Investig. 2007, 117, 1175–1183. [Google Scholar] [CrossRef]
- Yoo, S.E.; Kim, K.M.; Park, M.Y.; Choi, J.Y.; Shin, H.M.; Park, J.E. Tu-P10:429 BCT-1, an ethanol extrat from herb, inhibits inflammation in lipopolysaccharide-stimulated macrophages by suppressing redox-based NF-KB activation. Atheroscler. Suppl. 2006, 7, 279. [Google Scholar] [CrossRef]
- Krinsky, N.I. Effects of carotenoids in cellular and animal systems. Am. J. Clin. Nutr. 1991, 53, 238S–246S. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.S.; Li, Y.; Ma, L.; Fan, B.L.; Xia, Y. Research progress on biological activity of β-carotene. J. Food Saf. Qual. Insp. 2020, 11, 7694–7699. [Google Scholar]
- Burton, G.W.; Daroszewski, J.; Nickerson, J.G.; Johnston, J.B.; Mogg, T.J.; Nikiforov, G.B. β-Carotene autoxidation: Oxygen copolymerization, non-vitamin A products, and immunological activity. Can. J. Chem. 2014, 92, 305–316. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Hong, P.; Lang, W.; Hui, J.; Yang, Y.; Zheng, X. β-Carotene prevents weaning-induced intestinal inflammation by modulating gut microbiota in piglets. Anim. Biosci. 2021, 34, 1221. [Google Scholar] [CrossRef] [PubMed]
- Mudroňová, D.; Karaffová, V.; Koová, J.; Bartkovsk, M.; Marcinák, S. Effect of fungal gamma-linolenic acid and beta-carotene containing prefermented feed on immunity and gut of broiler chicken. Poult. Sci. 2018, 97, 12. [Google Scholar] [CrossRef] [PubMed]
- Grar, H.; Dib, W.; Gourine, H.; Negaoui, H.; Saidi, D. β-Carotene Improves Intestinal Barrier Function by Modulating Proinflammatory Cytokines and Improving Antioxidant Capacity in β-Lactoglobulin-Sensitized Mice. J. Biol. Regul. Homeost. Agents 2020, 34, 1689–1697. [Google Scholar] [PubMed]
- Nurit, H.; Rachel, L. The synergistic anti-inflammatory effects of lycopene, lutein, β-carotene, and carnosic acid combinations via redox-based inhibition of NF-κB signaling. Free. Radic. Biol. Med. 2012, 53, 1381–1391. [Google Scholar]
- Cui, B.K.; Liu, S.; Wang, Q.B.; Lin, X.O. Effect of β-Carotene on Immunity Function and Tumour Growth in Hepatocellular Carcinoma Rats. Molecules 2012, 17, 8595–8603. [Google Scholar] [CrossRef]
- Li, R.N.; Hong, P.; Zheng, X. β-Carotene attenuates lipopolysaccharide-induced inflammation via inhibition of the NF-κB, JAK2/STAT3 and JNK/p38 MAPK signaling pathways in macrophages. Anim. Sci. J. 2019, 90, 140–148. [Google Scholar] [CrossRef]
- Yang, Y.; Li, R.N.; Hui, J.N.; Li, L.Q.; Zheng, X. β-Carotene attenuates LPS-induced rat intestinal inflammation via modulating autophagy and regulating the JAK2/STAT3 and JNK/p38 MAPK signaling pathways. J. Food Biochem. 2021, 45, 13544. [Google Scholar] [CrossRef]
- Liebler, D.C.; Stratton, S.P.; Kaysen, K.L. Antioxidant actions of beta-carotene in liposomal and microsomal membranes: Role of carotenoid-membrane incorporation and alpha-tocopherol. Arch. Biochem. Biophys. 1997, 338, 244–250. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Zhu, X.Z.; Huang, T.J.; Chen, L.; Liu, Y.X.; Li, Q.H.; Song, J.H.; Ma, S.S.; Zhang, K.; Yang, B.; et al. β-Carotene synergistically enhances the anti-tumor effect of 5-fluorouracil on esophageal squamous cell carcinoma in vivo and in vitro. Toxicol. Lett. 2016, 261, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Li, S. Some advances in network pharmacology and modern research of traditional Chinese medicine. Chin. J. Pharmacol. Toxicol. 2015, 29, 29883–29892. [Google Scholar]
- Yuan, Z.Z.; Pan, Y.Y.; Leng, T.; Chu, Y.; Zhang, H.J.; Ma, J.G.; Ma, X.J. Progress and prospects of research ideas and methods in the network pharmacology of traditional Chinese medicine. J. Pharm. Pharm. Sci. 2022, 25, 218–226. [Google Scholar] [CrossRef]
- Vanesa, B.B.; Elizabeth, C.; Juan, P.R.; Andrés, F.Y. Wilson Cardona-Galeano, Tonny W Naranjo. Chemopreventive Effect on Human Colon Adenocarcinoma Cells of Styrylquinolines: Synthesis, Cytotoxicity, Proapoptotic Effect and Molecular Docking Analysis. Molecules 2022, 27, 7108. [Google Scholar]
- Alamri, M.A.; ul Qamar, M.T. Network pharmacology based virtual screening of Flavonoids from Dodonea angustifolia and the molecular mechanism against inflammation. Saudi Pharm. J. 2023, 31, 101802. [Google Scholar] [CrossRef]
- Kim, M.J.; Park, K.H.; Kim, Y.B. Identifying active compounds and targets of Fritillariae thunbergii against influenza-associated inflammation by network pharmacology analysis and molecular docking. Molecules 2020, 25, 3853. [Google Scholar] [CrossRef] [PubMed]
- Esen, S.; Maxime, P.; Marie-Soleil, G.; Benoit, C. Analysis of the SARS-CoV-2-host protein interaction network reveals new biology and drug candidates: Focus on the spike surface glycoprotein and RNA polymerase. Expert Opin. Drug Discov. 2021, 16, 881–895. [Google Scholar]
- Hoesel, B.; Schmid, J.A.; Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer. 2013, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Hierholzer, C.J.; Kalff, C.; Billiar, T.R.; Bauer, A.J.; Harbrecht, B.G. Induced nitric oxide promotes intestinal inflammation following hemorrhagic shock. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, 225–233. [Google Scholar] [CrossRef]
- Grisham, M.B.; Pavlickk, P.; Laroux, F.S.; Hoffman, J.; Wolf, R.E. Nitric oxide and chronic gut inflammation: Controversies in inflammatory bowel disease. J. Investig Med. 2002, 50, 272–283. [Google Scholar] [CrossRef]
- Leuti, A.; Fazio, D.; Fava, M.; Piccoli, A.; Maccarrone, M. Bioactive lipids, inflammation and chronic diseases. Adv. Drug Deliv. Rev. 2020, 159, 133–169. [Google Scholar]
- Lim, H.; Son, K.H.; Chang, H.W.; Bae, K.H.; Kang, S.S.; Kim, H.P. Anti-inflammatory activity of pectolinarigenin and pectolinarin isolated from Cirsium chanroenicum. Biol. Pharm. Bull. 2008, 31, 2063–2067. [Google Scholar] [CrossRef]
- Imai, K. Concern of Carcinogenic Risk of Eating Gold Leaf (Gold Foil)—In Relation to Asbestos Carcinogenesis Mechanism. Nano Biomed. 2018, 10, 26–30. [Google Scholar]
- Miller, A.P.; Coronel, J.; Amengual, J. The role of beta-carotene and vitamin A in atherogenesis: Evidences from preclinical and clinical studies. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 1388–1981. [Google Scholar]
- Lin, H.W.; Chang, T.J.; Yang, D.J.; Chen, Y.C.; Wang, M.; Chang, Y.Y. Regulation of virus-induced inflammatory response by β-carotene in RAW264.7 cells. Food Chem. 2012, 134, 2169–2175. [Google Scholar] [CrossRef]
- Liu, H.Y.; Xin, N.H. Research Progress on β—Carotene. J. Salt Chem. Ind. 2013, 42, 18–21. [Google Scholar]
- Dasa, Z.; Jelena, K.P.; Mateja, E.K.; Lucija, F.; Katarina, V.; Jera, J.; Rok, R.; Janos, T. Vitamin A Rich Diet Diminishes Early Urothelial Carcinogenesis by Altering Retinoic Acid Signaling. Cancers 2020, 12, 1712. [Google Scholar]
- Yue, Z.K.; Liu, M.Q.; Zhang, B.; Li, F.; Li, C.Y.; Chen, X.Y.; Li, F.C.; Liu, L. Vitamin A regulates dermal papilla cell proliferation and apoptosis under heat stress via IGF1 and Wnt10b signaling. Ecotoxicol. Environ. Saf. 2023, 262, 115328. [Google Scholar] [CrossRef]
- Wang, X.; Kong, C.; Liu, P.; Zhou, B.F.; Geng, W.J.; Tang, H.L. Therapeutic Effects of Retinoic Acid in Lipopolysaccharide-Induced Cardiac Dysfunction: Network Pharmacology and Experimental Validation. J. Inflamm. Res. 2022, 15, 4963–4979. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Mao, Y.; Wang, J.; Zu, L.; Hao, M.; Cheng, G.; Qu, Q.; Cui, D.; Keller, E.T.; Chen, X.; et al. IL-6 secreted by cancer-associated fibroblasts induces tamoxifen resistance in luminal breast cancer. Oncogene 2014, 33, 4450. [Google Scholar] [CrossRef]
- Liu, X.; Liang, Y.H.; Zhao, X.Q.; Wang, S.Q.; Cai, J.; Zhang, M.; Wang, L.S. Synthesis of TNF-α inhibitors, anti inflammatory activity evaluation and molecular docking study of matrine derivatives. Comput. Appl. Chem. 2016, 33, 521–524. [Google Scholar]
- Malinin, N.L.; Boldin, M.P.; Kovalenko, A.V.; Wallach, D. MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 1997, 385, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.H.; Bai, Y.; Cheng, P.; An, L.; Zhang, Z.; Lei, X.; Mei, C.; Wang, H.; Liu, F. Anti-inflammatory effect of matrine on the bovine endometrial epithelial cell and its mechanism. J. Beijing Univ. 2015, 30, 35–39. [Google Scholar]
- Hou, Y.Z.; Moreau, F.; Chadee, K. PPARγ is an E3 ligase that induces the degradation of NFκB/p65. Nat. Commun. 2012, 3, 1300. [Google Scholar]
- Frank, J.G.; Yatrik, M.S. PPARα: Mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators. Toxicology 2008, 246, 2–8. [Google Scholar]
- Poynter, E.M. Peroxisome Proliferator-activated Receptor α Activation Modulates Cellular Redox Status, Represses Nuclear Factor-κB Signaling, and Reduces Inflammatory Cytokine Production in Aging. J. Biol. Chem. 1998, 273, 32833–32841. [Google Scholar]
- Sunita, J.R.; Jaiprakash, B.R.; Suyog, S.J.; Girish, T.R.; Ravi, R.G.; Nimish, R.H.; Praveen, T.P.; Mayur, P.P. Leptin in non PCOS and PCOS women: A comparative study. Int. J. Basic Clin. Pharmacol. 2014, 3, 186. [Google Scholar]
- Zhao, X.; Xiong, Y.M.; Shen, Y. Leptin plays a role in the multiplication of and inflammation in ovarian granulosa cells in polycystic ovary syndrome through the JAK1/STAT3 pathway. Clinics 2023, 78, 100265. [Google Scholar]
- Vita, E.; Stefani, A.; Piro, G.; Sparagna, I.; Monaca, F.; Di Salvatore, M.; Ferrara, M.G.; Barone, D.; D’Argento, E.; Carbone, C. Prognostic impact of leptin (LEP)-mediated meta-inflammation (MI) in patients (pts) receiving maintenance immunotherapy (IT) for extensive-stage small cell lung cancer (ES-SCLC). Ann. Oncol. 2022, 33, S1250. [Google Scholar]
- Rianne, N.; Sophia, R.; Andre, S.; Stefanie, G.; Andre, H.; Tobias, L.; Patrick, P.; Karl, K.; Axel, G. Insulin-Like Growth Factor 1 Attenuates the Pro-Inflammatory Phenotype of Neutrophils in Myocardial Infarction. Front. Immunol. 2022, 13, 908023. [Google Scholar]
- McGreal, S.R.; Rumi, K.; Soares, M.J.; Woolbright, B.L.; Jaeschke, H.; Apte, U. Disruption of Estrogen Receptor Alpha in Rats Results in Faster Initiation of Compensatory Regeneration Despite Higher Liver Injury After Carbon Tetrachloride Treatment. Int. J. Toxicol. 2017, 36, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Abdelmetalab, T.; Kim, H.Y.; Venkat, S.; Ilyes, B.; Zakaria, Y.E.; Samuel, C.; Okpechi, M.A.G.; Ramadan, A.M.H.; Amira, M.A.; et al. ApoE deficiency promotes colon inflammation and enhances the inflammatory potential of oxidized-LDL and TNF-α in primary colon epithelial cells. Biosci. Rep. 2016, 36, e00408. [Google Scholar]
- Kshipra, S.; Rupesh, C.; Mohammad, A.; Daniel, P.B.; Nuruddeen, D.L.; Michael, P.V.; Keith, T.W. The apolipoprotein E-mimetic peptide COG112 inhibits the inflammatory response to Citrobacter rodentium in colonic epithelial cells by preventing NF-κB activation. J. Biol. Chem. 2008, 283, 16752–16761. [Google Scholar]
- Liu, J.Y.; Yuan, S.L.; Niu, X.H.; Kelleher, R.; Sheridan, H. ESR1 dysfunction triggers neuroinflammation as a critical upstream causative factor of the Alzheimer’s disease process. Aging 2022, 14, 8595–8614. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, F.F.; Tian, Q.Q.; Sheng, K. CircVMA21 ameliorates lipopolysaccharide (LPS)-induced HK-2 cell injury depending on the regulation of miR-7-5p/PPARA. Autoimmunity 2021, 55, 136–146. [Google Scholar] [CrossRef]
- Dong, Q.; Jie, Y.X.; Ma, J.; Li, C.; Xin, T.; Yang, D.W. Wnt/β-catenin signaling pathway promotes renal ischemia-reperfusion injury through inducing oxidative stress and inflammation response. J. Recept. Signal Transduct. 2021, 41, 15–18. [Google Scholar] [CrossRef]
- Mahmoudi, Z.; Kalantar, H.; Mansouri, E.; Mohammadi, E.; Khodayar, M.J. Dimethyl fumarate attenuates paraquat-induced pulmonary oxidative stress, inflammation and fibrosis in mice. Pestic. Biochem. Physiol. 2023, 190, 105336. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Qiu, D.; Wang, Y.; Wei, J.; Duan, H. TXNIP deficiency mitigates podocyte apoptosis via restraining the activation of mTOR or p38 MAPK signaling in diabetic nephropathy. Exp. Cell Res. 2020, 388, 111862. [Google Scholar] [CrossRef]
- Xu, X.F.; Liu, F.; Xin, J.Q.; Fan, J.W.; Wu, N.; Zhu, L.J.; Duan, L.F.; Li, Y.Y.; Zhang, H. Respective roles of the mitogen-activated protein kinase (mapk) family members in pancreatic stellate cell activation induced by transforming growth factor-β1 (tgf-β1). Biochem. Biophys. Res. Commun. 2018, 501, 365–373. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Guo, F.; Wang, Y.; Li, H.; Zhang, X.L.; Li, H.L.; Diao, L.H.; Gu, J.Y.; Wang, W.; Li, D.; et al. BATMAN-TCM: A Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine. Sci. Rep. 2016, 6, 21146. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.P.; Li, W.L.; Qu, Z.Y.; Sun, X.M.; Song, H.; Hu, Y.; Xin, K.Y.; Nie, C.D. Action mechanism of Inonotus obliquus in the Treatment of diabetes and the material basis of pharmacodynamics based on network pharmacology. Food Sci. Technol. 2021, 42, 18–29. [Google Scholar]
GO Serial Number | Description | −log10 (p-Value) |
---|---|---|
GO:0030518 | intracellular steroid hormone receptor signaling pathway | 10.28 |
GO:0050728 | negative regulation of inflammatory response | 10.15 |
GO:0030522 | intracellular receptor signaling pathway | 9.37 |
GO:0000122 | negative regulation of transcription from RNA polymerase II promoter | 8.55 |
GO:0045893 | positive regulation of transcription, DNA-templated | 8.35 |
GO:0045944 | positive regulation of transcription from RNA polymerase II promoter | 8.08 |
GO:0007165 | signal transduction | 7.77 |
GO:0010628 | positive regulation of gene expression | 6.93 |
GO:0043407 | negative regulation of MAP kinase activity | 6.89 |
GO:0010193 | response to ozone | 6.44 |
GO:0014823 | response to activity | 6.32 |
GO:0045471 | response to ethanol | 5.77 |
GO:0010888 | negative regulation of lipid storage | 5.66 |
GO:0070328 | triglyceride homeostasis | 5.59 |
GO:0014068 | positive regulation of phosphatidylinositol 3-kinase signaling | 5.54 |
GO:0010887 | negative regulation of cholesterol storage | 5.53 |
GO:0045429 | positive regulation of nitric oxide biosynthetic process | 5.05 |
GO:0045598 | regulation of fat cell differentiation | 4.92 |
GO:0032355 | response to estradiol | 4.90 |
GO:0051091 | positive regulation of sequence-specific DNA binding transcription factor activity | 4.78 |
GO Serial Number | Description | −log10 (p-Value) |
---|---|---|
GO:0000785 | chromatin | 5.69 |
GO:0005576 | extracellular region | 4.85 |
GO:0099055 | integral component of postsynaptic membrane | 3.65 |
GO:0005615 | extracellular space | 3.53 |
GO:0042734 | presynaptic membrane | 3.53 |
GO:0032991 | macromolecular complex | 3.39 |
GO:0099056 | integral component of presynaptic membrane | 3.35 |
GO:0045121 | membrane raft | 3.32 |
GO:0045211 | postsynaptic membrane | 2.75 |
GO:0005654 | nucleoplasm | 2.47 |
GO:0030141 | secretory granule | 2.44 |
GO:0005737 | cytoplasm | 2.45 |
GO:1904813 | ficolin-1-rich granule lumen | 2.40 |
GO:0043025 | neuronal cell body | 2.39 |
GO:0005783 | endoplasmic reticulum | 2.07 |
GO:0005886 | plasma membrane | 2.04 |
GO:0005887 | integral component of plasma membrane | 2.00 |
GO:0031265 | CD95 death-inducing signaling complex | 1.81 |
GO:0031264 | death-inducing signaling complex | 1.75 |
GO:0043235 | receptor complex | 1.72 |
GO Serial Number | Description | −log10 (p-Value) |
---|---|---|
GO:0004879 | RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding | 21.87 |
GO:0005496 | steroid binding | 11.76 |
GO:0043565 | sequence-specific DNA binding | 11.31 |
GO:0019899 | enzyme binding | 9.20 |
GO:0003707 | steroid hormone receptor activity | 8.34 |
GO:0008270 | zinc ion binding | 7.99 |
GO:0003700 | transcription factor activity, sequence-specific DNA binding | 7.49 |
GO:0001223 | transcription coactivator binding | 6.70 |
GO:0000978 | RNA polymerase II core promoter proximal region sequence-specific DNA binding | 4.68 |
GO:0000981 | RNA polymerase II transcription factor activity, sequence-specific DNA binding | 4.41 |
GO:0003677 | DNA binding | 4.22 |
GO:0020037 | heme binding | 4.18 |
GO:0001609 | G-protein coupled adenosine receptor activity | 4.12 |
GO:0042802 | identical protein binding | 3.69 |
GO:0008144 | drug binding | 3.38 |
GO:0004726 | non-membrane spanning protein tyrosine phosphatase activity | 3.30 |
GO:0005506 | iron ion binding | 2.89 |
GO:0001228 | transcriptional activator activity, RNA polymerase II transcription regulatory region sequence-specific binding | 2.67 |
GO:0016702 | oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygen | 2.62 |
GO:0008134 | transcription factor binding | 2.56 |
KEGG Serial Number | Description | −log10 (p-Value) |
---|---|---|
hsa04932 | non-alcoholic fatty liver disease | 5.79 |
hsa04080 | neuroactive ligand-receptor interaction | 4.65 |
hsa04668 | TNF signaling pathway | 4.52 |
hsa05205 | proteoglycans in cancer | 3.95 |
hsa04936 | alcoholic liver disease | 3.95 |
hsa05207 | chemical carcinogenesis—receptor activation | 3.86 |
hsa04933 | AGE-RAGE signaling pathway in diabetic complications | 3.69 |
hsa05142 | Chagas disease | 3.65 |
hsa04726 | serotonergic synapse | 3.41 |
hsa04071 | sphingolipid signaling pathway | 3.34 |
hsa05200 | pathways in cancer | 3.32 |
hsa04664 | Fc epsilon RI signaling pathway | 3.30 |
hsa05130 | pathogenic Escherichia coli infection | 3.18 |
hsa05140 | leishmaniasis | 3.10 |
hsa05417 | lipid and atherosclerosis | 2.98 |
hsa05140 | leishmaniasis | 2.86 |
hsa05130 | pathogenic Escherichia coli infection | 2.84 |
hsa05200 | pathways in cancer | 2.80 |
hsa04960 | aldosterone-regulated sodium reabsorption | 2.80 |
hsa05417 | lipid and atherosclerosis | 2.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Chen, R.; Chen, J.; Yang, N.; Li, K.; Zhang, Z.; Zhang, R. Study of the Anti-Inflammatory Mechanism of β-Carotene Based on Network Pharmacology. Molecules 2023, 28, 7540. https://doi.org/10.3390/molecules28227540
Wu S, Chen R, Chen J, Yang N, Li K, Zhang Z, Zhang R. Study of the Anti-Inflammatory Mechanism of β-Carotene Based on Network Pharmacology. Molecules. 2023; 28(22):7540. https://doi.org/10.3390/molecules28227540
Chicago/Turabian StyleWu, Shilin, Ran Chen, Jingyun Chen, Ning Yang, Kun Li, Zhen Zhang, and Rongqing Zhang. 2023. "Study of the Anti-Inflammatory Mechanism of β-Carotene Based on Network Pharmacology" Molecules 28, no. 22: 7540. https://doi.org/10.3390/molecules28227540
APA StyleWu, S., Chen, R., Chen, J., Yang, N., Li, K., Zhang, Z., & Zhang, R. (2023). Study of the Anti-Inflammatory Mechanism of β-Carotene Based on Network Pharmacology. Molecules, 28(22), 7540. https://doi.org/10.3390/molecules28227540