Theoretical Study of the Reaction Mechanism of Phenol–Epoxy Ring-Opening Reaction Using a Latent Hardening Accelerator and a Reactivity Evaluation by Substituents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Geometry Changes in Phenol–Epoxy Ring-Opening Reaction Using TPP-K
2.2. Free Energy Changes in the Predicted Reaction Mechanism
2.3. Reactivity Evaluation by Introduction of Substituents
3. Materials and Methods
4. Conclusions
- (1)
- The phenol–epoxy ring-opening reaction using TPP-K proceeds via four main elementary reaction processes.
- (2)
- After the P-B bond in TPP-K is cleaved, the reaction between BPh4− and phenol occurs.
- (3)
- The rate-determining steps in the reaction are the cleavage of the P-B bond and the triphenylborane-forming reaction. The ΔG‡ values are 36.3 and 36.1 kcal/mol, respectively.
- (4)
- TPP-OPh, which is generated by the combination of TPP+ and phenoxide ions, is the active species.
- (5)
- By introducing electron-withdrawing or electron-donating substituents to the Ph group in BPh4−, it is possible to manipulate the P-B bond energy and ΔG‡ value of the triphenylborane-forming reaction between BPh4− and phenol.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Onizuka, K. Epoxy Resin Hardener. J. Adhes. Soc. Jpn. 2017, 53, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Shi, Z.; Cui, Z. Synthesis and characterization of the thermoplastic epoxy phenolic resin for second-order nonlinear optical materials. Mater. Lett. 2012, 78, 78–196. [Google Scholar] [CrossRef]
- Rakotomalala, M.; Wagner, S.; Döring, M. Recent Developments in Halogen Free Flame Retardants for Epoxy Resins for Electrical and Electronic Applications. Materials 2010, 3, 4300–4327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, W.G.; Yoon, H.G.; Lee, J.Y. Cure kinetics of biphenyl epoxy resin system using latent catalysts. J. Appl. Polym. Sci. 2001, 81, 2711–2720. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhang, D.; Liu, S.; Wei, D.; Liu, F. Mechanism of the temperature-responsive material regulating porous morphology on epoxy phenolic novolac resin microcapsule surface. Colloids Surf. A Physicochem. Eng. Asp. 2020, 593, 124581. [Google Scholar] [CrossRef]
- Ren, S.-P.; Lan, Y.-X.; Zhen, Y.-Q.; Ling, Y.-D.; Lu, M.-G. Curing reaction characteristics and phase behaviors of biphenol type epoxy resins with phenol novolac resins. Thermochim. Acta. 2006, 440, 60–67. [Google Scholar] [CrossRef]
- Goh, Y.; Iijima, T.; Tomoi, M. Novel quaternary ammonium borates as latent catalysts for epoxy-phenolic resins. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 2689–2701. [Google Scholar] [CrossRef]
- Goh, Y.; Iijima, T.; Tomoi, M. Thermal latency of novel chelating borate catalysts as latent catalysts for epoxy-phenolic resins. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 2702–2716. [Google Scholar] [CrossRef]
- Sari, M.G.; Abdolmaleki, M.; Rostami, M.; Ramezanzadeh, B. Nanoclay dispersion and colloidal stability improvement in phenol novolac epoxy composite via graphene oxide for the achievement of superior corrosion protection performance. Corros. Sci. 2020, 173, 108799. [Google Scholar] [CrossRef]
- Mitani, R.; Yamamoto, H.; Sumimoto, M. Theoretical study on the reaction mechanism of imidazole-catalyzed phenol-epoxy ring-opening reaction and the evaluation of catalyst performance. Chem. Phys. Lett. 2020, 742, 137143. [Google Scholar] [CrossRef]
- Pham, M.-P.; Pham, B.Q.; Huynh, L.K.; Pham, H.Q.; Marks, M.J.; Truong, T.N. Density Functional Theory Study on Mechanisms of Epoxy-Phenol Curing Reaction. J. Comput. Chem. 2014, 35, 1630–1640. [Google Scholar] [CrossRef]
- Banthia, A.K.; McGrath, J.E. Catalysis of bisphenol-diglycidyl ether linear step-growth polymerization. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 1979, 20, 629–633. [Google Scholar]
- Nagai, A.; Kokaku, H.; Ishii, T. Relationship of structure and properties of phosphine-containing catalysts in reactions with epoxy and phenol compounds. J. Appl. Polym. Sci. 2002, 85, 2335–2341. [Google Scholar] [CrossRef]
- Rozenberg, B.A. Kinetics and mechanism of epoxy oligomers curing. Makromol. Chem. Macromol. Symp. 1987, 7, 17–26. [Google Scholar] [CrossRef]
- Matsumoto, A.; Hasegawa, K.; Fukuda, A. Phenol novolac/poly(4-hydroxyphenylmaleimide) blend hardeners for DGEBA-type epoxy resin. Polym. Int. 1992, 28, 173–177. [Google Scholar] [CrossRef]
- Le Craz, S.; Pethrick, R.A. Solvent Effects on Cure 1-Benzyl Alcohol on Epoxy Cure. Int. J. Polym. Mater. 2011, 60, 441–455. [Google Scholar] [CrossRef]
- Park, S.-J.; Seo, M.-K.; Lee, J.-R. Isothermal cure kinetics of epoxy/phenol-novolac resin blend system initiated by cationic latent thermal catalyst. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 2945–2956. [Google Scholar] [CrossRef]
- Yang, B.; Mao, Y.; Zhang, Y.; Bian, G.; Zhang, L.; Wei, Y.; Jiang, Q.; Qiu, Y.; Liu, W. A novel liquid imidazole-copper(II) complex as a thermal latent curing agent for epoxy resins. Polymer 2019, 178, 121586. [Google Scholar] [CrossRef]
- Murai, S.; Nakano, Y.; Hayase, S. Novel latent initiator for cationic polymerization of epoxides. J. Appl. Polym. Sci. 2001, 80, 181–187. [Google Scholar] [CrossRef]
- Lin, R.-H.; Chen, C.-L.; Kao, L.-H.; Yang, P.-R. Cure behavior of epoxy resins with different kinds of onium salts as latent thermal catalysts. J. Appl. Polym. Sci. 2001, 82, 3539–3551. [Google Scholar] [CrossRef]
- Park, S.-J.; Kim, T.-J.; Lee, J.-R. Cure behavior of diglycidylether of bisphenol A/trimethylolpropane triglycidylether epoxy blends initiated by thermal latent catalyst. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 2114–2123. [Google Scholar] [CrossRef]
- Yen, W.-P.; Chen, K.-L.; Yeh, M.-Y.; Uramaru, N.; Lin, H.-Y.; Wong, F.F. Investigation of soluble PEG-imidazoles as the thermal latency catalysts for epoxy-phenolic resins. J. Taiwan Inst. Chem. Eng. 2016, 59, 98–105. [Google Scholar] [CrossRef]
- Gajeles, G.; Lee, S.H. Imidazole derivatives as thermal latent catalyst for thiol-michael reaction thermosetting resins. Eur. Polym. J. 2019, 120, 109240. [Google Scholar] [CrossRef]
- Chen, K.-L.; Shen, Y.-H.; Yeh, M.-Y.; Wong, F.-F. Complexes of imidazole with poly(ethylene glycol)s as the thermal latency catalysts for epoxy-phenolic resins. J. Taiwan Inst. Chem. Eng. 2012, 43, 306–312. [Google Scholar] [CrossRef]
- Tomuta, A.M.; Ramis, X.; Ferrando, F.; Serra, A. The use of dihydrazides as latent curing agents in diglycidyl ether of bisphenol A coatings. Prog. Org. Coat. 2012, 74, 59–66. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sanda, F.; Endo, T. Application of Phosphonium Ylides to Latent Catalysts. 2. Kinetic Study on the Thermal Latency of the Phosphonium Ylides in the Polyaddition of Bisphenol A Diglycidyl Ether with Bisphenol A. Macromolecules 2000, 33, 5384–5387. [Google Scholar] [CrossRef]
- Sumimoto, M.; Iwane, N.; Takahama, T.; Sakaki, S. Theoretical Study of Trans-metalation Process in Palladium-Catalyzed Borylation of Iodobenzene with Diboron. J. Am. Chem. Soc. 2004, 126, 10457–10471. [Google Scholar] [CrossRef] [PubMed]
- Sakaki, S.; Sumimoto, M.; Fukuhara, M.; Sugimoto, M.; Fujimoto, H.; Matsuzaki, S. Why Does the Rh-Catalyzed Hydrosilylation of Alkene Take Place Through Modified Chalk-Harrod Mechanism? A Theoretical Study. Organometallics 2002, 21, 3788–3802. [Google Scholar] [CrossRef]
- Sakaki, S.; Takayama, T.; Sumimoto, M.; Sugimoto, M. Theoretical Study of the Cp2Zr-Catalyzed Hydrosilylation of Ethylene: Reaction Mechanism Including New σ-Bond Activation. J. Am. Chem. Soc. 2004, 126, 3332–3348. [Google Scholar] [CrossRef] [PubMed]
- Kinjo, R.; Ichinohe, M.; Sekiguchi, A.; Takagi, N.; Sumimoto, M.; Nagase, S. Reactivity of a Disilyne RSi≡SiR (R=SiiPr[CH(SiMe3)2]2) toward π-Bonds: Stereospecific Addition and a New Route to an Isolable 1,2-Disilabenzene. J. Am. Chem. Soc. 2007, 129, 7766–7767. [Google Scholar] [CrossRef] [PubMed]
- Musashi, Y.; Sakaki, S. Theoretical Study of Rhodium(III)-Catalyzed Hydrogenation of Carbon Dioxide into Formic Acid. Significant Differences in Reactivity among Rhodium(III), Rhodium(I), and Ruthenium(II) Complexes. J. Am. Chem. Soc. 2002, 124, 7588–7603. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, A.; Ohnishi, Y.; Nakaoka, M.; Nakao, Y.; Sato, H.; Sakaki, S.; Nakao, Y.; Hiyama, T. Why Does Fluoride Anion Accelerate Transmetalation between Vinylsilane and Palladium(II)-Vinyl Complex? Theoretical Study. J. Am. Chem. Soc. 2008, 130, 12975–12985. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, Y.; Nakao, Y.; Sato, H.; Nakao, Y.; Hiyama, T.; Sakaki, S. A Theoretical Study of Nickel(0)-Catalyzed Phenylcyanation of Alkynes. Reaction Mechanism and Regioselectivity. Organometallics 2009, 28, 2583–2594. [Google Scholar] [CrossRef]
- Hori, K.; Yoshimura, K.; Ohno, H.; Onimura, K.; Ohishi, T. Theoretical study on the polymerization mechanism of substituted maleimides by using a chiral catalyst with Zn2+. Tetrahedron 2003, 59, 6301–6309. [Google Scholar] [CrossRef]
- Hori, K.; Sonoda, T.; Harada, M.; Yamazaki-Nishida, S. Theoretical Study on the Reactivity of Phenyl Cation with a Propyl Group at Ortho-Position. Tetrahedron 2000, 56, 1429–1436. [Google Scholar] [CrossRef]
- Sumimoto, M.; Kuroda, T.; Yokogawa, D.; Yamamoto, H.; Hori, K. Theoretical study on a new active species for the Pd(II)-catalyzed Mizoroki-Heck reaction. J. Organomet. Chem. 2012, 710, 26–35. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef]
- Fukui, K. The path of chemical reactions—The IRC approach. Acc. Chem. Res. 1981, 14, 363–368. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations: I—The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations: III—The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Substituent | BE (kcal/mol) | ΔG‡ (kcal/mol) |
---|---|---|
H | 36.3 | 36.1 |
m-F | 32.9 | 48.3 |
p-F | 32.7 | 46.3 |
m-OMe | 36.9 | 35.3 |
p-OMe | 36.2 | 32.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitani, R.; Yamamoto, H.; Sumimoto, M. Theoretical Study of the Reaction Mechanism of Phenol–Epoxy Ring-Opening Reaction Using a Latent Hardening Accelerator and a Reactivity Evaluation by Substituents. Molecules 2023, 28, 694. https://doi.org/10.3390/molecules28020694
Mitani R, Yamamoto H, Sumimoto M. Theoretical Study of the Reaction Mechanism of Phenol–Epoxy Ring-Opening Reaction Using a Latent Hardening Accelerator and a Reactivity Evaluation by Substituents. Molecules. 2023; 28(2):694. https://doi.org/10.3390/molecules28020694
Chicago/Turabian StyleMitani, Ryusuke, Hidetoshi Yamamoto, and Michinori Sumimoto. 2023. "Theoretical Study of the Reaction Mechanism of Phenol–Epoxy Ring-Opening Reaction Using a Latent Hardening Accelerator and a Reactivity Evaluation by Substituents" Molecules 28, no. 2: 694. https://doi.org/10.3390/molecules28020694
APA StyleMitani, R., Yamamoto, H., & Sumimoto, M. (2023). Theoretical Study of the Reaction Mechanism of Phenol–Epoxy Ring-Opening Reaction Using a Latent Hardening Accelerator and a Reactivity Evaluation by Substituents. Molecules, 28(2), 694. https://doi.org/10.3390/molecules28020694