Optimization and Characterization of Sodium Alginate Beads Providing Extended Release for Antidiabetic Drugs
Abstract
:1. Introduction
2. Results
2.1. Optimization and Characterization of PIO-Loaded Polymeric Micelles
2.2. Optimization and Characterization of Sodium Alginate Beads
2.3. X-ray Powder Diffraction Study
2.4. Thermal Analysis
2.5. Distribution of Active Substances in the Freeze-Dried Sodium Alginate Bead Formulation
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Quantification of Metformin Hydrochloride
4.3. Quantification of Pioglitazone Hydrochloride
4.4. Formulation of Sodium Alginate Beads
4.5. Optimization of Pioglitazone-Loaded Polymeric Micelles
4.6. Characterization of Pioglitazone-Loaded Polymeric Micelles
4.6.1. Determination of Critical Micellar Concentration of the Polymer Combination
4.6.2. Measurement of Micelle Size, Size Distribution, and Zeta Potential
4.6.3. Determination of Encapsulation Efficiency
4.6.4. Measurement of Thermodynamic Solubility
4.7. Optimmization of Polymeric Micelle-Embedded Sodium Alginate Beads
4.8. In Vitro Drug Release Study
4.9. X-ray Powder Diffraction Study
4.10. Differential Scanning Calorimetric and Thermogravimetric Analysis
4.11. Raman Spectroscopic Measurement
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hwang, D.; Ramsey, J.D.; Kabanov, A. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 2020, 156, 80–118. [Google Scholar] [PubMed]
- Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; del Favero, E.; Cantú, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021, 332, 312–336. [Google Scholar] [PubMed]
- Ghosh, B.; Biswas, S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release 2021, 332, 127–147. [Google Scholar] [PubMed]
- Lin, M.; Dai, Y.; Xia, F.; Zhang, X. Advances in non-covalent crosslinked polymer micelles for biomedical applications. Mater. Sci. Eng. C 2021, 119, 111626. [Google Scholar]
- Sipos, B.; Csóka, I.; Budai-Szűcs, M.; Kozma, G.; Berkesi, D.; Kónya, Z.; Balogh, G.T.; Katona, G. Development of dexamethasone-loaded mixed polymeric micelles for nasal delivery. Eur. J. Pharm. Sci. 2021, 166, 105960. [Google Scholar] [CrossRef]
- Sainaga Jyothi, V.G.S.; Bulusu, R.; Venkata Krishna Rao, B.; Pranothi, M.; Banda, S.; Kumar Bolla, P.; Kommineni, N. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: An update. Int. J. Pharm. 2022, 624, 122022. [Google Scholar]
- Sipos, B.; Csóka, I.; Szivacski, N.; Budai-Szűcs, M.; Schelcz, Z.; Zupkó, I.; Szabó-Révész, P.; Volk, B.; Katona, G. Mucoadhesive meloxicam-loaded nanoemulsions: Development, characterization and nasal applicability studies. Eur. J. Pharm. Sci. 2022, 175, 106229. [Google Scholar]
- Majumder, N.; Das, N.G.; Das, S.K. Polymeric micelles for anticancer drug delivery. Ther. Deliv. 2020, 11, 613–635. [Google Scholar] [CrossRef]
- Ahmed, S.; Kassem, M.A.; Saved, S. Co-polymer mixed micelles enhanced transdermal transport of Lornoxicam: In vitro characterization, and in vivo assessment of anti-inflammatory effect and antinociceptive activity. J. Drug Deliv. Sci. Technol. 2021, 62, 102365. [Google Scholar]
- Pham, D.T.; Chokamonsirikun, A.; Phattaravorakarn, V.; Tivaboonchai, W. Polymeric micelles for pulmonary drug delivery: A comprehensive review. J. Mater. Sci. 2021, 56, 2016–2036. [Google Scholar]
- Veiseh, O.; Tang, B.C.; Whitehead, K.A.; Anderson, D.G.; Langer, R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 2015, 14, 45–57. [Google Scholar] [PubMed]
- Yu, N.; Li, G.; Gao, Y.; Jiang, H.; Tao, Q. Thermo-sensitive complex micelles from sodium alginate-graft-poly(N-isopropylacrylamide) for drug release. Int. J. Biol. Macromol. 2016, 86, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Jadach, B.; Swietlik, W.; Froelich, A. Sodium Alginate as a Pharmaceutical Excipient: Novel Applications of a Well-known Polymer. J. Pharm. Sci. 2022, 111, 1250–1261. [Google Scholar] [PubMed]
- Li, J.; Jiang, C.; Lang, X.; Kong, M.; Cheng, X.; Liu, Y.; Feng, C.; Chen, X. Multilayer sodium alginate beads with porous core containing chitosan based nanoparticles for oral delivery of anticancer drug. Int. J. Biol. Macromol. 2016, 85, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Malakar, J.; Navak, A.K.; Pal, D. Development of cloxacillin loaded multiple-unit alginate-based floating system by emulsion-gelation method. Int. J. Biol. Macromol. 2012, 50, 138–147. [Google Scholar] [CrossRef]
- Seeli, D.S.; Dhiyya, S.; Selvamurugan, N.; Prabaharan, M. Guar gum succinate-sodium alginate beads as a pH-sensitive carrier for colon-specific drug delivery. Int. J. Biol. Macromol. 2016, 91, 45–50. [Google Scholar] [CrossRef]
- Khan, I.U.; Shoukat, M.; Asif, M.; Khalid, S.H.; Asghar, S.; Munir, M.U.; Irfan, M.; Rasul, A.; Qari, S.H.; Qumsani, A.T.; et al. Assessing the Synergistic Activity of Clarithromycin and Therapeutic Oils Encapsulated in Sodium Alginate Based Floating Microbeads. Microorganisms 2022, 10, 1171. [Google Scholar] [CrossRef]
- Uthumansha, U.; Prabahar, K.; Gajapathy, D.B.; El-Sherbiny, M.; Elsherbiny, N.; Qushawy, M. Optimization and In Vitro Characterization of Telmisartan Loaded Sodium Alginate Beads and Its In Vivo Efficacy Investigation in Hypertensive Induced Animal Model. Pharmaceutics 2023, 15, 709. [Google Scholar] [CrossRef]
- Braatz, D.; Cherri, M.; Tully, M.; Dimde, M.; Ma, G.; Mohammadifar, E.; Reisbeck, F.; Ahmadi, V.; Schirner, M.; Haag, R. Chemical approaches to synthetic drug delivery systems for systemic applications. Angew. Chem. Int. Ed. 2022, 49, e202203942. [Google Scholar]
- Nair, A.; Javius-Jones, K.; Bugno, J.; Poellmann, M.J.; Mamidi, N.; Kim, I.-S.; Kwon, I.C.; Hong, H.; Hong, S. Hybrid Nanoparticle System Integrating Tumor-Derived Exosomes and Poly(amidoamine) Dendrimers: Implications for an Effective Gene Delivery Platform. Chem. Mater. 2023, 35, 3138–3150. [Google Scholar] [CrossRef]
- Mamidi, N.; Delgadillo, R.M.V.; Barrera, E.V.; Ramakrishna, S.; Annabi, N. Carbonaceous nanomaterials incorporated biomaterials: The present and future of the flourishing field. Compos. Part B Eng. 2022, 243, 110150. [Google Scholar]
- Mamidi, N.; García, R.G.; Martínez, J.D.H.; Briones, C.M.; Ramos, A.M.M.; Tamez, M.F.L.; Del Valle, B.G.; Segura, F.J.M. Recent Advances in Designing Fibrous Biomaterials for the Domain of Biomedical, Clinical, and Environmental Applications. ACS Biomater. Sci. Eng. 2022, 8, 3690–3716. [Google Scholar]
- Ray, P.; Ferraro, M.; Haag, R.; Quadir, M. Dendritic Polyglycerol-Derived Nano-Architectures as Delivery Platforms of Gemcitabine for Pancreatic Cancer. Macromol. Biosci. 2019, 7, 1900073. [Google Scholar]
- Pepić, I.; Lovrić, J.; Filipović-Grćić, J. How do polymeric micelles cross epithelial barriers? Eur. J. Pharm. Sci. 2013, 50, 42–55. [Google Scholar] [PubMed]
- Sipos, B.; Budai-Szűcs, M.; Kókai, D.; Orosz, L.; Burián, K.; Csorba, A.; Nagy, Z.Z.; Balogh, G.T.; Csóka, I.; Katona, G. Erythromycin-loaded polymeric micelles: In situ gel development, in vitro and ex vivo ocular investigations. Eur. J. Pharm. Biopharm. 2022, 180, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Baishy, H. Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets. J. Dev. Drugs 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Wójcik-Pastuszka, D.; Krzak, J.; Macikowski, B.; Berkowski, R.; Osinski, B.; Musial, W. Evaluation of the release kinetics of a pharmacologically active substance from model intra-articular implants replacing the cruciate ligaments of the knee. Materials 2019, 12, 1202. [Google Scholar]
Run No. | Soluplus® (mg) | Poloxamer 188 (mg) | Z-Average (nm) | PdI |
---|---|---|---|---|
1 | 100 | 50 | 165.6 ± 7.4 | 0.316 ± 0.016 |
2 | 100 | 75 | 145.7 ± 4.6 | 0.341 ± 0.022 |
3 | 100 | 75 | 180.6 ± 3.7 | 0.440 ± 0.031 |
4 | 150 | 50 | 143.4 ± 2.2 | 0.257 ± 0.009 |
5 | 150 | 75 | 127.4 ± 5.9 | 0.201 ± 0.010 |
6 | 150 | 100 | 137.2 ± 8.1 | 0.345 ± 0.028 |
7 | 200 | 50 | 287.7 ± 4.1 | 0.554 ± 0.012 |
8 | 200 | 75 | 255.2 ± 13.4 | 0.410 ± 0.046 |
9 | 200 | 100 | 214.9 ± 2.8 | 0.276 ± 0.007 |
Run No. | SA (% w/v) | Ca2+ (% w/v) | Drop Rate (mL/min) | Released MET at 8 h (%) | Released PIO at 8 h (%) |
---|---|---|---|---|---|
1 | 4.0 | 3.0 | 2.0 | 67.23 ± 2.65 | 71.14 ± 2.40 |
2 | 6.0 | 3.0 | 2.0 | 84.76 ± 4.12 | 82.02 ± 1.07 |
3 | 4.0 | 9.0 | 2.0 | 58.37 ± 3.91 | 60.11 ± 5.37 |
4 | 6.0 | 9.0 | 2.0 | 64.12 ± 2.10 | 65.01 ± 3.82 |
5 | 4.0 | 6.0 | 1.0 | 63.87 ± 4.64 | 61.65 ± 2.91 |
6 | 6.0 | 6.0 | 1.0 | 71.84 ± 2.06 | 74.02 ± 3.11 |
7 | 4.0 | 6.0 | 3.0 | 61.08 ± 7.55 | 58.26 ± 2.35 |
8 | 6.0 | 6.0 | 3.0 | 77.68 ± 0.98 | 79.94 ± 4.58 |
9 | 5.0 | 3.0 | 1.0 | 61.24 ± 3.16 | 59.70 ± 7.42 |
10 | 5.0 | 9.0 | 1.0 | 70.64 ± 3.51 | 72.79 ± 2.08 |
11 | 5.0 | 3.0 | 3.0 | 60.03 ± 2.85 | 61.28 ± 0.43 |
12 | 5.0 | 9.0 | 3.0 | 55.97 ± 3.77 | 59.15 ± 4.01 |
13 | 5.0 | 6.0 | 2.0 | 66.30 ± 5.15 | 66.12 ± 8.29 |
14 | 5.0 | 6.0 | 2.0 | 72.14 ± 3.87 | 71.09 ± 3.20 |
15 | 5.0 | 6.0 | 2.0 | 69.10 ± 2.54 | 72.42 ± 1.93 |
Model | MET | PIO | |
---|---|---|---|
Zero order | k0 (µg h−1) | 7.8714 | 7.9351 |
R2 | 0.9354 | 0.9330 | |
t0.5 (h) | 6.37 | 6.30 | |
First order | k1 (h−1) × 10−3 | 126.3 | 129.1 |
R2 | 0.9890 | 0.9871 | |
t0.5 (h) | 5.49 | 5.37 | |
Second order | k2 (µg−1 h−1) × 10−5 | 279.0 | 290.5 |
R2 | 0.9684 | 0.9682 | |
t0.5 (h) | 3.85 | 3.72 | |
Korsmeyer–Peppas | kK-P (h−n) × 10−3 | 4.88 | 4.73 |
n | 0.5776 | 0.5667 | |
R2 | 0.9752 | 0.9844 | |
t0.5 (h) | 5.61 | 6.40 | |
Higuchi | kH (µg h−1/2) | 22.805 | 23.097 |
R2 | 0.9643 | 0.9983 | |
t0.5 (h) | 4.67 | 4.69 | |
Hixon–Crowell | kH-C (µg1/3 h−1) × 10−3 | 0.1883 | 0.1926 |
R2 | 0.9741 | 0.9732 | |
t0.5 (h) | 5.08 | 4.97 | |
Best fit | First order | Higuchi |
Levels | |||
---|---|---|---|
Independent Factors | −1 | 0 | +1 |
Soluplus® (mg) | 100 | 150 | 200 |
Poloxamer 188 (mg) | 50 | 75 | 100 |
Levels | |||
---|---|---|---|
Independent Factors | −1 | 0 | +1 |
SA concentration (mg/mL) | 4.0 | 5.0 | 6.0 |
Ca2+ concentration (mg/mL) | 3.0 | 6.0 | 9.0 |
Flow rate (ml/min) | 1.0 | 2.0 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sipos, B.; Benei, M.; Katona, G.; Csóka, I. Optimization and Characterization of Sodium Alginate Beads Providing Extended Release for Antidiabetic Drugs. Molecules 2023, 28, 6980. https://doi.org/10.3390/molecules28196980
Sipos B, Benei M, Katona G, Csóka I. Optimization and Characterization of Sodium Alginate Beads Providing Extended Release for Antidiabetic Drugs. Molecules. 2023; 28(19):6980. https://doi.org/10.3390/molecules28196980
Chicago/Turabian StyleSipos, Bence, Márk Benei, Gábor Katona, and Ildikó Csóka. 2023. "Optimization and Characterization of Sodium Alginate Beads Providing Extended Release for Antidiabetic Drugs" Molecules 28, no. 19: 6980. https://doi.org/10.3390/molecules28196980
APA StyleSipos, B., Benei, M., Katona, G., & Csóka, I. (2023). Optimization and Characterization of Sodium Alginate Beads Providing Extended Release for Antidiabetic Drugs. Molecules, 28(19), 6980. https://doi.org/10.3390/molecules28196980