Dynamic Instrumental and Sensory Methods Used to Link Aroma Release and Aroma Perception: A Review
Abstract
:1. Introduction
2. Dynamic Sensory Methods to Analyze Aroma Perception
3. Dynamic Instrumental Methods to Analyze In Vivo Aroma Release
4. Aroma-Release and Sensory Evaluation Conducted Simultaneously
Food Product | Type of Variation Studied | Number of Panelists (replicates) | Sensory Method | Instrumental Method | Relevant Findings | Reference |
---|---|---|---|---|---|---|
Carvone-flavored gelatin gels | Carvone concentration | 14 | TI | APCI | Linear relationship between stimulus and perception. Effect of speed of eating on adaptation to the stimulus. | Hollowood et al., 2000 [115] |
Rosemary-flavored solid food | Flavoring time in process | 6 | TI | APCI | Correlation between aroma release and simultaneous perception of rosemary flavor. | Cook et al., 2005 [5] |
Flavored yogurt | Fat content | 10 (5) | Modified DTI (questionnaire) | APCI | Quicker and greater aroma release in low-fat yogurts but with less persistence. Lipophilic compounds more affected by fat for Imax but not for Tmax or persistence. Significant sensory differences (intensity and timing) evidenced. Differences in particle size and viscosity might also affect aroma release. | Brauss et al., 1999 [118] |
Flavored milk | Fat content | 98 (4) | Paired test * | APCI | Good correlation between aroma delivery and perception, with higher intensity in low-fat milk. | Shojaei et al., 2006 [119] |
Flavored liquid emulsions | Fat content | 6 (3) | TI | PTR | Significant effect of fat on release and perception and on pre- and post-swallow events. | Frank et al., 2011 [120] |
Flavored model gels | Gelatin concentration | 11 | TI | APCI | Decreased aroma perception on increasing gelatin concentration with no significant differences in aroma release (texture–aroma cross-modal interaction). Correlation of sensory data with the different rates of aroma release in the different gels. | Baek et al., 1999 [123] |
Flavored whey protein gels | Whey protein content | 10 (3) | TI | APCI | Texture of gels determines perception of aroma intensity rather than in-nose aroma concentration. Texture–aroma cross-modal interactions evidenced. | Weel et al., 2002 [124] |
Flavored model gel | Whey protein content | 7 (3) | TI | PTR | Correlation between individual-specific consumption patterns and respective sensory perception. Correlation between gel texture and release patterns and corresponding aroma perception. | Mestres et al., 2006 [17] |
Flavored, stirred yogurts | Viscosity (protein content and mechanical treatment) | 8 (4) | 3-points DTI ** | APCI | Complex viscosity of yogurts influenced in-nose release and perception. Aroma release and perception stronger in low-viscosity yogurts than in high-viscosity ones. Aroma release and perception more influenced by mechanical treatment than by protein composition. | Saint-Eve et al., 2006 [126] |
Flavored candies | Gelatin concentration; melting or chewing protocols | 12 (4) | TDS | PTR | Highest aroma release (Imax) obtained with low gelatin content. Aroma release determined by interaction between product properties and oral behavior. Relationships between dynamics of release and perception established for temporal parameters. | Déléris et al., 2011 [125] |
Flavored model gels | Thickener type and level; sugar and flavor level | 6 | TI | APCI | Significant correlation between stimulus and perception depending on gel strength. Effect of speed of eating on adaptation to the stimulus. | Linforth et al., 1999 [117] |
Flavored model custards | Thickener and sugar level | 7 (6) | TI | APCI | Perceptual sweetness–aroma interactions, whatever the texture of the desserts. | Lethuaut et al., 2004 [127] |
Mint-flavored commercial chewing gum | Gum type | 11 (3) | TI | APCI | Decreasing perception of mint flavor followed sucrose release rather than menthone release. Sweetness–aroma cross-modal interaction evidenced. | Davidson et al., 1999 [128] |
Mint-flavored carbonated beverages | CO2 and sugar level | 4 (8) | 3-points DTI ** | PTR | CO2 increased aroma release and perception regardless of sugar content. Perceptual sweetness–aroma interactions evidenced. Impact of sugar content on aroma release but not on perception for carbonated beverages. | Saint-Eve et al., 2009 [129] |
Soft cheeses | Cheese type | 15 (3) | TI | APCI | Correlation between temporal sulfury notes and main sulfur compounds’ temporal release. Sensitivity and technical limitations of APCI evidenced for highlighting other relationships. | Salles et al., 2003 [130] |
Alcoholic beverages | Spitting out or Swallowing | 10 (4) | TDS | PTR | On swallowing, aroma-release data partly accounted for the observed differences in perception. | Déléris et al., 2011 [131] |
Espresso coffee | Roasting degree and sugar level | 18 (3) | TDS | PTR-ToF | Significant effect of roasting on release and perception. Sweet taste–smell perceptual interaction. | Charles et al., 2015 [132] |
Commercial flavored (“garlic and herbs”) fresh cheeses | Brand | 16 (2) | TDS | PTR-ToF | Significant relationships between dominant sensations and released aromas highlighted in correspondence analyses (CA) of abundance while dominant (AWD) indices ***. | Schlich et al., 2015 [48] |
Dark chocolate | Categorized sensory properties | 12 (3) | TDS | PTR-ToF | Sensory categories confirmed by TDS. Significant relationships between dominant sensations and released aromas revealed by CA of AWD indices ***. | Deuscher et al., 2019 [133,134,135] |
Dark chocolate | Sensory properties | 16 (2) | TDS and TCATA | PTR-ToF | Samples differentiation confirmed by sensory (both TDS and TCATA) and aroma release. Relationships between dominant sensations (TDS) or cited attributes (TCATA) and released aromas revealed by CA of AWD indices ***. | Le Quéré et al., 2021 [53] |
Commercial mint chewing-gums | Ethnicity, gender, and physiology | 29 (3) | DTI | PTR-ToF | Effect of ethnicity on correlated aroma release and perception not explained by physiological parameters. No gender effect. | Pedrotti et al., 2019 [137] |
Composite food (lemon-flavored mayonnaise on carrier foods) | Fat content and viscosity level; carrier food | 14 (3) | TI | PTR-ToF | Increasing mayonnaise viscosity resulted in lower aroma release and perception. Addition of carriers increased in-nose aroma release while decreasing perceived aroma intensity. Carrier addition modulates aroma perception of composite foods by cross-modal texture–aroma interactions. | Van Eck et al., 2021 [138] |
Composite food (flavored chocolate-hazelnut spreads on carrier foods) | Fat and sugar content; carrier food | 8 (3) | TCATA | PTR-ToF | Carriers’ attributes perceived at beginning of consumption, while spreads’ attributes perceived after swallowing. Limited effect of fat and sugar content on aroma release and perception. Addition of carriers increased aroma release (duration and intensity) and decreased perception. Cross-modal texture–aroma interactions evidenced. | Gonzalez-Estanol et al., 2023 [139] |
Red wine | Oenological tannins; wine oxidation | 17 (2) | TDS | PTR-ToF | Addition of ellagitannin extract in wine impacts the dynamic of sensations of oxidized wine and the length of aroma release in mouth and preserves fruitiness under oxidative conditions. | Pittari et al., 2022 [140] |
Flavored solutions | Capsaicin present or not | 15 (3) | Sequential profiling | APCI | No significant impact of capsaicin on aroma release but aroma perception significantly higher. Capsaicin enhanced saliva flow. | Yang et al., 2021 [141] |
Flavored, four-layer, hot flans | Odor-induced saltiness enhancement; heterogeneous distribution of flavor compounds | 15 (3) | ATI **** | PTR-ToF | Increased aroma release and perception in products salted homogeneously. Increased saltiness in heterogeneously salted products regardless of aroma distribution. | Emorine et al., 2021 [41] |
5. Aroma Release and Aroma Perception: Is the Link So Close?
5.1. The Food Matrix
5.2. Cross-Modal Interactions
5.3. Inter-Individual Variability
6. Concluding Remarks and Future Trends
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinding, C.; Thibault, H.; Hummel, T.; Thomas-Danguin, T. Odor-Induced Saltiness Enhancement: Insights Into The Brain Chronometry Of Flavor Perception. Neuroscience 2021, 452, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Schieberle, P.; Hofmann, T. Mapping the combinatorial code of food flavors by means of molecular sensory science approach. In Food Flavors: Chemical, Sensory and Technological Properties; Jelen, H., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 413–438. [Google Scholar] [CrossRef]
- Buettner, A.; Beauchamp, J. Chemical input—Sensory output: Diverse modes of physiology–flavour interaction. Food Qual. Pref. 2010, 21, 915–924. [Google Scholar] [CrossRef]
- Rochelle, M.M.; Prévost, G.J.; Acree, T.E. Computing Odor Images. J. Agric. Food Chem. 2018, 66, 2219–2225. [Google Scholar] [CrossRef]
- Cook, D.J.; Hollowood, T.A.; Linforth, R.S.T.; Taylor, A.J. Correlating instrumental measurements of texture and flavour release with human perception. Int. J. Food Sci. Technol. 2005, 40, 631–641. [Google Scholar] [CrossRef]
- Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann, T. Nature’s Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology. Angew. Chem. Int. Edit. 2014, 53, 7124–7143. [Google Scholar] [CrossRef]
- Guichard, E. Interactions between flavor compounds and food ingredients and their influence on flavor perception. Food Rev. Int. 2002, 18, 49–70. [Google Scholar] [CrossRef]
- Monteleone, E.; Dinnella, C. General considerations. In Time-Dependent Measures of Perception in Sensory Evaluation; Hort, J., Kemp, S.E., Hollowood, T., Eds.; Wiley-Blackwell: Chichester, UK, 2017; pp. 159–181. [Google Scholar] [CrossRef]
- DeRovira, D. The dynamic flavor profile method. Food Technol. 1996, 50, 55–60. [Google Scholar]
- Piggott, J.R. Dynamism in flavour science and sensory methodology. Food Res. Int. 2000, 33, 191–197. [Google Scholar] [CrossRef]
- Seuvre, A.-M.; Voilley, A. Physico-Chemical Interactions in the Flavor-Release Process. In Springer Handbook of Odor; Buettner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 273–302. [Google Scholar] [CrossRef]
- Salles, C.; Chagnon, M.-C.; Feron, G.; Guichard, E.; Laboure, H.; Morzel, M.; Semon, E.; Tarrega, A.; Yven, C. In-Mouth Mechanisms Leading to Flavor Release and Perception. Crit. Rev. Food Sci. Nutr. 2011, 51, 67–90. [Google Scholar] [CrossRef]
- Salles, C.; Benjamin, O. Models of the Oral Cavity for the Investigation of Olfaction. In Springer Handbook of Odor; Buettner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 303–318. [Google Scholar] [CrossRef]
- Tarrega, A.; Yven, C.; Sémon, E.; Salles, C. In-mouth aroma compound release during cheese consumption: Relationship with food bolus formation. Int. Dairy J. 2011, 21, 358–364. [Google Scholar] [CrossRef]
- Tarrega, A.; Yven, C.; Sémon, E.; Salles, C. Aroma release and chewing activity during eating different model cheeses. Int. Dairy J. 2008, 18, 849–857. [Google Scholar] [CrossRef]
- Buettner, A.; Otto, S.; Beer, A.; Mestres, M.; Schieberle, P.; Hummel, T. Dynamics of retronasal aroma perception during consumption: Cross-linking on-line breath analysis with medico-analytical tools to elucidate a complex process. Food Chem. 2008, 108, 1234–1246. [Google Scholar] [CrossRef]
- Mestres, M.; Kieffer, R.; Buettner, A. Release and Perception of Ethyl Butanoate during and after Consumption of Whey Protein Gels: Relation between Textural and Physiological Parameters. J. Agric. Food Chem. 2006, 54, 1814–1821. [Google Scholar] [CrossRef]
- Roberts, D.D.; Pollien, P.; Yeretzian, C.; Lindinger, C. Nosespace analysis with proton-transfer-reaction mass spectrometry: Intra- and interpersonal variability. In Handbook of Flavor Characterization; Deibler, K.D., Delwiche, J., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2004; pp. 151–162. [Google Scholar] [CrossRef]
- Biasioli, F.; Yeretzian, C.; Märk, T.D.; Dewulf, J.; Van Langenhove, H. Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. Trac-Trends Anal. Chem. 2011, 30, 1003–1017. [Google Scholar] [CrossRef]
- Taylor, A.J.; Beauchamp, J.D.; Langford, V.S. Non-destructive and High-Throughput—APCI-MS, PTR-MS and SIFT-MS as Methods of Choice for Exploring Flavor Release. In Dynamic Flavor: Capturing Aroma Using Real-Time Mass Spectrometry; Beauchamp, J.D., Ed.; American Chemical Society: Washington, DC, USA, 2021; Volume 1402, pp. 1–16. [Google Scholar] [CrossRef]
- Taylor, A.J.; Linforth, R.S.T. Flavour release in the mouth. Trends Food Sci. Technol. 1996, 7, 444–448. [Google Scholar] [CrossRef]
- Taylor, A.J.; Linforth, R.S.T.; Harvey, B.A.; Blake, A. Atmospheric pressure chemical ionisation mass spectrometry for in vivo analysis of volatile flavour release. Food Chem. 2000, 71, 327–338. [Google Scholar] [CrossRef]
- Taylor, A.J. Release and transport of flavors in vivo: Physicochemical, physiological, and perceptual considerations. Comp. Rev. Food Sci. Food Saf. 2002, 1, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, J.; Zardin, E. Odorant Detection by On-line Chemical Ionization Mass Spectrometry. In Handbook of Odor; Buettner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 355–408. [Google Scholar] [CrossRef]
- Hort, J.; Kemp, S.E.; Hollowood, T. (Eds.) Time-Dependent Measures of Perception in Sensory Evaluation; Wiley Blackwell: Chichester, UK, 2017. [Google Scholar]
- Dijksterhuis, G.B.; Piggott, J.R. Dynamic methods of sensory analysis. Trends Food Sci. Technol. 2000, 11, 284–290. [Google Scholar] [CrossRef]
- Larson-Powers, N.; Pangborn, R.M. Paired comparison and Time-Intensity measurements of the sensory properties of beverages and gelatins containing sucrose or synthetic sweeteners. J. Food Sci. 1978, 43, 41–46. [Google Scholar] [CrossRef]
- Duizer, L.M.; Bloom, K.; Findlay, C.J. Dual-attribute time-intensity sensory evaluation: A new method for temporal measurement of sensory perceptions. Food Qual. Pref. 1997, 8, 261–269. [Google Scholar] [CrossRef]
- Pionnier, E.; Nicklaus, S.; Chabanet, C.; Mioche, L.; Taylor, A.J.; Le Quéré, J.L.; Salles, C. Flavor perception of a model cheese: Relationships with oral and physico-chemical parameters. Food Qual. Pref. 2004, 15, 843–852. [Google Scholar] [CrossRef]
- Kuesten, C.; Bi, J.; Feng, Y. Exploring taffy product consumption experiences using a multi-attribute time–intensity (MATI) method. Food Qual. Pref. 2013, 30, 260–273. [Google Scholar] [CrossRef]
- Pineau, N.; Schlich, P.; Cordelle, S.; Mathonniere, C.; Issanchou, S.; Imbert, A.; Rogeaux, M.; Etievant, P.; Koster, E.P. Temporal Dominance of Sensations: Construction of the TDS curves and comparison with time-intensity. Food Qual. Pref. 2009, 20, 450–455. [Google Scholar] [CrossRef]
- Castura, J.C.; Antúnez, L.; Giménez, A.; Ares, G. Temporal Check-All-That-Apply (TCATA): A novel dynamic method for characterizing products. Food Qual. Pref. 2016, 47, 79–90. [Google Scholar] [CrossRef]
- Visalli, M.; Galmarini, M.V. Multi-attribute temporal descriptive methods in sensory analysis applied in food science: Protocol for a scoping review. PLoS ONE 2022, 17, e0270969. [Google Scholar] [CrossRef]
- Cliff, M.; Heymann, H. Development and use of time-intensity methodology for sensory evaluation: A review. Food Res. Int. 1993, 26, 375–385. [Google Scholar] [CrossRef]
- Meiselman, H.L.; Jaeger, S.R.; Carr, B.T.; Churchill, A. Approaching 100 years of sensory and consumer science: Developments and ongoing issues. Food Qual. Pref. 2022, 100, 104614. [Google Scholar] [CrossRef]
- Chaya, C. Continuous time-intensity. In Time-Dependent Measures of Perception in Sensory Evaluation; Hort, J., Kemp, S.E., Hollowood, T., Eds.; Wiley-Blackwell: Chichester, UK, 2017; pp. 237–266. [Google Scholar] [CrossRef]
- Clark, C.C.; Lawless, H.T. Limiting response alternatives in time-intensity scaling: An examination of the halo-dumping effect. Chem. Senses 1994, 19, 583–594. [Google Scholar] [CrossRef]
- Findlay, C.J. Dual-attribute time-intensity. In Time-Dependent Measures of Perception in Sensory Evaluation; Hort, J., Kemp, S.E., Hollowood, T., Eds.; Wiley-Blackwell: Chichester, UK, 2017; pp. 267–282. [Google Scholar] [CrossRef]
- Kuesten, C. Time-intensity using discrete time points. In Time-Dependent Measures of Perception in Sensory Evaluation; Hort, J., Kemp, S.E., Hollowood, T., Eds.; Wiley-Blackwell: Chichester, UK, 2017; pp. 182–236. [Google Scholar] [CrossRef]
- Hort, J.; Hollowood, T.; Kemp, S.E. Summary. In Time-Dependent Measures of Perception in Sensory Evaluation; Hort, J., Kemp, S.E., Hollowood, T., Eds.; Wiley Blackwell: Chichester, UK, 2017; pp. 401–416. [Google Scholar] [CrossRef]
- Emorine, M.; Septier, C.; Martin, C.; Cordelle, S.; Sémon, E.; Thomas-Danguin, T.; Salles, C. Salt and Aroma Compound Distributions Influence Flavour Release and Temporal Perception While Eating Hot-Served Flans. Molecules 2021, 26, 1300. [Google Scholar] [CrossRef] [PubMed]
- Gordin, H.H. Intensity variation descriptive methodology: Development and application of a new sensory evaluation technique. J. Sens. Stud. 1987, 2, 187–198. [Google Scholar] [CrossRef]
- Jack, F.R.; Piggott, J.R.; Paterson, A. Analysis of Textural Changes in Hard Cheese during Mastication by Progressive Profiling. J. Food Sci. 1994, 59, 539–543. [Google Scholar] [CrossRef]
- Seo, H.-S.; Lee, M.; Jung, Y.-J.; Hwang, I. A novel method of descriptive analysis on hot brewed coffee: Time scanning descriptive analysis. Eur. Food Res. Technol. 2009, 228, 931–938. [Google Scholar] [CrossRef]
- Methven, L.; Rahelu, K.; Economou, N.; Kinneavy, L.; Ladbrooke-Davis, L.; Kennedy, O.B.; Mottram, D.S.; Gosney, M.A. The effect of consumption volume on profile and liking of oral nutritional supplements of varied sweetness: Sequential profiling and boredom tests. Food Qual. Pref. 2010, 21, 948–955. [Google Scholar] [CrossRef]
- Schlich, P.; Pineau, N. Temporal Dominance of Sensations. In Time-Dependent Measures of Perception in Sensory Evaluation; Hort, J., Kemp, S.E., Hollowood, T., Eds.; Wiley Blackwell: Chichester, UK, 2017; pp. 283–320. [Google Scholar] [CrossRef]
- Schlich, P. Temporal Dominance of Sensations (TDS): A new deal for temporal sensory analysis. Curr. Opin. Food Sci. 2017, 15 (Suppl. C), 38–42. [Google Scholar] [CrossRef]
- Schlich, P.; Thomas, A.; Visalli, M.; Labarre, D.; Sémon, E.; Le Quéré, J.-L. Collecting and analysing in vivo aroma release and perception by pairing nosespace PTR-ToF-MS and Temporal Dominance of Sensations. In Flavour Science: Proceedings of the XIV Weurman Flavour Research Symposium; Taylor, A.J., Mottram, D.S., Eds.; Context Products Ltd.: Leicestershire, UK, 2015; pp. 327–332. [Google Scholar]
- Varela, P.; Antúnez, L.; Carlehög, M.; Alcaire, F.; Castura, J.C.; Berget, I.; Giménez, A.; Næs, T.; Ares, G. What is dominance? An exploration of the concept in TDS tests with trained assessors and consumers. Food Qual. Pref. 2018, 64, 72–81. [Google Scholar] [CrossRef]
- Adams, J.; Williams, A.; Lancaster, B.; Foley, M. Advantages and uses of check-all-that-apply response compared to traditional scaling of attributes for salty snacks. In Proceedings of the 7th Pangborn Sensory Science Symposium, Minneapolis, MN, USA, 12 August 2007. [Google Scholar]
- Jaeger, S.R.; Beresford, M.K.; Hunter, D.C.; Alcaire, F.; Castura, J.C.; Ares, G. Does a familiarization step influence results from a TCATA task? Food Qual. Pref. 2017, 55, 91–97. [Google Scholar] [CrossRef]
- Meyners, M.; Castura, J.C. The analysis of temporal check-all-that-apply (TCATA) data. Food Qual. Pref. 2018, 67, 67–76. [Google Scholar] [CrossRef]
- Le Quéré, J.L.; Hélard, C.; Labouré, H.; Andriot, I.; Cordelle, S.; Schlich, P. Nosespace PTR-MS analysis with simutaneous TDS or TCATA sensory evaluation: Release and perception of the aroma of dark chocolates differing in sensory properties. In Proceedings of the American Chemical Society Annual Meeting, Online, 5–6 April 2021; American Chemical Society: Washington, DC, USA, 2021. [Google Scholar]
- Ares, G.; Jaeger, S.R.; Antunez, L.; Vidal, L.; Gimenez, A.; Coste, B.; Picallo, A.; Castura, J.C. Comparison of TCATA and TDS for dynamic sensory characterization of food products. Food Res. Int. 2015, 78, 148–158. [Google Scholar] [CrossRef]
- Ares, G.; Alcaire, F.; Antúnez, L.; Vidal, L.; Giménez, A.; Castura, J.C. Identification of drivers of (dis)liking based on dynamic sensory profiles: Comparison of Temporal Dominance of Sensations and Temporal Check-all-that-apply. Food Res. Int. 2017, 92, 79–87. [Google Scholar] [CrossRef]
- Agudelo, A.; Varela, P.; Fiszman, S. Methods for a deeper understanding of the sensory perception of fruit fillings. Food Hydrocoll. 2015, 46, 160–171. [Google Scholar] [CrossRef]
- Bemfeito, R.M.; Rodrigues, J.F.; Silva, J.G.e.; Abreu, L.R. Temporal dominance of sensations sensory profile and drivers of liking of artisanal Minas cheese produced in the region of Serra da Canastra, Brazil. J. Dairy Sci. 2016, 99, 7886–7897. [Google Scholar] [CrossRef]
- Nguyen, Q.C.; Næs, T.; Varela, P. When the choice of the temporal method does make a difference: TCATA, TDS and TDS by modality for characterizing semi-solid foods. Food Qual. Pref. 2018, 66, 95–106. [Google Scholar] [CrossRef]
- Gonzalez-Estanol, K.; Cliceri, D.; Biasioli, F.; Stieger, M. Differences in dynamic sensory perception between reformulated hazelnut chocolate spreads decrease when spreads are consumed with breads and wafers. Food Qual. Pref. 2022, 98, 104532. [Google Scholar] [CrossRef]
- Pecore, S.; Rathjen-Nowak, C.; Tamminen, T. Temporal order of sensations. In Proceedings of the 9th Pangborn Sensory Science Symposium, Toronto, ON, Canada, 15 April 2011. [Google Scholar]
- Vandeputte, A.; Romans, J.; Pineau, N.; Lenfant, F. Innovative methods to assess the evolution of the sensory characteristics during the tasting of a full product portion (several bites). In Proceedings of the 9th Pangborn Sensory Science Symposium, Toronto, ON, Canada, 15 April 2011. [Google Scholar]
- Visalli, M.; Mahieu, B.; Thomas, A.; Schlich, P. Concurrent vs. retrospective temporal data collection: Attack-evolution-finish as a simplification of Temporal Dominance of Sensations? Food Qual. Pref. 2020, 85, 103956. [Google Scholar] [CrossRef]
- Mahieu, B.; Visalli, M.; Thomas, A.; Schlich, P. Using Free-Comment with consumers to obtain temporal sensory descriptions of products. Food Qual. Pref. 2020, 86, 104008. [Google Scholar] [CrossRef]
- Visalli, M.; Wakihira, T.; Schlich, P. Concurrent vs. immediate retrospective temporal sensory data collection: A case study on lemon-flavoured carbonated alcoholic drinks. Food Qual. Pref. 2022, 101, 104629. [Google Scholar] [CrossRef]
- Linforth, R.S.T.; Taylor, A.J. Measurement of Volatile Release in the Mouth. Food Chem. 1993, 48, 115–120. [Google Scholar] [CrossRef]
- Taylor, A.J.; Linforth, R.S.T. Methodology for measuring volatile profiles in the mouth and nose during eating. In Trends in Flavour Research; Maarse, H., Van der Heij, D.G., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 3–14. [Google Scholar]
- Pionnier, E.; Chabanet, C.; Mioche, L.; Le Quéré, J.L.; Salles, C. In Vivo Aroma Release during Eating of a Model Cheese: Relationships with Oral Parameters. J. Agric. Food Chem. 2004, 52, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Pionnier, E.; Semon, E.; Chabanet, C.; Salles, C. Evaluation of the solid phase microextraction (SPME) technique for the analysis of human breath during eating. Sci. Aliment. 2005, 25, 193–206. [Google Scholar] [CrossRef]
- Linforth, R.S.T.; Ingham, K.E.; Taylor, A.J. Time course profiling of volatile release from foods during the eating process. In Flavour Science: Recent Developments; Taylor, A.J., Mottram, D.S., Eds.; The Royal Society of Chemistry: Cambridge, UK, 1996; pp. 361–368. [Google Scholar]
- Roberts, D.D.; Taylor, A.J. (Eds.) Flavor Release; American Chemical Society: Washington, DC, USA, 2000. [Google Scholar]
- Berchtold, C.; Bosilkovska, M.; Daali, Y.; Walder, B.; Zenobi, R. Real-time monitoring of exhaled drugs by mass spectrometry. Mass Spectrom. Rev. 2014, 33, 394–413. [Google Scholar] [CrossRef]
- Gaugg, M.T.; Gomez, D.G.; Barrios-Collado, C.; Vidal-de-Miguel, G.; Kohler, M.; Zenobi, R.; Martinez-Lozano Sinues, P. Expanding metabolite coverage of real-time breath analysis by coupling a universal secondary electrospray ionization source and high resolution mass spectrometry—A pilot study on tobacco smokers. J. Breath Res. 2016, 10, 016010. [Google Scholar] [CrossRef]
- Weber, R.; Kaeslin, J.; Moeller, S.; Perkins, N.; Micic, S.; Moeller, A. Effects of a Volatile Organic Compound Filter on Breath Profiles Measured by Secondary Electrospray High-Resolution Mass Spectrometry. Molecules 2023, 28, 45. [Google Scholar] [CrossRef] [PubMed]
- Bean, H.D.; Mellors, T.R.; Zhu, J.; Hill, J.E. Profiling Aged Artisanal Cheddar Cheese Using Secondary Electrospray Ionization Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 4386–4392. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, J.L.; Gierczynski, I.; Sémon, E. An atmospheric pressure chemical ionization—Ion-trap mass spectrometer for the on-line analysis of volatile compounds in foods: A tool for linking aroma release to aroma perception. J. Mass Spectrom. 2014, 49, 918–928. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, J.D. (Ed.) Dynamic Flavor: Capturing Aroma Using Real-Time Mass Spectrometry; American Chemical Society: Washington, DC, USA, 2021. [Google Scholar]
- Le Quéré, J.L.; Lucchi, G. Flavour and mass spectrometry. In Mass Spectrometry in Food Analysis; Nollet, L.M.L., Winkler, R., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 137–180. [Google Scholar] [CrossRef]
- Beauchamp, J.; Herbig, J. Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOFMS) for Aroma Compound Detection in Real-Time: Technology, Developments, and Applications. In The Chemical Sensory Informatics of Food: Measurement, Analysis, Integration; Guthrie, B., Beauchamp, J., Buettner, A., Lavine, B.K., Eds.; American Chemical Society: Washington, DC, USA, 2015; Volume 1191, pp. 235–251. [Google Scholar] [CrossRef]
- Taylor, A.J.; Linforth, R.S.T. On-line monitoring of flavour processes. In Food Flavour Technology; Taylor, A.J., Linforth, R.S.T., Eds.; Wiley-Blackwell: Chichester, UK, 2010; pp. 266–295. [Google Scholar]
- Linforth, R.S.T.; Taylor, A.J.; Brown, W.E. Volatile release from food in the mouth during the eating process. In Book Volatile Release from food in the Mouth during the Eating Process, Proceedings of COST Action 96 “Interaction of food Matrix with Small Ligands Influencing Flavour and Texture”, Valencia, Spain, 14–16 November 1996; Bakker, J., Ed.; Office for Official Publications of the European Communities: Luxembourg, 1998; pp. 78–81. [Google Scholar]
- Linforth, R.S.T.; Taylor, A.J. Apparatus and Method for the Analysis of Trace Constituents in Gases. Patent EP0819937A3, 21 January 1998. [Google Scholar]
- Taylor, A.J. Flavor Applications of Direct APCI-MS. In Dynamic Flavor: Capturing Aroma Using Real-Time Mass Spectrometry; Beauchamp, J.D., Ed.; American Chemical Society: Washington, DC, USA, 2021; Volume 1402, pp. 17–31. [Google Scholar] [CrossRef]
- Sémon, E.; Gierczynski, I.; Langlois, D.; Le Quéré, J.L. Analysis of aroma compounds by atmospheric pressure chemical ionisation—Ion trap mass spectrometry. Construction and validation of an interface for in vivo analysis of human breath volatile content. In Proceedings of the 16th International Mass Spectrometry Conference, Edinburgh, Scotland, 31 August–5 September 2003; Ashcroft, A.E., Brenton, G., Monaghan, J.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; CD-ROM Supplement, abstract 324. [Google Scholar]
- Jublot, L.; Linforth, R.S.T.; Taylor, A.J. Direct atmospheric pressure chemical ionisation ion trap mass spectrometry for aroma analysis: Speed, sensitivity and resolution of isobaric compounds. Int. J. Mass Spectrom. 2005, 243, 269–277. [Google Scholar] [CrossRef]
- Zehentbauer, G.; Krick, T.; Reineccius, G.A. Use of humidified air in optimizing APCI-MS response in breath analysis. J. Agric. Food Chem. 2000, 48, 5389–5395. [Google Scholar] [CrossRef] [PubMed]
- Haahr, A.M.; Madsen, H.; Smedsgaard, J.; Bredie, W.L.P.; Stahnke, L.H.; Refsgaard, H.H.F. Flavor Release Measurement by Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometry, Construction of Interface and Mathematical Modeling of Release Profiles. Anal. Chem. 2003, 75, 655–662. [Google Scholar] [CrossRef]
- Hatakeyama, J.; Taylor, A.J. Optimization of atmospheric pressure chemical ionization triple quadropole mass spectrometry (MS Nose 2) for the rapid measurement of aroma release in vivo. Flavour Fragr. J. 2019, 34, 307–315. [Google Scholar] [CrossRef]
- Kornbausch, N.; Debong, M.W.; Buettner, A.; Heydel, J.-M.; Loos, H. Odorant Metabolism in Humans. Angew. Chem.-Int. Edit. 2022, 61, e202202866. [Google Scholar] [CrossRef]
- Linforth, R.; Martin, F.; Carey, M.; Davidson, J.; Taylor, A.J. Retronasal Transport of Aroma Compounds. J. Agric. Food Chem. 2002, 50, 1111–1117. [Google Scholar] [CrossRef]
- Lindinger, W.; Hirber, J.; Paretzke, H. An ion/molecule-reaction mass spectrometer used for on-line trace gas analysis. Int. J. Mass Spectrom. Ion Proc. 1993, 129, 79–88. [Google Scholar] [CrossRef]
- Ellis, A.M.; Mayhew, C.A. Proton Transfer Reaction Mass Spectrometry. Principles and Applications; Wiley: Chichester, UK, 2014. [Google Scholar]
- Blake, R.S.; Monks, P.S.; Ellis, A.M. Proton-Transfer Reaction Mass Spectrometry. Chem. Rev. 2009, 109, 861–896. [Google Scholar] [CrossRef] [PubMed]
- Lindinger, W.; Fall, R.; Karl, T.G. Environmental, food and medical applications of Proton-Transfer-Reaction mass spectrometry (PTR-MS). Adv. Gas-Phase Ion Chem. 2001, 4, 1–48. [Google Scholar] [CrossRef]
- Lindinger, W.; Hansel, A.; Jordan, A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) Medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion Proc. 1998, 173, 191–241. [Google Scholar] [CrossRef]
- Yeretzian, C.; Jordan, A.; Brevard, H.; Lindinger, W. Time-resolved headspace analysis by proton-transfer-reaction mass-spectrometry. In Flavor release; Roberts, D.D., Taylor, A.J., Eds.; American Chemical Society: Washington, DC, UK, 2000; pp. 58–72. [Google Scholar]
- Smith, D.; Španěl, P.; Demarais, N.; Langford, V.S.; McEwan, M.J. Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS). Mass Spectrom. Rev. 2023, 12, e21835. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P. Status of selected ion flow tube MS: Accomplishments and challenges in breath analysis and other areas. Bioanalysis 2016, 8, 1183–1201. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P. Pitfalls in the analysis of volatile breath biomarkers: Suggested solutions and SIFT–MS quantification of single metabolites. J. Breath Res. 2015, 9, 022001. [Google Scholar] [CrossRef]
- Xu, Y.; Barringer, S. Comparison of Volatile Release in Tomatillo and Different Varieties of Tomato during Chewing. J. Food Sci. 2010, 75, C352–C358. [Google Scholar] [CrossRef]
- Ozcan, G.; Barringer, S. Effect of Enzymes on Strawberry Volatiles during Storage, at Different Ripeness Level, in Different Cultivars, and during Eating. J. Food Sci. 2011, 76, C324–C333. [Google Scholar] [CrossRef]
- Castada, H.Z.; Barringer, S.A. Online, real-time, and direct use of SIFT-MS to measure garlic breath deodorization: A review. Flavour Fragr. J. 2019, 34, 299–306. [Google Scholar] [CrossRef]
- Langford, V.S.; Padayachee, D.; McEwan, M.J.; Barringer, S.A. Comprehensive odorant analysis for on-line applications using selected ion flow tube mass spectrometry (SIFT-MS). Flavour Fragr. J. 2019, 34, 393–410. [Google Scholar] [CrossRef]
- Mirondo, R.; Barringer, S. Deodorization of Garlic Breath by Foods, and the Role of Polyphenol Oxidase and Phenolic Compounds. J. Food Sci. 2016, 81, C2425–C2430. [Google Scholar] [CrossRef] [PubMed]
- Blake, R.S.; Whyte, C.; Hughes, C.O.; Ellis, A.M.; Monks, P.S. Demonstration of Proton-Transfer Reaction Time-of-Flight Mass Spectrometry for Real-Time Analysis of Trace Volatile Organic Compounds. Anal. Chem. 2004, 76, 3841–3845. [Google Scholar] [CrossRef]
- Jordan, A.; Haidacher, S.; Hanel, G.; Hartungen, E.; Märk, L.; Seehauser, H.; Schottkowsky, R.; Sulzer, P.; Märk, T.D. A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int. J. Mass Spectrom. 2009, 286, 122–128. [Google Scholar] [CrossRef]
- Romano, A.; Cappellin, L.; Ting, V.; Aprea, E.; Navarini, L.; Gasperi, F.; Biasioli, F. Nosespace analysis by PTR-ToF-MS for the characterization of food and tasters: The case study of coffee. Int. J. Mass Spectrom. 2014, 365–366, 20–27. [Google Scholar] [CrossRef]
- Beauchamp, J.D. Pushing the Boundaries of Dynamic Flavor Analysis with PTR-MS. In Dynamic Flavor: Capturing Aroma Using Real-Time Mass Spectrometry; Beauchamp, J.D., Ed.; American Chemical Society: Washington, DC, USA, 2021; Volume 1402, pp. 33–50. [Google Scholar] [CrossRef]
- Jordan, A.; Haidacher, S.; Hanel, G.; Hartungen, E.; Herbig, J.; Märk, L.; Schottkowsky, R.; Seehauser, H.; Sulzer, P.; Märk, T.D. An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+SRI−MS). Int. J. Mass Spectrom. 2009, 286, 32–38. [Google Scholar] [CrossRef]
- Müller, M.; Piel, F.; Gutmann, R.; Sulzer, P.; Hartungen, E.; Wisthaler, A. A novel method for producing NH4+ reagent ions in the hollow cathode glow discharge ion source of PTR-MS instruments. Int. J. Mass Spectrom. 2020, 447, 116254. [Google Scholar] [CrossRef]
- Swift, S.J.; Smith, D.; Dryahina, K.; Gnioua, M.O.; Španěl, P. Kinetics of reactions of NH4+ with some biogenic organic molecules and monoterpenes in helium and nitrogen carrier gases: A potential reagent ion for selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2022, 36, e9328. [Google Scholar] [CrossRef] [PubMed]
- Boisard, L.; Tournier, C.; Sémon, E.; Noirot, E.; Guichard, E.; Salles, C. Salt and fat contents influence the microstructure of model cheeses, chewing/swallowing and in vivo aroma release. Flavour Fragr. J. 2014, 29, 95–106. [Google Scholar] [CrossRef]
- Arancibia, C.; Jublot, L.; Costell, E.; Bayarri, S. Flavor release and sensory characteristics of o/w emulsions. Influence of composition, microstructure and rheological behavior. Food Res. Int. 2011, 44, 1632–1641. [Google Scholar] [CrossRef]
- Overington, A.R.; Eyres, G.T.; Delahunty, C.M.; Silcock, P.; Niimi, J.; Holland, R.; Coolbear, T. Flavour release and perception in cheese bases. Aust. J. Dairy Technol. 2011, 65, 162–164. [Google Scholar]
- Guichard, E.; Repoux, M.; Qannari, E.M.; Laboure, H.; Feron, G. Model cheese aroma perception is explained not only by in vivo aroma release but also by salivary composition and oral processing parameters. Food Funct. 2017, 8, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Hollowood, T.A.; Linforth, R.S.T.; Taylor, A.J. The relationship between carvone release and the perception of mintyness in gelatin gels. In Flavor Release; Roberts, D.D., Taylor, A.J., Eds.; American Chemical Society: Washington, DC, USA, 2000; pp. 370–380. [Google Scholar]
- Overbosch, P.; Afterof, W.G.M.; Haring, P.G.M. Flavor release in the mouth. Food Rev. Int. 1991, 7, 137–184. [Google Scholar] [CrossRef]
- Linforth, R.S.T.; Baek, I.; Taylor, A.J. Simultaneous instrumental and sensory analysis of volatile release from gelatine and pectin/gelatine gels. Food Chem. 1999, 65, 77–83. [Google Scholar] [CrossRef]
- Brauss, M.S.; Linforth, R.S.T.; Cayeux, I.; Harvey, B.; Taylor, A.J. Altering the fat content affects flavor release in a model yogurt system. J. Agric. Food Chem. 1999, 47, 2055–2059. [Google Scholar] [CrossRef]
- Shojaei, Z.A.; Linforth, R.S.T.; Hort, J.; Hollowood, T.; Taylor, A.J. Measurement and manipulation of aroma delivery allows control of perceived fruit flavour in low- and regular-fat milks. Int. J. Food Sci. Technol. 2006, 41, 1192–1196. [Google Scholar] [CrossRef]
- Frank, D.; Appelqvist, I.; Piyasiri, U.; Wooster, T.J.; Delahunty, C. Proton Transfer Reaction Mass Spectrometry and Time Intensity Perceptual Measurement of Flavor Release from Lipid Emulsions Using Trained Human Subjects. J. Agric. Food Chem. 2011, 59, 4891–4903. [Google Scholar] [CrossRef]
- Miettinen, S.-M.; Hyvönen, L.; Linforth, R.S.T.; Taylor, A.J.; Tuorila, H. Temporal aroma delivery from milk systems containing 0-5% added fat, observed by free choice profiling, time intensity, and atmospheric pressure chemical ionization-mass spectrometry techniques. J. Agric. Food Chem. 2004, 52, 8111–8118. [Google Scholar] [CrossRef]
- Burseg, K.; Linforth, R.S.T.; Hort, J.; Taylor, A.J. Flavor Perception in Biscuits; Correlating Sensory Properties with Composition, Aroma Release, and Texture. Chemosens. Percept. 2009, 2, 70–78. [Google Scholar] [CrossRef]
- Baek, I.; Linforth, R.S.T.; Blake, A.; Taylor, A.J. Sensory perception is related to the rate of change of volatile concentration in-nose during eating of model gels. Chem. Senses 1999, 24, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Weel, K.G.C.; Boelrijk, A.E.M.; Alting, A.C.; vanMil, P.J.J.M.; Burger, J.J.; Gruppen, H.; Voragen, A.G.J.; Smit, G. Flavor release and perception of flavored whey protein gels: Perception is determined by texture rather than by release. J. Agric. Food Chem. 2002, 50, 5149–5155. [Google Scholar] [CrossRef] [PubMed]
- Déléris, I.; Saint-Eve, A.; Dakowski, F.; Sémon, E.; Le Quéré, J.-L.; Guillemin, H.; Souchon, I. The dynamics of aroma release during consumption of candies of different structures, and relationship with temporal perception. Food Chem. 2011, 127, 1615–1624. [Google Scholar] [CrossRef]
- Saint-Eve, A.; Martin, N.; Guillemin, H.; Sémon, E.; Guichard, E.; Souchon, I. Flavored Yogurt Complex Viscosity Influences Real-Time Aroma Release in the Mouth and Sensory Properties. J. Agric. Food Chem. 2006, 54, 7794–7803. [Google Scholar] [CrossRef] [PubMed]
- Lethuaut, L.; Weel, K.G.C.; Boelrijk, A.E.M.; Brossard, C.D. Flavor perception and aroma release from model dairy desserts. J. Agric. Food Chem. 2004, 52, 3478–3485. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.M.; Linforth, R.S.T.; Hollowood, T.A.; Taylor, A.J. Effect of sucrose on the perceived flavor intensity of chewing gum. J. Agric. Food Chem. 1999, 47, 4336–4340. [Google Scholar] [CrossRef]
- Saint-Eve, A.; Deleris, I.; Aubin, E.; Semon, E.; Feron, G.; Rabillier, J.-M.; Ibarra, D.; Guichard, E.; Souchon, I. Influence of Composition (CO2 and Sugar) on Aroma Release and Perception of Mint-Flavored Carbonated Beverages. J. Agric. Food Chem. 2009, 57, 5891–5898. [Google Scholar] [CrossRef]
- Salles, C.; Hollowood, T.A.; Linforth, R.S.T.; Taylor, A.J. Relating real time flavour release to sensory perception of soft cheeses. In Flavour Research at the Dawn of the Twenty-First Century; Le Quere, J.L., Etiévant, P.X., Eds.; Lavoisier Tec & Doc: Paris, France, 2003; pp. 170–175. [Google Scholar]
- Déléris, I.; Saint-Eve, A.; Guo, Y.; Lieben, P.; Cypriani, M.-L.; Jacquet, N.; Brunerie, P.; Souchon, I. Impact of Swallowing on the Dynamics of Aroma Release and Perception during the Consumption of Alcoholic Beverages. Chem. Senses 2011, 36, 701–713. [Google Scholar] [CrossRef]
- Charles, M.; Romano, A.; Yener, S.; Barnabà, M.; Navarini, L.; Märk, T.D.; Biasioli, F.; Gasperi, F. Understanding flavour perception of espresso coffee by the combination of a dynamic sensory method and in-vivo nosespace analysis. Food Res. Int. 2015, 69, 9–20. [Google Scholar] [CrossRef]
- Deuscher, Z. Identifier Les Marqueurs Clés de la Qualité Organoleptique des Chocolats Pour Prédire Leurs Caractéristiques Sensorielles. Ph.D. Thesis, University of Burgundy, Dijon, France, 2019. [Google Scholar]
- Deuscher, Z.; Andriot, I.; Sémon, E.; Cordelle, S.; Schlich, P.; Repoux, M.; Roger, J.M.; Boulanger, R.; Labouré, H.; Le Quéré, J.L. Dark chocolates organoleptic differences: A PTR-ToF-MS success story. In Proceedings of the 8th International Conference on Proton Transfer Reaction Mass Spectrometry and its Applications, Innsbruck, Austria, 4–8 February 2019; Hansel, A., Dunkl, J., Eds.; Innsbruck University Press: Innsbruck, Austria, 2019; pp. 83–86. [Google Scholar]
- Deuscher, Z.; Andriot, I.; Cordelle, S.; Repoux, M.; Boulanger, R.; Labouré, H.; Schlich, P.; Le Quéré, J.L. Nosespace of dark chocolates differing in sensory characteristics using PTR-TOF-MS and link to flavour perception through simultaneous Temporal Dominance of Sensations (TDS). In Proceedings of the 12th Wartburg Symposium on Flavor Chemistry & Biology, Eisenach, Germany, 21–24 May 2019. [Google Scholar]
- Peltier, C.; Visalli, M.; Labouré, H.; Hélard, C.; Andriot, I.; Cordelle, S.; Le Quéré, J.-L.; Schlich, P. Automatic pre-treatment and multiblock analysis of flavor release and sensory temporal data simultaneously collected in vivo. J. Chemometr. 2022, 2022, e3450. [Google Scholar] [CrossRef]
- Pedrotti, M.; Spaccasassi, A.; Biasioli, F.; Fogliano, V. Ethnicity, gender and physiological parameters: Their effect on in vivo flavour release and perception during chewing gum consumption. Food Res. Int. 2019, 116, 57–70. [Google Scholar] [CrossRef]
- van Eck, A.; Pedrotti, M.; Brouwer, R.; Supapong, A.; Fogliano, V.; Scholten, E.; Biasioli, F.; Stieger, M. In Vivo Aroma Release and Dynamic Sensory Perception of Composite Foods. J. Agric. Food Chem. 2021, 69, 10260–10271. [Google Scholar] [CrossRef]
- Gonzalez-Estanol, K.; Khomenko, I.; Cliceri, D.; Biasioli, F.; Stieger, M. In vivo aroma release and perception of composite foods using nose space PTR–ToF–MS analysis with Temporal-Check-All-That-Apply. Food Res. Int. 2023, 167, 112726. [Google Scholar] [CrossRef]
- Pittari, E.; Piombino, P.; Andriot, I.; Cheynier, V.; Cordelle, S.; Feron, G.; Gourrat, K.; Le Quéré, J.-L.; Meudec, E.; Moio, L.; et al. Effects of oenological tannins on aroma release and perception of oxidized and non-oxidized red wine: A dynamic real-time in-vivo study coupling sensory evaluation and analytical chemistry. Food Chem. 2022, 372, 131229. [Google Scholar] [CrossRef]
- Yang, N.; Yang, Q.; Chen, J.; Fisk, I. Impact of capsaicin on aroma release and perception from flavoured solutions. LWT-Food Sci. Technol. 2021, 138, 110613. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, W.; Quek, S.Y.; Zhao, L. Flavor–food ingredient interactions in fortified or reformulated novel food: Binding behaviors, manipulation strategies, sensory impacts, and future trends in delicious and healthy food design. Comp. Rev. Food Sci. Food Saf. 2023. ahead of print. [Google Scholar] [CrossRef]
- de la Fuente Blanco, A.; Sáenz-Navajas, M.-P.; Ballester, J.; Franco-Luesma, E.; Valentin, D.; Ferreira, V. Sensory dimensions derived from competitive and creative perceptual interactions between fruity ethyl esters and woody odorants in wine-like models. OENO One 2023, 57, 489–503. [Google Scholar] [CrossRef]
- Ma, Y.; Guibert, A.; Béno, N.; Tang, K.; Xu, Y.; Thomas-Danguin, T. Exploring the effects of mixture composition factors and perceptual interactions on the perception of icewine odor: An olfactometer-based study. Food Chem. 2023, 429, 136881. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Anantharamkrishnan, V.; Hoye, T.R.; Reineccius, G.A. Covalent Adduct Formation between β-Lactoglobulin and Flavor Compounds under Thermal Treatments That Mimic Food Pasteurization or Sterilization. J. Agric. Food Chem. 2023, 71, 9481–9489. [Google Scholar] [CrossRef]
- Gierczynski, I.; Guichard, E.; Laboure, H. Aroma perception in dairy products: The roles of texture, aroma release and consumer physiology. A review. Flavour Fragr. J. 2011, 26, 141–152. [Google Scholar] [CrossRef]
- Bult, J.H.F.; de Wijk, R.A.; Hummel, T. Investigations on multimodal sensory integration: Texture, taste, and ortho- and retronasal olfactory stimuli in concert. Neurosci. Lett. 2007, 411, 6–10. [Google Scholar] [CrossRef]
- Relkin, P.; Fabre, M.; Guichard, E. Effect of fat nature and aroma compound hydrophobicity on flavor release from complex food emulsions. J. Agric. Food Chem. 2004, 52, 6257–6263. [Google Scholar] [CrossRef]
- Boisard, L.; Andriot, I.; Martin, C.; Septier, C.; Boissard, V.; Salles, C.; Guichard, E. The salt and lipid composition of model cheeses modifies in-mouth flavour release and perception related to the free sodium ion content. Food Chem. 2014, 145, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Salles, C. Odour-taste interactions in flavour perception. In Flavour in Food; Voilley, A., Etiévant, P., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2006; Part 3; pp. 345–368. [Google Scholar] [CrossRef]
- Voilley, A.; Etiévant, P. (Eds.) Flavour in Food; Woodhead Publishing Limited: Cambridge, UK, 2006. [Google Scholar]
- Guichard, E.; Salles, C.; Morzel, M.; Le Bon, A.-M. (Eds.) Flavour: From Food to Perception; John Wiley & Sons, Inc.: Chichester, UK, 2017. [Google Scholar]
- Guichard, E.; Salles, C. (Eds.) Flavor: From Food to Behaviors, Wellbeing and Health; Woodhead Publishing: Cambridge, MA, USA, 2022. [Google Scholar]
- Goubet, I.; Le Quéré, J.L.; Voilley, A.J. Retention of aroma compounds by carbohydrates: Influence of their physicochemical characteristics and of their physical state. A review. J. Agric. Food Chem. 1998, 46, 1981–1990. [Google Scholar] [CrossRef]
- Noble, A.C. Taste-aroma interactions. Trends Food Sci. Technol. 1996, 7, 439–444. [Google Scholar] [CrossRef]
- Green, B.G.; Nachtigal, D.; Hammond, S.; Lim, J. Enhancement of retronasal odors by taste. Chem. Senses 2012, 37, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Nasri, N.; Beno, N.; Septier, C.; Salles, C.; Thomas-Danguin, T. Cross-modal interactions between taste and smell: Odour-induced saltiness enhancement depends on salt level. Food Qual. Pref. 2011, 22, 678–682. [Google Scholar] [CrossRef]
- Spence, C. Factors affecting odour-induced taste enhancement. Food Qual. Pref. 2022, 96, 104393. [Google Scholar] [CrossRef]
- Thomas-Danguin, T.; Guichard, E.; Salles, C. Cross-modal interactions as a strategy to enhance salty taste and to maintain liking of low-salt food: A review. Food Funct. 2019, 10, 5269–5281. [Google Scholar] [CrossRef]
- Lyu, J.; Chen, S.; Nie, Y.; Xu, Y.; Tang, K. Aroma release during wine consumption: Factors and analytical approaches. Food Chem. 2021, 346, 128957. [Google Scholar] [CrossRef]
- Trimmer, C.; Keller, A.; Murphy, N.R.; Snyder, L.L.; Willer, J.R.; Nagai, M.H.; Katsanis, N.; Vosshall, L.B.; Matsunami, H.; Mainland, J.D. Genetic variation across the human olfactory receptor repertoire alters odor perception. Proc. Natl. Acad. Sci. USA 2019, 116, 9475–9480. [Google Scholar] [CrossRef] [PubMed]
- Feron, G.; Ayed, C.; Qannari, E.M.; Courcoux, P.; Laboure, H.; Guichard, E. Understanding aroma release from model cheeses by a statistical multiblock approach on oral processing. PLoS ONE 2014, 9, e93113. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.; Canon, F.; Feron, G.; Neiers, F.; Gamero, A. Impact of Oral Microbiota on Flavor Perception: From Food Processing to In-Mouth Metabolization. Foods 2021, 10, 2006. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-González, C.; Brule, M.; Martin, C.; Feron, G.; Canon, F. Molecular mechanisms of aroma persistence: From noncovalent interactions between aroma compounds and the oral mucosa to metabolization of aroma compounds by saliva and oral cells. Food Chem. 2022, 373, 131467. [Google Scholar] [CrossRef] [PubMed]
- Boichot, V.; Muradova, M.; Nivet, C.; Proskura, A.; Heydel, J.-M.; Canivenc-Lavier, M.-C.; Canon, F.; Neiers, F.; Schwartz, M. The role of perireceptor events in flavor perception. Front. Food Sci. Technol. 2022, 2, 989291. [Google Scholar] [CrossRef]
- Buettner, A.; Beer, A.; Hannig, C.; Settles, M. Observation of the swallowing process by application of videofluoroscopy and real-time magnetic resonance imaging—Consequences for retronasal aroma stimulation. Chem. Senses 2001, 26, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Linforth, R.; Taylor, A.J. Persistence of volatile compounds in the breath after their consumption in aqueous solutions. J. Agric. Food Chem. 2000, 48, 5419–5423. [Google Scholar] [CrossRef] [PubMed]
- Labouré, H.; Repoux, M.; Courcoux, P.; Feron, G.; Guichard, E. Inter-individual retronasal aroma release variability during cheese consumption: Role of food oral processing. Food Res. Int. 2014, 64, 692–700. [Google Scholar] [CrossRef]
- Ruijschop, R.M.A.J.; Burgering, M.J.M.; Jacobs, M.A.; Boelrijk, A.E.M. Retro-Nasal Aroma Release Depends on Both Subject and Product Differences: A Link to Food Intake Regulation? Chem. Senses 2009, 34, 395–403. [Google Scholar] [CrossRef]
- Muñoz-González, C.; Martín-Álvarez, P.J.; Moreno-Arribas, M.V.; Pozo-Bayón, M.Á. Impact of the Nonvolatile Wine Matrix Composition on the In Vivo Aroma Release from Wines. J. Agric. Food Chem. 2014, 62, 66–73. [Google Scholar] [CrossRef]
- Ijichi, C.; Wakabayashi, H.; Sugiyama, S.; Ihara, Y.; Nogi, Y.; Nagashima, A.; Ihara, S.; Niimura, Y.; Shimizu, Y.; Kondo, K.; et al. Metabolism of Odorant Molecules in Human Nasal/Oral Cavity Affects the Odorant Perception. Chem. Senses 2019, 44, 465–481. [Google Scholar] [CrossRef]
- Robert-Hazotte, A.; Faure, P.; Ménétrier, F.; Folia, M.; Schwartz, M.; Le Quéré, J.-L.; Neiers, F.; Thomas-Danguin, T.; Heydel, J.-M. Nasal Odorant Competitive Metabolism Is Involved in the Human Olfactory Process. J. Agric. Food Chem. 2022, 70, 8385–8394. [Google Scholar] [CrossRef] [PubMed]
- Small, D.M.; Prescott, J. Odor/taste integration and the perception of flavor. Exp. Brain Res. 2005, 166, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Pu, D.; Zhang, H.; Zhang, Y.; Sun, B.; Ren, F.; Chen, H.; He, J. Characterization of the aroma release and perception of white bread during oral processing by gas chromatography-ion mobility spectrometry and temporal dominance of sensations analysis. Food Res. Int. 2019, 123, 612–622. [Google Scholar] [CrossRef]
- van Eck, A.; Stieger, M. Oral processing behavior, sensory perception and intake of composite foods. Trends Food Sci. Technol. 2020, 106, 219–231. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Quéré, J.-L.; Schoumacker, R. Dynamic Instrumental and Sensory Methods Used to Link Aroma Release and Aroma Perception: A Review. Molecules 2023, 28, 6308. https://doi.org/10.3390/molecules28176308
Le Quéré J-L, Schoumacker R. Dynamic Instrumental and Sensory Methods Used to Link Aroma Release and Aroma Perception: A Review. Molecules. 2023; 28(17):6308. https://doi.org/10.3390/molecules28176308
Chicago/Turabian StyleLe Quéré, Jean-Luc, and Rachel Schoumacker. 2023. "Dynamic Instrumental and Sensory Methods Used to Link Aroma Release and Aroma Perception: A Review" Molecules 28, no. 17: 6308. https://doi.org/10.3390/molecules28176308
APA StyleLe Quéré, J. -L., & Schoumacker, R. (2023). Dynamic Instrumental and Sensory Methods Used to Link Aroma Release and Aroma Perception: A Review. Molecules, 28(17), 6308. https://doi.org/10.3390/molecules28176308